-
Notifications
You must be signed in to change notification settings - Fork 0
/
generic_spikedetekt.prm
executable file
·65 lines (52 loc) · 1.56 KB
/
generic_spikedetekt.prm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
"""Contain default parameters."""
VOLTAGE_GAIN = 10.
WAVEFORMS_NSAMPLES = 32
assert sample_rate > 0
# Filtering
# ---------
filter_low = 600. # Low pass frequency (Hz)
filter_high = 0.95 * .5 * sample_rate
filter_butter_order = 3 # Order of Butterworth filter.
# Chunks
# ------
chunk_size = int(1. * sample_rate) # 1 second
chunk_overlap = int(.015 * sample_rate) # 15 ms
# Saving raw/filtered data
# ------------------------
save_raw = False
save_high = False
save_low = False
# Spike detection
# ---------------
# Uniformly scattered chunks, for computing the threshold from the std of the
# signal across the whole recording.
nexcerpts = 60
excerpt_size = int(1. * sample_rate)
use_single_threshold = False
threshold_strong_std_factor = 5.
threshold_weak_std_factor = 2.5
detect_spikes = 'negative'
# Connected component
# -------------------
connected_component_join_size = int(.00005 * sample_rate)
# Spike extraction
# ----------------
extract_s_before = 16
extract_s_after = 16
# Features
# --------
nfeatures_per_channel = 5 # Number of features per channel.
pca_nwaveforms_max = 20000
features_contiguous = True # Whether to make the features array contiguous
# Put a NumPy array here if you don't want the PCs to be computed
# automatically from the filtered waveforms. This is normally obtained with
# compute_pcs(waveforms, npcs=npcs). This array size should be
# (npcs, nsamples, nchannels).
canonical_pcs = None
#Waveform alignment
# -----------------
weight_power = 2
# DEBUG: diagnostics
# ------------------
# Full path to a debug script.
diagnostics_path = None