-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathdemo.py
191 lines (159 loc) · 6.1 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import torch
import torch.nn as nn
import torch.nn.functional as F
import argparse
import os
import matplotlib.pyplot as plt
import mmcv
from dmb.apis.inference import init_model, inference_stereo, is_image_file
from dmb.visualization.stereo.vis import group_color
def visualize_disp(result_pkl):
ori_data = result_pkl['OriginalData']
net_result = result_pkl['Result']
if 'disps' in net_result:
disps = net_result['disps']
best_disp = disps[0][0, 0, :, :].cpu().numpy()
else:
return
plt.imshow(group_color(best_disp, ori_data['leftDisp'], ori_data['leftImage'], ori_data['rightImage']), cmap='hot')
plt.show()
if __name__ == '__main__':
print("Start Inference Stereo ... ")
parser = argparse.ArgumentParser("DenseMatchingBenchmark Inference")
parser.add_argument(
"--config-path",
type=str,
help="config file path, e.g., ../configs/AcfNet/scene_flow_adaptive.py",
required=True,
)
parser.add_argument(
"--checkpoint-path",
type=str,
help="path to checkpoint, checkpoint download link often given in ../configs/Model/ResultOfModel.md, "
"e.g., for AcfNet, you can find download link in ../configs/AcfNet/ResultOfAcfNet.md",
required=True,
)
parser.add_argument(
"--data-root",
type=str,
help="data root contains directories including: "
"$(data-root)/images/left/: (dir for left image)"
"$(data-root)/images/right/: (dir for right image)"
"$(data-root)/disparity/left/: (dir for disparity map of left image), optional"
"$(data-root)/disparity/right/: (dir for disparity map of right image), optional",
default='./demo_data/',
)
parser.add_argument(
"--device",
type=str,
help="device for running, e.g., cpu, cuda:0",
default="cuda:0"
)
parser.add_argument(
"--log-dir",
type=str,
help="directory path for logging",
default='./output/'
)
parser.add_argument(
"--pad-to-shape",
nargs="+",
type=int,
help="image shape after padding for inference, e.g., [544, 960],"
"after inference, result will crop to original image size",
default=None,
)
parser.add_argument(
"--crop-shape",
nargs="+",
type=int,
help="image shape after cropping for inference, e.g., [512, 960]",
default=None,
)
parser.add_argument(
"--scale-factor",
type=float,
help="the scale of image upsample/downsample you want to inference, e.g., 2.0 upsample 2x, 0.5 downsample to 0.5x",
default=1.0,
)
parser.add_argument(
"--disp-div-factor",
type=float,
help="if disparity map given, after reading the disparity map, often have to divide a scale to get the real disparity value, e.g. 256 in KITTI",
default=1.0,
)
args = parser.parse_args()
config_path = args.config_path
os.path.isfile(config_path)
checkpoint_path = args.checkpoint_path
os.path.isfile(checkpoint_path)
print("Start Preparing Data ... ")
data_root = args.data_root
os.path.exists(data_root)
imageNames = os.listdir(os.path.join(data_root, 'images/left/'))
imageNames = [name for name in imageNames if is_image_file(name)]
imageNames.sort()
assert len(imageNames) > 1, "No images found in {}".format(os.path.join(data_root, 'images/left/'))
batchesDict = []
disparity_suffix = None
if os.path.isdir(os.path.join(data_root, 'disparity/left')):
dispNames = os.listdir(os.path.join(data_root, 'disparity/left'))
disparity_suffix = {name.split('.')[-1] for name in dispNames}
for imageName in imageNames:
left_image_path = os.path.join(data_root, 'images/left/', imageName)
right_image_path = os.path.join(data_root, 'images/right/', imageName)
left_disp_map_path = None
right_disp_map_path = None
if disparity_suffix is not None:
for suf in disparity_suffix:
path = os.path.join(data_root, 'disparity/left', imageName.split('.')[0]+'.'+suf)
if os.path.isfile(path):
left_disp_map_path = path
right_disp_map_path = path.replace('disparity/left', 'disparity/right')
break
batchesDict.append({
'left_image_path': left_image_path,
'right_image_path': right_image_path,
'left_disp_map_path': left_disp_map_path,
'right_disp_map_path': right_disp_map_path,
})
print("Total {} images found".format(len(batchesDict)))
device = args.device
log_dir = args.log_dir
os.makedirs(log_dir, exist_ok=True)
print("Result will save to ", log_dir)
pad_to_shape = args.pad_to_shape
if pad_to_shape is not None:
print("Image will pad to shape: ", pad_to_shape)
crop_shape = args.crop_shape
if crop_shape is not None:
print("Image will crop to shape: ", crop_shape)
scale_factor = args.scale_factor
if scale_factor > 1.0:
print("Image will upsample: {:.2f} ".format(scale_factor))
elif scale_factor < 1.0:
print("Image will downsample: {:.2f} ".format(1.0/scale_factor))
disp_div_factor = args.disp_div_factor
print("If disparity map given, it will be divided by {:.2f} to get the real disparity value".format(disp_div_factor))
print("Initial Model ... ")
model = init_model(config_path, checkpoint_path, device)
print("Model initialed!")
print("Start Inference ... ")
inference_stereo(
model,
batchesDict,
log_dir,
pad_to_shape,
crop_shape,
scale_factor,
disp_div_factor,
device,
)
print("Inference Done!")
print("Start Visualization ... ")
for batch in batchesDict:
pkl_path = os.path.join(log_dir, batch['left_image_path'].split('/')[-1].split('.')[0], 'result.pkl')
print("Visualize ", pkl_path)
result_pkl = mmcv.load(pkl_path)
visualize_disp(result_pkl)
print("Done!")