-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsinc_resampler.h
601 lines (499 loc) · 21.7 KB
/
sinc_resampler.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
/* Copyright (C) 2010-2018 The RetroArch team
*
* Permission is hereby granted, free of charge,
* to any person obtaining a copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
* and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/* Modified by Janne Hyvärinen */
/* Modified some more by Peter Pawlowski */
#pragma once
#define __forceinline
#include "ppsimd/ppsimd.h"
#ifdef _MSC_VER
#define _NOALIAS __declspec(noalias)
#define _RESTRICT __declspec(restrict)
#endif
#ifndef _NOALIAS
#define _NOALIAS
#endif
#ifndef _RESTRICT
#define _RESTRICT
#endif
/* API definitions */
enum resampler_quality { /* Rough SNR values for upsampling: */
RESAMPLER_QUALITY_LOWEST = 0, /* LOWEST: 40 dB */
RESAMPLER_QUALITY_LOWER, /* LOWER: 55 dB */
RESAMPLER_QUALITY_NORMAL, /* NORMAL: 70 dB */
RESAMPLER_QUALITY_HIGHER, /* HIGHER: 110 dB */
RESAMPLER_QUALITY_HIGHEST /* HIGHEST: 140 dB */
};
struct resampler_data {
const float *data_in;
float *data_out;
size_t input_frames;
size_t output_frames;
};
static bool resampler_sinc_ratio_supported(unsigned int srate_source, unsigned int srate_target, enum resampler_quality quality);
/* returns pointer to rarch_sinc_resampler_t */
static void *resampler_sinc_new(unsigned int srate_source, unsigned int srate_target, unsigned int num_channels, enum resampler_quality quality);
static void resampler_sinc_flush(void *data);
static void resampler_sinc_free(void *data);
/* end of API definitions */
typedef void (*resampler_sinc_process_t)(void *re_, struct resampler_data *data);
#include <stdint.h>
#include <stdlib.h>
#include <math.h>
#include <malloc.h>
enum class sinc_window {
NONE = 0,
KAISER,
LANCZOS
};
typedef struct rarch_sinc_resampler {
resampler_sinc_process_t process;
unsigned int num_channels;
double ratio;
unsigned int phase_bits;
unsigned int subphase_bits;
unsigned int subphase_mask;
unsigned int taps;
unsigned int ptr;
unsigned int skip;
unsigned int initial_skip;
uint32_t time;
float subphase_mod;
float kaiser_beta;
enum sinc_window window_type;
/* A buffer for phase_table, buffer_l and buffer_r
* are created in a single calloc().
* Ensure that we get as good cache locality as we can hope for. */
float *main_buffer;
float *phase_table;
float *buffer_l; /* left channel or beginning of channel buffer when num_channels > 2 */
float *buffer_r;
} rarch_sinc_resampler_t;
struct resampler_quality_settings {
double cutoff;
unsigned int sidelobes;
unsigned int phase_bits;
unsigned int subphase_bits;
float kaiser_beta;
enum sinc_window window_type;
};
static const resampler_quality_settings resampler_quality_levels[5] = {
{ 0.980, 2, 12, 10, 0.0f, sinc_window::LANCZOS }, /* RESAMPLER_QUALITY_LOWEST /*/
{ 0.980, 4, 12, 10, 0.0f, sinc_window::LANCZOS }, /* RESAMPLER_QUALITY_LOWER /*/
{ 0.825, 8, 8, 16, 5.5f, sinc_window::KAISER }, /* RESAMPLER_QUALITY_NORMAL /*/
{ 0.900, 32, 10, 14, 10.5f, sinc_window::KAISER }, /* RESAMPLER_QUALITY_HIGHER /*/
{ 0.962, 128, 10, 14, 14.5f, sinc_window::KAISER } /* RESAMPLER_QUALITY_HIGHEST /*/
};
#ifndef M_PI
#define M_PI 3.14159265358979323846264338327
#endif
static __forceinline double sinc(double val)
{
if (fabs(val) < 0.00001) return 1.0;
return sin(val) / val;
}
static __forceinline double besseli0(double x)
{
unsigned i;
double sum = 0.0;
double factorial = 1.0;
double factorial_mult = 0.0;
double x_pow = 1.0;
double two_div_pow = 1.0;
double x_sqr = x * x;
/* Approximate. This is an infinite sum.
* Luckily, it converges rather fast. */
for (i = 0; i < 18; i++) {
sum += x_pow * two_div_pow / (factorial * factorial);
factorial_mult += 1.0;
x_pow *= x_sqr;
two_div_pow *= 0.25;
factorial *= factorial_mult;
}
return sum;
}
static __forceinline double kaiser_window_function(double index, double beta)
{
return besseli0(beta * sqrtf((float)(1 - (index * index))));
}
static __forceinline double lanzcos_window_function(double index)
{
return sinc(M_PI * index);
}
/* sinc resampler */
template<bool bKaiser>
static _NOALIAS void resampler_sinc_process_simd_stereo(void *re_, struct resampler_data *data)
{
rarch_sinc_resampler_t *resamp = (rarch_sinc_resampler_t*)re_;
unsigned phases = 1 << (resamp->phase_bits + resamp->subphase_bits);
uint32_t ratio = (uint32_t)(phases / resamp->ratio + 0.5);
const float *input = data->data_in;
float *output = data->data_out;
size_t frames = data->input_frames;
size_t out_frames = 0;
while (frames) {
while (frames && resamp->time >= phases) {
/* Push in reverse to make filter more obvious. */
if (!resamp->ptr) resamp->ptr = resamp->taps;
resamp->ptr--;
resamp->buffer_l[resamp->ptr + resamp->taps] = resamp->buffer_l[resamp->ptr] = *input++;
resamp->buffer_r[resamp->ptr + resamp->taps] = resamp->buffer_r[resamp->ptr] = *input++;
resamp->time -= phases;
frames--;
}
while (resamp->time < phases) {
if (resamp->skip == 0) {
using namespace ppsimd;
unsigned i;
float32x4 sum_l, sum_r, delta;
float* phase_table = NULL;
float* delta_table = NULL;
const float* buffer_l = resamp->buffer_l + resamp->ptr;
const float* buffer_r = resamp->buffer_r + resamp->ptr;
unsigned taps = resamp->taps;
unsigned phase = resamp->time >> resamp->subphase_bits;
if (/*resamp->window_type == sinc_window::KAISER*/ bKaiser) {
phase_table = resamp->phase_table + phase * taps * 2;
delta_table = phase_table + taps;
delta = pset1f32x4((float)(resamp->time & resamp->subphase_mask) * resamp->subphase_mod);
} else {
phase_table = resamp->phase_table + phase * taps;
}
sum_r = sum_l = pzerof32x4();
for (i = 0; i < taps; i += 4) {
float32x4 _sinc;
float32x4 buf_l = ploadf32x4(buffer_l + i);
float32x4 buf_r = ploadf32x4(buffer_r + i);
if (/*resamp->window_type == sinc_window::KAISER*/ bKaiser) {
auto deltas = ploadf32x4a(delta_table + i);
_sinc = padd(ploadf32x4((const float*)phase_table + i), pmul(deltas, delta));
} else {
_sinc = ploadf32x4a((const float*)phase_table + i);
}
sum_l = padd(sum_l, pmul(buf_l, _sinc));
sum_r = padd(sum_r, pmul(buf_r, _sinc));
}
#ifdef PPSIMD_SSE
// Original libretro SSE shuffle party
auto sum = _mm_add_ps(_mm_shuffle_ps(sum_l, sum_r, _MM_SHUFFLE(1, 0, 1, 0)), _mm_shuffle_ps(sum_l, sum_r, _MM_SHUFFLE(3, 2, 3, 2)));
sum = _mm_add_ps(_mm_shuffle_ps(sum, sum, _MM_SHUFFLE(3, 3, 1, 1)), sum);
_mm_store_ss(output++, sum);
_mm_store_ss(output++, _mm_movehl_ps(sum, sum));
#else
* (output++) = paddelems(sum_l);
*(output++) = paddelems(sum_r);
#endif
out_frames++;
} else {
resamp->skip--;
}
resamp->time += ratio;
}
}
data->output_frames = out_frames;
}
template<bool bKaiser>
static _NOALIAS void resampler_sinc_process_simd(void* re_, struct resampler_data* data)
{
rarch_sinc_resampler_t* resamp = (rarch_sinc_resampler_t*)re_;
unsigned phases = 1 << (resamp->phase_bits + resamp->subphase_bits);
uint32_t ratio = (uint32_t)(phases / resamp->ratio + 0.5);
const float* input = data->data_in;
float* output = data->data_out;
size_t frames = data->input_frames;
unsigned int channels = resamp->num_channels;
unsigned int taps = resamp->taps;
size_t out_frames = 0;
while (frames) {
unsigned int c;
while (frames && resamp->time >= phases) {
/* Push in reverse to make filter more obvious. */
if (!resamp->ptr) resamp->ptr = resamp->taps;
resamp->ptr--;
for (c = 0; c < channels; ++c) {
resamp->buffer_l[(resamp->ptr + resamp->taps) + (c * 2 * resamp->taps)] = resamp->buffer_l[(resamp->ptr) + (c * 2 * resamp->taps)] = *input++;
}
resamp->time -= phases;
frames--;
}
while (resamp->time < phases) {
if (resamp->skip == 0) {
using namespace ppsimd;
unsigned i;
float32x4 delta;
float* phase_table, * delta_table;
const float* buffer_l = resamp->buffer_l + resamp->ptr;
unsigned int phase = resamp->time >> resamp->subphase_bits;
if (bKaiser) {
phase_table = resamp->phase_table + phase * taps * 2;
delta_table = phase_table + taps;
delta = pset1f32x4((float)(resamp->time & resamp->subphase_mask) * resamp->subphase_mod);
} else {
phase_table = resamp->phase_table + phase * taps;
}
for (c = 0; c < channels; c++) {
const float* pbuf_l = buffer_l + (c * 2 * taps);
float32x4 sum = pzerof32x4();
for (i = 0; i < taps; i += 4) {
auto sinc_val = ploadf32x4a(&phase_table[i]);
if (bKaiser) sinc_val = padd(sinc_val, pmul(ploadf32x4a(&delta_table[i]), delta));
sum = padd(sum, pmul(ploadf32x4(pbuf_l), sinc_val));
pbuf_l += 4;
}
*output++ = paddelems(sum);
}
out_frames++;
} else {
resamp->skip--;
}
resamp->time += ratio;
}
}
data->output_frames = out_frames;
}
static _NOALIAS void resampler_sinc_process_c(void *re_, struct resampler_data *data)
{
rarch_sinc_resampler_t *resamp = (rarch_sinc_resampler_t*)re_;
unsigned phases = 1 << (resamp->phase_bits + resamp->subphase_bits);
uint32_t ratio = (uint32_t)(phases / resamp->ratio + 0.5);
const float *input = data->data_in;
float *output = data->data_out;
size_t frames = data->input_frames;
unsigned int channels = resamp->num_channels;
unsigned int taps = resamp->taps;
size_t out_frames = 0;
while (frames) {
unsigned int c;
while (frames && resamp->time >= phases) {
/* Push in reverse to make filter more obvious. */
if (!resamp->ptr) resamp->ptr = resamp->taps;
resamp->ptr--;
for (c = 0; c < channels; ++c) {
resamp->buffer_l[(resamp->ptr + resamp->taps) + (c*2*resamp->taps)] = resamp->buffer_l[(resamp->ptr) + (c*2*resamp->taps)] = *input++;
}
resamp->time -= phases;
frames--;
}
while (resamp->time < phases) {
unsigned i;
float delta;
float *phase_table, *delta_table;
const float *buffer_l = resamp->buffer_l + resamp->ptr;
unsigned int phase = resamp->time >> resamp->subphase_bits;
if (resamp->window_type == sinc_window::KAISER) {
phase_table = resamp->phase_table + phase * taps * 2;
delta_table = phase_table + taps;
delta = (float)(resamp->time & resamp->subphase_mask) * resamp->subphase_mod;
} else {
phase_table = resamp->phase_table + phase * taps;
}
for (c = 0; c < channels; c++) {
float sum = 0.0f;
for (i = 0; i < taps; i++) {
float sinc_val = phase_table[i];
if (resamp->window_type == sinc_window::KAISER) sinc_val += delta_table[i] * delta;
sum += buffer_l[i + (c*2*taps)] * sinc_val;
}
if (resamp->skip == 0) *output++ = sum;
}
if (resamp->skip == 0) {
out_frames++;
} else {
resamp->skip--;
}
resamp->time += ratio;
}
}
data->output_frames = out_frames;
}
static _NOALIAS void sinc_init_table_kaiser(rarch_sinc_resampler_t *resamp, double cutoff, float *phase_table, int phases, int taps, bool calculate_delta)
{
int i, j;
double window_mod = kaiser_window_function(0.0, resamp->kaiser_beta); /* Need to normalize w(0) to 1.0. */
int stride = calculate_delta ? 2 : 1;
double sidelobes = taps / 2.0;
for (i = 0; i < phases; i++) {
for (j = 0; j < taps; j++) {
double sinc_phase;
float val;
int n = j * phases + i;
double window_phase = (double)n / (phases * taps); /* [0, 1). */
window_phase = 2.0 * window_phase - 1.0; /* [-1, 1) */
sinc_phase = sidelobes * window_phase;
val = (float)(cutoff * sinc(M_PI * sinc_phase * cutoff) * kaiser_window_function(window_phase, resamp->kaiser_beta) / window_mod);
phase_table[i * stride * taps + j] = val;
}
}
if (calculate_delta) {
int phase;
int p;
for (p = 0; p < phases - 1; p++) {
for (j = 0; j < taps; j++) {
float delta = phase_table[(p + 1) * stride * taps + j] - phase_table[p * stride * taps + j];
phase_table[(p * stride + 1) * taps + j] = delta;
}
}
phase = phases - 1;
for (j = 0; j < taps; j++) {
float val, delta;
double sinc_phase;
int n = j * phases + (phase + 1);
double window_phase = (double)n / (phases * taps); /* (0, 1]. */
window_phase = 2.0 * window_phase - 1.0; /* (-1, 1] */
sinc_phase = sidelobes * window_phase;
val = (float)(cutoff * sinc(M_PI * sinc_phase * cutoff) * kaiser_window_function(window_phase, resamp->kaiser_beta) / window_mod);
delta = (val - phase_table[phase * stride * taps + j]);
phase_table[(phase * stride + 1) * taps + j] = delta;
}
}
}
static _NOALIAS void sinc_init_table_lanczos(rarch_sinc_resampler_t *resamp, double cutoff, float *phase_table, int phases, int taps, bool calculate_delta)
{
int i, j;
double window_mod = lanzcos_window_function(0.0); /* Need to normalize w(0) to 1.0. */
int stride = calculate_delta ? 2 : 1;
double sidelobes = taps / 2.0;
for (i = 0; i < phases; i++) {
for (j = 0; j < taps; j++) {
double sinc_phase;
float val;
int n = j * phases + i;
double window_phase = (double)n / (phases * taps); /* [0, 1). */
window_phase = 2.0 * window_phase - 1.0; /* [-1, 1) */
sinc_phase = sidelobes * window_phase;
val = (float)(cutoff * sinc(M_PI * sinc_phase * cutoff) * lanzcos_window_function(window_phase) / window_mod);
phase_table[i * stride * taps + j] = val;
}
}
if (calculate_delta) {
int phase;
int p;
for (p = 0; p < phases - 1; p++) {
for (j = 0; j < taps; j++) {
float delta = phase_table[(p + 1) * stride * taps + j] - phase_table[p * stride * taps + j];
phase_table[(p * stride + 1) * taps + j] = delta;
}
}
phase = phases - 1;
for (j = 0; j < taps; j++) {
float val, delta;
double sinc_phase;
int n = j * phases + (phase + 1);
double window_phase = (double)n / (phases * taps); /* (0, 1]. */
window_phase = 2.0 * window_phase - 1.0; /* (-1, 1] */
sinc_phase = sidelobes * window_phase;
val = (float)(cutoff * sinc(M_PI * sinc_phase * cutoff) * lanzcos_window_function(window_phase) / window_mod);
delta = (val - phase_table[phase * stride * taps + j]);
phase_table[(phase * stride + 1) * taps + j] = delta;
}
}
}
static bool resampler_sinc_ratio_supported(unsigned int srate_source, unsigned int srate_target, enum resampler_quality quality)
{
if (srate_source > 0 && srate_target > 0) {
double ratio;
unsigned int taps, phase_bits, subphase_bits, phases;
if (quality < RESAMPLER_QUALITY_LOWEST || quality > RESAMPLER_QUALITY_HIGHEST) quality = RESAMPLER_QUALITY_NORMAL;
taps = resampler_quality_levels[quality].sidelobes * 2;
phase_bits = resampler_quality_levels[quality].phase_bits;
subphase_bits = resampler_quality_levels[quality].subphase_bits;
ratio = (double)srate_target / (double)srate_source;
if (ratio < 1.0) {
double new_taps = ceil(taps / ratio);
if (new_taps >= (UINT32_MAX-4)) return false;
taps = (unsigned int)new_taps;
}
phases = 1 << (phase_bits + subphase_bits);
ratio = (double)phases / ratio;
if (ratio >= UINT32_MAX) return false;
return true;
}
return false;
}
static _NOALIAS _RESTRICT void *resampler_sinc_new(unsigned int srate_source, unsigned int srate_target, unsigned int num_channels, enum resampler_quality quality)
{
ppsimd::selftest();
rarch_sinc_resampler_t *re;
double cutoff;
size_t phase_elems, elems, i;
if (!resampler_sinc_ratio_supported(srate_source, srate_target, quality)) return NULL;
re = (rarch_sinc_resampler_t *)calloc(1, sizeof(*re));
if (!re) return NULL;
if (quality < RESAMPLER_QUALITY_LOWEST || quality > RESAMPLER_QUALITY_HIGHEST) quality = RESAMPLER_QUALITY_NORMAL;
cutoff = resampler_quality_levels[quality].cutoff;
re->taps = resampler_quality_levels[quality].sidelobes * 2;
re->phase_bits = resampler_quality_levels[quality].phase_bits;
re->subphase_bits = resampler_quality_levels[quality].subphase_bits;
re->kaiser_beta = resampler_quality_levels[quality].kaiser_beta;
re->window_type = resampler_quality_levels[quality].window_type;
re->subphase_mask = (1 << re->subphase_bits) - 1;
re->subphase_mod = 1.0f / (1 << re->subphase_bits);
re->num_channels = num_channels;
re->ratio = (double)srate_target / (double)srate_source;
re->initial_skip = re->taps / 2;
re->skip = re->initial_skip;
/* Downsampling, must lower cutoff, and extend number of
* taps accordingly to keep same stopband attenuation. */
if (re->ratio < 1.0) {
cutoff *= re->ratio;
re->taps = (unsigned)ceil(re->taps / re->ratio);
}
/* Be SIMD-friendly. */
re->taps = (re->taps + 3) & ~3;
phase_elems = ((1 << re->phase_bits) * re->taps);
if (re->window_type == sinc_window::KAISER) phase_elems *= 2;
elems = phase_elems + (2*num_channels) * re->taps;
re->main_buffer = (float *)aligned_alloc(128, sizeof(float) * elems);
if (!re->main_buffer) {
resampler_sinc_free(re);
return NULL;
}
for (i = 0; i < elems; ++i) {
re->main_buffer[i] = 0.0f;
}
re->phase_table = re->main_buffer;
re->buffer_l = re->main_buffer + phase_elems;
if (num_channels == 2) re->buffer_r = re->buffer_l + 2 * re->taps;
switch (re->window_type) {
default:
case sinc_window::LANCZOS:
sinc_init_table_lanczos(re, cutoff, re->phase_table, 1 << re->phase_bits, re->taps, false);
break;
case sinc_window::KAISER:
sinc_init_table_kaiser(re, cutoff, re->phase_table, 1 << re->phase_bits, re->taps, true);
break;
}
const bool bKaiser = (re->window_type == sinc_window::KAISER);
re->process = bKaiser ? resampler_sinc_process_simd<true> : resampler_sinc_process_simd<false>;
if (num_channels == 2) {
re->process = bKaiser ? resampler_sinc_process_simd_stereo<true> : resampler_sinc_process_simd_stereo<false>;
}
return re;
}
static _NOALIAS void resampler_sinc_flush(void *data)
{
rarch_sinc_resampler_t *resamp = (rarch_sinc_resampler_t*)data;
resamp->ptr = 0;
resamp->time = 0;
resamp->skip = resamp->initial_skip;
}
static _NOALIAS void resampler_sinc_free(void *data)
{
rarch_sinc_resampler_t *resamp = (rarch_sinc_resampler_t*)data;
if (resamp) free(resamp->main_buffer);
free(resamp);
}