-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathhungry_geese.py
244 lines (199 loc) · 8.43 KB
/
hungry_geese.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
# Copyright (c) 2020 DeNA Co., Ltd.
# Licensed under The MIT License [see LICENSE for details]
# kaggle_environments licensed under Copyright 2020 Kaggle Inc. and the Apache License, Version 2.0
# (see https://github.com/Kaggle/kaggle-environments/blob/master/LICENSE for details)
# wrapper of Hungry Geese environment from kaggle
import random
import itertools
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
# You need to install kaggle_environments, requests
from kaggle_environments import make
from ...environment import BaseEnvironment
class TorusConv2d(nn.Module):
def __init__(self, input_dim, output_dim, kernel_size, bn):
super().__init__()
self.edge_size = (kernel_size[0] // 2, kernel_size[1] // 2)
self.conv = nn.Conv2d(input_dim, output_dim, kernel_size=kernel_size)
self.bn = nn.BatchNorm2d(output_dim) if bn else None
def forward(self, x):
h = torch.cat([x[:,:,:,-self.edge_size[1]:], x, x[:,:,:,:self.edge_size[1]]], dim=3)
h = torch.cat([h[:,:,-self.edge_size[0]:], h, h[:,:,:self.edge_size[0]]], dim=2)
h = self.conv(h)
h = self.bn(h) if self.bn is not None else h
return h
class GeeseNet(nn.Module):
def __init__(self):
super().__init__()
layers, filters = 12, 32
self.conv0 = TorusConv2d(17, filters, (3, 3), True)
self.blocks = nn.ModuleList([TorusConv2d(filters, filters, (3, 3), True) for _ in range(layers)])
self.head_p = nn.Linear(filters, 4, bias=False)
self.head_v = nn.Linear(filters * 2, 1, bias=False)
def forward(self, x, _=None):
h = F.relu_(self.conv0(x))
for block in self.blocks:
h = F.relu_(h + block(h))
h_head = (h * x[:,:1]).view(h.size(0), h.size(1), -1).sum(-1)
h_avg = h.view(h.size(0), h.size(1), -1).mean(-1)
p = self.head_p(h_head)
v = torch.tanh(self.head_v(torch.cat([h_head, h_avg], 1)))
return {'policy': p, 'value': v}
class Environment(BaseEnvironment):
ACTION = ['NORTH', 'SOUTH', 'WEST', 'EAST']
DIRECTION = [[-1, 0], [1, 0], [0, -1], [0, 1]]
NUM_AGENTS = 4
def __init__(self, args={}):
super().__init__()
self.env = make("hungry_geese")
self.reset()
def reset(self, args={}):
obs = self.env.reset(num_agents=self.NUM_AGENTS)
self.update((obs, {}), True)
def update(self, info, reset):
obs, last_actions = info
if reset:
self.obs_list = []
self.obs_list.append(obs)
self.last_actions = last_actions
def action2str(self, a, player=None):
return self.ACTION[a]
def str2action(self, s, player=None):
return self.ACTION.index(s)
def direction(self, pos_from, pos_to):
if pos_from is None or pos_to is None:
return None
x, y = pos_from // 11, pos_from % 11
for i, d in enumerate(self.DIRECTION):
nx, ny = (x + d[0]) % 7, (y + d[1]) % 11
if nx * 11 + ny == pos_to:
return i
return None
def __str__(self):
# output state
obs = self.obs_list[-1][0]['observation']
colors = ['\033[33m', '\033[34m', '\033[32m', '\033[31m']
color_end = '\033[0m'
def check_cell(pos):
for i, geese in enumerate(obs['geese']):
if pos in geese:
if pos == geese[0]:
return i, 'h'
if pos == geese[-1]:
return i, 't'
index = geese.index(pos)
pos_prev = geese[index - 1] if index > 0 else None
pos_next = geese[index + 1] if index < len(geese) - 1 else None
directions = [self.direction(pos, pos_prev), self.direction(pos, pos_next)]
return i, directions
if pos in obs['food']:
return 'f'
return None
def cell_string(cell):
if cell is None:
return '.'
elif cell == 'f':
return 'f'
else:
index, directions = cell
if directions == 'h':
return colors[index] + '@' + color_end
elif directions == 't':
return colors[index] + '*' + color_end
elif max(directions) < 2:
return colors[index] + '|' + color_end
elif min(directions) >= 2:
return colors[index] + '-' + color_end
else:
return colors[index] + '+' + color_end
cell_status = [check_cell(pos) for pos in range(7 * 11)]
s = 'turn %d\n' % len(self.obs_list)
for x in range(7):
for y in range(11):
pos = x * 11 + y
s += cell_string(cell_status[pos])
s += '\n'
for i, geese in enumerate(obs['geese']):
s += colors[i] + str(len(geese) or '-') + color_end + ' '
return s
def step(self, actions):
# state transition
obs = self.env.step([self.action2str(actions.get(p, None) or 0) for p in self.players()])
self.update((obs, actions), False)
def diff_info(self, _):
return self.obs_list[-1], self.last_actions
def turns(self):
# players to move
return [p for p in self.players() if self.obs_list[-1][p]['status'] == 'ACTIVE']
def terminal(self):
# check whether terminal state or not
for obs in self.obs_list[-1]:
if obs['status'] == 'ACTIVE':
return False
return True
def outcome(self):
# return terminal outcomes
# 1st: 1.0 2nd: 0.33 3rd: -0.33 4th: -1.00
rewards = {o['observation']['index']: o['reward'] for o in self.obs_list[-1]}
outcomes = {p: 0 for p in self.players()}
for p, r in rewards.items():
for pp, rr in rewards.items():
if p != pp:
if r > rr:
outcomes[p] += 1 / (self.NUM_AGENTS - 1)
elif r < rr:
outcomes[p] -= 1 / (self.NUM_AGENTS - 1)
return outcomes
def legal_actions(self, player):
# return legal action list
return list(range(len(self.ACTION)))
def players(self):
return list(range(self.NUM_AGENTS))
def rule_based_action(self, player, key=None):
from kaggle_environments.envs.hungry_geese.hungry_geese import Observation, Configuration, Action, GreedyAgent
action_map = {'N': Action.NORTH, 'S': Action.SOUTH, 'W': Action.WEST, 'E': Action.EAST}
agent = GreedyAgent(Configuration({'rows': 7, 'columns': 11}))
agent.last_action = action_map[self.ACTION[self.last_actions[player]][0]] if player in self.last_actions else None
obs = {**self.obs_list[-1][0]['observation'], **self.obs_list[-1][player]['observation']}
action = agent(Observation(obs))
return self.ACTION.index(action)
def net(self):
return GeeseNet()
def observation(self, player=None):
if player is None:
player = 0
b = np.zeros((self.NUM_AGENTS * 4 + 1, 7 * 11), dtype=np.float32)
obs = self.obs_list[-1][0]['observation']
for p, geese in enumerate(obs['geese']):
# head position
for pos in geese[:1]:
b[0 + (p - player) % self.NUM_AGENTS, pos] = 1
# tip position
for pos in geese[-1:]:
b[4 + (p - player) % self.NUM_AGENTS, pos] = 1
# whole position
for pos in geese:
b[8 + (p - player) % self.NUM_AGENTS, pos] = 1
# previous head position
if len(self.obs_list) > 1:
obs_prev = self.obs_list[-2][0]['observation']
for p, geese in enumerate(obs_prev['geese']):
for pos in geese[:1]:
b[12 + (p - player) % self.NUM_AGENTS, pos] = 1
# food
for pos in obs['food']:
b[16, pos] = 1
return b.reshape(-1, 7, 11)
if __name__ == '__main__':
e = Environment()
for _ in range(100):
e.reset()
while not e.terminal():
print(e)
actions = {p: e.legal_actions(p) for p in e.turns()}
print([[e.action2str(a, p) for a in alist] for p, alist in actions.items()])
e.step({p: random.choice(alist) for p, alist in actions.items()})
print(e)
print(e.outcome())