Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Don't save images with target in detection task #2047

Open
fitagdinov opened this issue Aug 28, 2024 · 1 comment
Open

Don't save images with target in detection task #2047

fitagdinov opened this issue Aug 28, 2024 · 1 comment

Comments

@fitagdinov
Copy link

🐛 Describe the bug

When I try save predict of Yolo with target's boxes and classes, I get not correct work In ImagesDetectionPrediction in src/super_gradients/training/utils/predict/prediction_results.py in 552 str. you have:

 prediction.save(
                output_path=image_output_path,
                box_thickness=box_thickness,
                show_confidence=show_confidence,
                color_mapping=color_mapping,
                class_names=class_names,
            )

In my opinion, you fogot target_bboxes. This work corect for me if i change that bloc on this:

 prediction.save(
                output_path=image_output_path,
                box_thickness=box_thickness,
                show_confidence=show_confidence,
                color_mapping=color_mapping,
                target_bboxes=target_bbox,
                target_bboxes_format=target_bboxes_format,
                target_class_ids=target_class_id,
                class_names=class_names,
            )

My wr

Versions

PyTorch version: 1.10.0+cu113
Is debug build: False
CUDA used to build PyTorch: 11.3
ROCM used to build PyTorch: N/A

OS: Ubuntu 20.04.6 LTS (x86_64)
GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
Clang version: Could not collect
CMake version: version 3.16.3
Libc version: glibc-2.31

Python version: 3.8.10 (default, Nov 22 2023, 10:22:35) [GCC 9.4.0] (64-bit runtime)
Python platform: Linux-5.15.0-101-generic-x86_64-with-glibc2.29
Is CUDA available: True
CUDA runtime version: 11.3.109
CUDA_MODULE_LOADING set to:
GPU models and configuration:
GPU 0: NVIDIA A40
GPU 1: NVIDIA A40
GPU 2: NVIDIA A40
GPU 3: NVIDIA A40
GPU 4: NVIDIA A40
GPU 5: NVIDIA A40
GPU 6: NVIDIA A40
GPU 7: NVIDIA A40

Nvidia driver version: 550.54.15
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.2.1
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.2.1
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.2.1
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.2.1
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.2.1
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.2.1
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.2.1
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 52 bits physical, 57 bits virtual
CPU(s): 128
On-line CPU(s) list: 0-127
Thread(s) per core: 2
Core(s) per socket: 32
Socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
Model: 106
Model name: Intel(R) Xeon(R) Gold 6338 CPU @ 2.00GHz
Stepping: 6
CPU MHz: 800.000
CPU max MHz: 3200.0000
CPU min MHz: 800.0000
BogoMIPS: 4000.00
Virtualization: VT-x
L1d cache: 3 MiB
L1i cache: 2 MiB
L2 cache: 80 MiB
L3 cache: 96 MiB
NUMA node0 CPU(s): 0-31,64-95
NUMA node1 CPU(s): 32-63,96-127
Vulnerability Gather data sampling: Mitigation; Microcode
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect wbnoinvd dtherm ida arat pln pts avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid fsrm md_clear pconfig flush_l1d arch_capabilities

Versions of relevant libraries:
[pip3] numpy==1.23.0
[pip3] onnx==1.13.0
[pip3] onnx-simplifier==0.4.36
[pip3] onnxruntime==1.13.1
[pip3] onnxruntime-gpu==1.18.0
[pip3] pytorch-quantization==2.1.2
[pip3] torch==1.10.0+cu113
[pip3] torchmetrics==0.8.0
[pip3] torchvision==0.11.1+cu113
[pip3] triton==2.3.0
[conda] Could not collect

fitagdinov added a commit to fitagdinov/super-gradients that referenced this issue Sep 15, 2024
Save target map for ImagesDetectionPrediction
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants
@fitagdinov and others