-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathstabilityanalysis.m
59 lines (47 loc) · 1.86 KB
/
stabilityanalysis.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
% Define coefficients for motor and load torque parabolic equations
am = 0.8; bm = 1; cm = 2; % Coefficients for motor torque
al = 0.7; bl = 1.2; cl = 2.5; % Coefficients for load torque
% Define a range of angular speeds
omega = 0:0.1:10; % Adjust the range as needed
% Define the motor and load torques
Tm = @(omega) am * omega.^2 + bm * omega + cm; % Motor torque (Parabolic)
Tl = @(omega) al * omega.^2 + bl * omega + cl; % Load torque (Parabolic)
% Plotting
figure;
hold on;
plot(omega, Tm(omega), 'b', 'DisplayName', 'Motor Torque');
plot(omega, Tl(omega), 'r', 'DisplayName', 'Load Torque');
% Find the equilibrium point
omega_eq_idx = find(abs(Tm(omega) - Tl(omega)) < 0.1, 1, 'first'); % Threshold for finding equilibrium
omega_eq = omega(omega_eq_idx);
T_eq = Tm(omega_eq);
% Plot the equilibrium point
plot(omega_eq, T_eq, 'ko', 'MarkerSize', 10, 'DisplayName', 'Equilibrium Point');
% Add labels, title, and legend
xlabel('Angular Speed (ω)');
ylabel('Torque (T)');
title('Motor and Load Torque (Parabolic) vs Angular Speed');
legend('show');
grid on;
% Define system parameters
J =10; % Moment of inertia (Define this value)
% System linearization around the operating point
% Derivatives of Tm and Tl with respect to omega at the equilibrium point
dTm_domega = 2 * am * omega_eq + bm;
dTl_domega = 2 * al * omega_eq + bl;
% State-space representation (Linearized around the equilibrium point)
A = [-dTm_domega/J];
B = [1/J];
C = [1];
D = [0];
% Check stability
eigenvalues = eig(A);
isStable = all(real(eigenvalues) < 0);
% Display the equilibrium point in command window
fprintf('Equilibrium occurs at Angular Speed = %.2f, Torque = %.2f\n', omega_eq, T_eq);
% Display the result of stability check
if isStable
disp('The equilibrium point is stable.');
else
disp('The equilibrium point is not stable.');
end