-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmaster_teza_plr.py
563 lines (441 loc) · 22.3 KB
/
master_teza_plr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
# -*- coding: utf-8 -*-
"""MASTER TEZA - PLR.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1E2WzH0WDqnWYxztjOJ8EkaSrEtWseN58
# **"Predikcija ispravnog očitavanje senzora mase protoka vazduha motora automobila"**
## *MASTER TEZA*
---
#### Mentori:
#### ***Prof. dr. Marina Marjanović Jakovljević***
####***Prof. dr. Miodrag Živković***
### Student: **Dejan Čugalj (2019/430054)**
---
#1. Struktura skupa podataka (dataseta)
[Preuzimanje skupa podataka](https://github.com/Dejan-Cugalj/CANBUS_dataset/blob/main/golf-master-canbus_dataset.csv)
---
>### 1.1 - Učitavanje potrebnih **biblioteka**
"""
from google.colab import drive
drive.mount('/content/drive')
# Commented out IPython magic to ensure Python compatibility.
# Sistemske
import datetime, os, time
# Numerika
import numpy as np
import pandas as pd
import pandas.util.testing as tm
from sklearn.preprocessing import StandardScaler
# Linearna Regresija
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestRegressor, AdaBoostRegressor
from sklearn.tree import DecisionTreeRegressor
#Evaluacija
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean_squared_error
from sklearn.metrics import accuracy_score
from sklearn.metrics import mean_squared_error, r2_score, explained_variance_score
import statsmodels.api as sm
#Grafika
import matplotlib.pyplot as plt
import seaborn as sns
# %matplotlib inline
print("*********** Učitane Biblioteke... ********************\n")
""">### 1.2 - Učitavanje skupa podataka (eng. *dataset*)
> **LEGENDA DATASETA:**
* **RPM** - **R**EVOLUTIONS **P**ER **M**INUTE sensor
* **MAP** - **M**ANIFOLD **A**BSOLUTE **P**RESSURE sensor
* **FGP** - **F**UEL **G**AUGE **P**RESSURE sensor
* **IAT** - **I**NTAKE **A**IR **T**EMPERATURE sensor
* **ECT** - **E**NGINE **C**OOLANT **T**EMPERATURE sensor
* **CEL** - **C**ALCULATED **E**NGINE **L**OAD
* **ABP** - **A**BSOLUTE **B**AROMETRIC **P**RESSURE
* **MAF** - **M**ASS **A**IR **F**LOW sensor
"""
url = '/content/drive/MyDrive/FAKULTET/MASTER STUDIJE/MASTER TEZA-RAD/MATERIJAL/AI/1-PLR/golf-master-canbus_dataset.csv' # Uneti putanju do preuzetog dataseta
dataset = pd.read_csv(url ,sep=',', usecols = ['RPM', 'MAP', 'FGP', 'MAF'])
dataset.columns=['RPM', 'MAP', 'FGP', 'MAF']
print("*********** Ucitan DATASET... ********************\n")
""">### 1.3 Preprocesuiranje podataka"""
print("*********** DATASET ********************\n")
print(dataset.head(10))
"""> #### 3.1 Kreiranje Pandas Data-Frejma"""
# Odbacivanje obeležija koje nisu u korelaciji
#dataset.drop(['IAT', 'ECT', 'CEL', 'ABP'], axis=1, inplace=True)
X = dataset.iloc[:, :-1].values # Alokacija Matrice Obeležija / Nezavisnih Promenjivih (eng. Independent variables)
y = dataset.iloc[:, -1].values # Alokacija Zavisne Promenjive (eng. Dependent variable) MAF sernzora automobila
print("**************************************************************")
print("**************** KREIRAN PANDAs DATA FREJM ******************")
print("**************************************************************\n")
print("************************* X ************************\n")
print(X)
print("\n\n\n************************* y ************************\n")
print(y)
""">### 1.4 Sticanje uvida u prirodu podataka
>#### 1.4.1 Dataset info
"""
print("*******************************************")
print("**************** DATASET ******************")
print("*******************************************")
print(dataset.head(10))
print("\n*****************************************************")
print("*************** PRIKAZ INDEX POLJA ******************")
print("*****************************************************")
print(dataset.keys()) # Prikaz indexa
print("\n********************************************************************")
print("*********** Prikaz polja ukoliko postoje ""NaN"" vrednosti ************")
print("********************************************************************")
print(dataset.isnull().sum()) # Prikaz polja ukoliko postoije "NaN" vrednosti
print("\n**********************************************************************")
print("**************** Prikaz oblika učitanog dataseta *********************")
print("**********************************************************************")
print(dataset.shape) # Prikaz oblika učitanog dataseta
print("\n****************************************************")
print("******************** Dataset Info ******************")
print("****************************************************")
print(dataset.info()) # Prikaz oblika učitanog dataseta
""">#### 1.4.2 Prikaz korelacione matrice (numerički)"""
print("\n*******************************************************************")
print("***************** Numerička Korelaciona Matrica *******************")
print("*******************************************************************")
print(dataset.info()) # dataset info
corrMatrix = dataset.corr()
print (corrMatrix) # Numrerički prikaz korelacione matrice
""">#### 1.4.3 Prikaz korelacione matrice (grafički)"""
# Grafički prikaz korelacione matrice
print("\n*******************************************************************")
print("***************** Grafička Korelaciona Matrica ********************")
print("*******************************************************************")
plt.figure(figsize=(20,7))
sns.heatmap(corrMatrix, annot=True, square=False)
""">#### 1.4.4 Prikaz uporednih analiza linearnost (grafički)"""
# Skaliranje Obeležija (eng. Feature Scaling)
sc = StandardScaler()
podaci = sc.fit_transform(dataset)
podaci_dataframe = pd.DataFrame(podaci) # Iz 'ndarray' u Pandas Data-Frame
podaci_dataframe.columns = ['RPM','MAP','FGP','MAF']
MAF_small = podaci_dataframe.MAF[30:350]
RPM_small = podaci_dataframe.RPM[30:350]
MAP_small = podaci_dataframe.MAP[30:350]
FGP_small = podaci_dataframe.FGP[30:350]
#podaci_dataframe.plot.hist(bins=50)
#podaci_dataframe.hist()
plt.figure(figsize=(30,7))
plt.plot(MAF_small, label='Zavisni atribut "MAF"', linewidth=4) # Zavisni atribut "MAF"
plt.plot(RPM_small, label='Nezavisni atribut "RPM"', linewidth=2) # 'Nezavisni atribut "RPM"
plt.grid()
plt.legend(loc="lower right", fontsize=25)
plt.xlabel('');
plt.figure(figsize=(30,7))
plt.plot(MAF_small, label='Zavisni atribut "MAF"', linewidth=4) # Zavisni atribut "MAF"
plt.plot(MAP_small, label='Nezavisni atribut "MAP"', linewidth=2) # 'Nezavisni atribut "MAP"
plt.grid()
plt.legend(loc="lower right", fontsize=25)
plt.xlabel('');
plt.figure(figsize=(30,7))
plt.plot(MAF_small, label='Zavisni atribut "MAF"', linewidth=4) # Zavisni atribut "MAF"
plt.plot(FGP_small, label='Nezavisni atribut "FGP"', linewidth=2) # 'Nezavisni atribut "FGP"
plt.grid()
plt.legend(loc="lower right", fontsize=25)
plt.xlabel('');
plt.figure(figsize=(30,7))
plt.plot(MAF_small, label='Zavisni atribut "MAF"', linewidth=4) # Zavisni atribut "MAF"
plt.plot(RPM_small, label='Nezavisni atribut "RPM"', linewidth=2) # 'Nezavisni atribut "RPM"
plt.plot(MAP_small, label='Nezavisni atribut "MAP"', linewidth=2) # 'Nezavisni atribut "MAP"
plt.plot(FGP_small, label='Nezavisni atribut "FGP"', linewidth=2) # 'Nezavisni atribut "FGP"
plt.grid()
plt.legend(loc="lower right", fontsize=22)
plt.xlabel('');
"""---
#2. Prosta Linearna Regresija (PLR)
---
>### 2.1 Sticanje uvida u prirodu podataka (PLR)
"""
# Importovanje dataseta PLR
dataset_lr = pd.read_csv(url, usecols = ['RPM', 'MAF'])
dataset_lr.columns=['RPM','MAF']
print("\n*********** DATASET keys()********************")
print(dataset_lr.keys())
print("\n*********** DATASET isnull()********************")
print(dataset_lr.isnull().sum())
print("\n*********** DATASET shape()********************")
print(dataset_lr.shape)
print("\n*********** DATASET info()********************")
print(dataset_lr.info())
corrMatrix_lr = dataset_lr.corr()
print (corrMatrix_lr) # Numrerički prikaz korelacione matrice
sns.heatmap(corrMatrix_lr, annot=True)
""">### 2.2 Implementacija Proste Linearne Regresije nad MAF i RPM atributima"""
X_lr = dataset_lr.iloc[:, :-1].values
y_lr = dataset_lr.iloc[:, -1].values
# Razdvajanje na trerning i testni skup
from sklearn.model_selection import train_test_split
X_train_lr, X_test_lr, y_train_lr, y_test_lr = train_test_split(X_lr, y_lr, test_size = 0.2, random_state = 0)
# Normalizacija obležija
#sc = StandardScaler()
#X_train = sc.fit_transform(X_train)
#X_test = sc.transform(X_test)
# Linearna Regresija trerning nad testnim setom
regressor_lr = LinearRegression()
regressor_lr.fit(X_train_lr, y_train_lr)
# Predikcija Test set rezultata
y_pred_lr = regressor_lr.predict(X_test_lr)
# Vizualizacija rezultata nad trerning setom
plt.figure(figsize=(30,5))
plt.scatter(X_train_lr, y_train_lr, color = 'red')
plt.plot(X_train_lr, regressor_lr.predict(X_train_lr), color = 'blue')
plt.title('RPM vs MAF (Training set)')
plt.xlabel('RPM')
plt.ylabel('MAF')
plt.show()
# Vizualizacija rezultata nad testnim setom
plt.figure(figsize=(30,5))
plt.scatter(X_test_lr, y_test_lr, color = 'red')
plt.plot(X_train_lr, regressor_lr.predict(X_train_lr), color = 'blue')
plt.title('RPM vs MAF (Test set)')
plt.xlabel('RPM')
plt.ylabel('MAF')
plt.show()
""">### 2.3 Predikcija MAF senzora alatima Proste Linearne Regresije"""
# Evaluacija naučenog modela Linearne Regresije nad testnim skupom
est_lr_with_constant = sm.add_constant(y_pred_lr)
est_lr = sm.OLS(y_test_lr, est_lr_with_constant)
est2_lr = est_lr.fit()
print(est2_lr.summary())
print('****************************************************************************************')
print('****************************************************************************************')
MSE = mean_squared_error(y_test_lr, y_pred_lr, squared=True)
RMSE = mean_squared_error(y_test_lr, y_pred_lr, squared=False)
MAE = mean_absolute_error(y_test_lr, y_pred_lr)
R2 = r2_score(y_test_lr, y_pred_lr)
print('Srednja kvadratna greška nad testnim skupom (MSE) = ', round(MSE, 2))
print('Koren srednje kvadratne greške nad testnim skupom (RMSE) =', round(RMSE, 2))
print("Srednja apsolutne greške (MAE) =", round(MAE, 2))
print("R-squared (R^2) =", round(R2, 3))
#evs_lr = explained_variance_score(y_test_lr, y_pred_lr)
print('****************************************************************************************')
print('****************************************************************************************')
""">### 2.4 Evaluacija naučenog modela Proste Linearne Regresije"""
# Vizualizacija rezultata PLR nad testnim setom prediktovane i stvarne vrednosti MAF senzora
y_pred_lr_small = y_pred_lr[50:250]
y_test_lr_small = y_test_lr[50:250]
np.set_printoptions(precision=2)
#print(np.concatenate((y_pred_lr_small.reshape(len(y_pred_lr_small),1), y_test_lr_small.reshape(len(y_test_lr_small),1)),1))
# Vizualizacija rezultata nad testnim setom
plt.figure(figsize=(30,5))
plt.plot(y_test_lr_small, label='Vrednosti testnog skupa MAF senzora', linewidth=4, color = 'blue')
plt.plot(y_pred_lr_small, label='Predikcione vrednosti MAF senzora', linewidth=2, color = 'red')
#plt.title("Uporedna analiza testiranja predikcije Proste Linearne Regresije modela nad testnim setom", fontsize=20)
plt.legend(loc="upper left", fontsize=15)
plt.show()
"""---
#3. Višestruka Linearna Regresija (VLR)
---
>### 3.1 Sticanje uvida u prirodu podataka (VLR)
"""
# Importovanje dataseta VLR
dataset_mlr = pd.read_csv(url ,sep=',', usecols = ['RPM', 'MAP', 'FGP', 'MAF'])
dataset_mlr.columns=['RPM', 'MAP', 'FGP', 'MAF']
print("*********** DATASET ********************\n")
print(dataset_mlr.head(10))
print("\n*********** DATASET keys()********************")
print(dataset_mlr.keys())
print("\n*********** DATASET isnull()********************")
print(dataset_mlr.isnull().sum())
print("\n*********** DATASET shape()********************")
print(dataset_mlr.shape)
print("\n*********** DATASET info()********************")
print(dataset_mlr.info())
""">### 3.2 ALOKACIJA MATRICE OBELEŽIJA (VLR)"""
X_mlr = dataset_mlr.iloc[:, :-1].values # Alokacija Matrice Obeležija / Nezavisnih Promenjivih (eng. Independent variables)
y_mlr = dataset_mlr.iloc[:, -1].values # Alokacija Zavisne Promenjive (eng. Dependent variable) MAF sernzora automobila
print("**************************************************************")
print("**************** KREIRAN PANDAs DATA FREJM ******************")
print("**************************************************************\n")
print("************************* X ************************")
print(X_mlr)
print("\n\n\n************************* y ************************")
print(y_mlr)
# Razdvajanje na trerning i testni skup
from sklearn.model_selection import train_test_split
X_train_mlr, X_test_mlr, y_train_mlr, y_test_mlr = train_test_split(X_mlr, y_mlr, test_size = 0.2, random_state = 0)
print(X_train_mlr.shape)
print(X_test_mlr.shape)
print(y_train_mlr.shape)
print(y_test_mlr.shape)
""">### 3.3 Implementacija Višestruke Linearne Regresije nad RPM, MAP, FGP, MAF atributima"""
# Normalizacija obležija
#sc = StandardScaler()
#X_train = sc.fit_transform(X_train)
#X_test = sc.transform(X_test)
# Linearna Regresija trerning nad testnim setom
regressor_mlr = LinearRegression()
regressor_mlr.fit(X_train_mlr, y_train_mlr)
# Predikcija Test set rezultata
y_pred_mlr = regressor_mlr.predict(X_test_mlr)
""">### 3.4 Evaluacija naučenog modela Višestruke Linearne Regresije"""
# Evaluacija naučenog modela Linearne Regresije nad testnim skupom
est_mlr_with_constant = sm.add_constant(y_pred_mlr)
est_mlr = sm.OLS(y_test_mlr, est_mlr_with_constant)
est2_mlr = est_mlr.fit()
print(est2_mlr.summary())
print('****************************************************************************************')
print('****************************************************************************************')
MSE_mlr = mean_squared_error(y_test_mlr, y_pred_mlr, squared=True)
RMSE_mlr = mean_squared_error(y_test_mlr, y_pred_mlr, squared=False)
MAE_mlr = mean_absolute_error(y_test_mlr, y_pred_mlr)
R2_mlr = r2_score(y_test_mlr, y_pred_mlr)
print('Srednja kvadratna greška nad testnim skupom (MSE) = ', round(MSE_mlr, 2))
print('Koren srednje kvadratne greške nad testnim skupom (RMSE) =', round(RMSE_mlr, 2))
print("Srednja apsolutne greške (MAE) =", round(MAE_mlr, 2))
print("R-squared (R^2) =", round(R2_mlr, 3))
#evs_lr = explained_variance_score(y_test_lr, y_pred_lr)
print('****************************************************************************************')
print('****************************************************************************************')
# Vizualizacija rezultata PLR nad testnim setom prediktovane i stvarne vrednosti MAF senzora
y_pred_mlr_small = y_pred_mlr[50:250]
y_test_mlr_small = y_test_mlr[50:250]
#print(X_train_lr[50:250])
print("****************************************")
#print(X_train_mlr[50:250])
np.set_printoptions(precision=2)
#print(np.concatenate((y_pred_lr_small.reshape(len(y_pred_lr_small),1), y_test_lr_small.reshape(len(y_test_lr_small),1)),1))
# Vizualizacija rezultata nad testnim setom
plt.figure(figsize=(30,5))
plt.plot(y_test_mlr_small, label='Vrednosti testnog skupa MAF senzora', linewidth=4, color = 'green', alpha=0.9)
plt.plot(y_pred_lr_small, label='Predikcione vrednosti (PLR) MAF senzora', linewidth=2, color = 'red', alpha=0.9)
plt.plot(y_pred_mlr_small, label='Predikcione vrednosti (VLR) MAF senzora', linewidth=2, color = 'blue', alpha=0.9)
#plt.title("Uporedna analiza testiranja predikcije Proste Linearne Regresije modela nad testnim setom", fontsize=20)
plt.legend(loc="upper left", fontsize=15)
plt.show()
plt.figure(figsize=(30,10))
print(np.max(y_test_mlr_small))
plt.scatter(y_test_mlr_small, y_test_mlr_small, s=100, label='Vrednosti testnog skupa MAF senzora', alpha=0.9, color = 'green')
plt.scatter(y_test_mlr_small, y_pred_lr_small, s=100, label='Predikcione vrednosti (PLR) MAF senzora', alpha=0.4, color = 'red')
plt.scatter(y_test_mlr_small, y_pred_mlr_small, s=100, label='Predikcione vrednosti (VLR) MAF senzora', alpha=0.4, color = 'blue')
plt.grid()
plt.legend(loc="upper left", fontsize=25)
plt.figure(figsize=(30,15))
# set width of bars
barWidth = 0.2
barWidth1 = 9
y_test_mlr_small_bar = y_test_mlr[:30]
y_pred_lr_small_bar = y_pred_lr[:30]
y_pred_mlr_small_bar = y_pred_mlr[:30]
# Set position of bar on X axis
r1 = np.arange(len(y_test_mlr_small_bar))
r2 = [x + barWidth for x in r1]
r3 = [x + barWidth for x in r2]
# Make the plot
plt.bar(r1, y_test_mlr_small_bar, color='green', width=0.25, edgecolor='white', label='Vrednosti testnog skupa MAF senzora', alpha=0.9)
plt.bar(r2, y_pred_lr_small_bar, color='red', width=0.25, edgecolor='white', label='Predikcione vrednosti (PLR) MAF senzora', alpha=0.7)
plt.bar(r3, y_pred_mlr_small_bar, color='blue', width=0.25, edgecolor='white', label='Predikcione vrednosti (VLR) MAF senzora', alpha=0.7)
plt.grid()
plt.legend(loc="upper left", fontsize=20)
"""---
#4. Random Forest ansambli (RF)
---
>### 4.1 Sticanje uvida u prirodu podataka (RF)
"""
# Importovanje dataseta RF
dataset_rf = pd.read_csv(url ,sep=',', usecols = ['RPM', 'MAP', 'FGP', 'MAF'])
dataset_rf.columns=['RPM', 'MAP', 'FGP', 'MAF']
print("*********** DATASET ********************\n")
print(dataset_rf.head(10))
print("\n*********** DATASET keys()********************")
print(dataset_rf.keys())
print("\n*********** DATASET isnull()********************")
print(dataset_rf.isnull().sum())
print("\n*********** DATASET shape()********************")
print(dataset_rf.shape)
print("\n*********** DATASET info()********************")
print(dataset_rf.info())
print("\n*********** DATASET detaljan opis********************")
print(dataset_rf.describe())
""">### 4.2 ALOKACIJA MATRICE OBELEŽIJA (RF)"""
X_rf = dataset_rf.iloc[:, :-1].values # Alokacija Matrice Obeležija / Nezavisnih Promenjivih (eng. Independent variables)
y_rf = dataset_rf.iloc[:, -1].values # Alokacija Zavisne Promenjive (eng. Dependent variable) MAF sernzora automobila
print("**************************************************************")
print("**************** KREIRAN PANDAs DATA FREJM ******************")
print("**************************************************************\n")
print("************************* X ************************")
print(X_rf)
print("\n\n\n************************* y ************************")
print(y_rf)
# Razdvajanje na trerning i testni skup
from sklearn.model_selection import train_test_split
X_train_rf, X_test_rf, y_train_rf, y_test_rf = train_test_split(X_rf, y_rf, test_size = 0.2, random_state = 0)
print(X_train_rf.shape)
print(X_test_rf.shape)
print(y_train_rf.shape)
print(y_test_rf.shape)
""">### 4.3 Implementacija Random Forest ansambla nad RPM, MAP, FGP, MAF atributima"""
# Random Forest trerning nad testnim setom
regressor_rf = RandomForestRegressor(n_estimators=100, random_state = 0, oob_score= True)
regressor_rf.fit(X_train_rf, y_train_rf)
y_pred_rf = regressor_rf.predict(X_test_rf)
""">### 3.4 Evaluacija naučenog modela Random Forest ansambla """
# Evaluacija naučenog modela Linearne Regresije nad testnim skupom
est_rf_with_constant = sm.add_constant(y_pred_rf)
est_rf = sm.OLS(y_test_rf, est_rf_with_constant)
est2_rf = est_rf.fit()
print(est2_rf.summary())
print('****************************************************************************************')
print('****************************************************************************************')
MSE_rf = mean_squared_error(y_test_rf, y_pred_rf, squared=True)
RMSE_rf = mean_squared_error(y_test_rf, y_pred_rf, squared=False)
MAE_rf = mean_absolute_error(y_test_rf, y_pred_rf)
R2_rf = r2_score(y_test_rf, y_pred_rf)
print('Srednja kvadratna greška nad testnim skupom (MSE) = ', round(MSE_rf, 2))
print('Koren srednje kvadratne greške nad testnim skupom (RMSE) =', round(RMSE_rf, 2))
print("Srednja apsolutne greške (MAE) =", round(MAE_rf, 2))
print("R-squared (R^2) =", round(R2_rf, 3))
#evs_lr = explained_variance_score(y_test_lr, y_pred_lr)
print('****************************************************************************************')
print('****************************************************************************************')
# Vizualizacija rezultata PLR nad testnim setom prediktovane i stvarne vrednosti MAF senzora
y_pred_rf_small = y_pred_rf[50:150]
y_test_rf_small = y_test_rf[50:150]
y_pred_mlr_small_rf = y_pred_mlr[50:150]
#print(X_train_lr[50:250])
print("****************************************")
#print(X_train_mlr[50:250])
np.set_printoptions(precision=2)
#print(np.concatenate((y_pred_lr_small.reshape(len(y_pred_lr_small),1), y_test_lr_small.reshape(len(y_test_lr_small),1)),1))
# Vizualizacija rezultata nad testnim setom
plt.figure(figsize=(30,7))
plt.plot(y_test_rf_small, label='Vrednosti testnog skupa MAF senzora', linewidth=4, color = 'green', alpha=0.9)
plt.plot(y_pred_mlr_small_rf, label='Predikcione vrednosti (VLR) MAF senzora', linewidth=2, color = 'red', alpha=0.9)
plt.plot(y_pred_rf_small, label='Predikcione vrednosti (RF) MAF senzora', linewidth=2, color = 'blue', alpha=0.9)
#plt.title("Uporedna analiza testiranja predikcije Proste Linearne Regresije modela nad testnim setom", fontsize=20)
plt.legend(loc="upper left", fontsize=15)
plt.show()
# Random Forest stabla odlučivanja
from sklearn import tree
regressor_rf = RandomForestRegressor(n_estimators=100, random_state = 0, oob_score= True, max_depth=3)
regressor_rf.fit(X_train_rf, y_train_rf)
plt.figure(figsize=(30,10))
_ = tree.plot_tree(regressor_rf.estimators_[0], feature_names=X_train_rf, filled=True)
"""---
#5. Uporedni rezultati PLR - VLR - RF
---
"""
plt.figure(figsize=(30,15))
# set width of bars
barWidth = 0.2
y_test_mlr_small_bar = y_test_mlr[:20]
y_pred_lr_small_bar = y_pred_lr[:20]
y_pred_mlr_small_bar = y_pred_mlr[:20]
y_pred_rf_small_bar = y_pred_rf[:20]
# Set position of bar on X axis
r1 = np.arange(len(y_test_mlr_small_bar))
r2 = [x + barWidth for x in r1]
r3 = [x + barWidth for x in r2]
r4 = [x + barWidth for x in r3]
# Make the plot
plt.bar(r1, y_test_mlr_small_bar, color='#BAFF29', width=0.25, edgecolor='white', label='Vrednosti testnog skupa MAF senzora', alpha=0.9)
plt.bar(r2, y_pred_lr_small_bar, color='#C6C7C4', width=0.25, edgecolor='white', label='Predikcione vrednosti (PLR) MAF senzora', alpha=0.7)
plt.bar(r3, y_pred_mlr_small_bar, color='#A2999E', width=0.25, edgecolor='white', label='Predikcione vrednosti (VLR) MAF senzora', alpha=0.7)
plt.bar(r4, y_pred_rf_small_bar, color='#846A6A', width=0.25, edgecolor='white', label='Predikcione vrednosti (RF) MAF senzora', alpha=0.7)
plt.grid()
plt.legend(loc="upper left", fontsize=25)