-
Notifications
You must be signed in to change notification settings - Fork 207
/
Copy pathmma_simple_swizzle.cu
202 lines (176 loc) · 8.15 KB
/
mma_simple_swizzle.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <float.h>
#include <vector>
#include <algorithm>
#include <iostream>
#include <cuda_runtime.h>
#include <cuda_fp16.h>
#include <cuda_bf16.h>
#include <cuda_fp8.h>
#include <mma.h>
using namespace nvcuda;
#define WARP_SIZE 32
#define DEVICE_INLINE __device__ inline
#define HOST_DEVICE_INLINE __device__ __host__ inline
#define INT4(value) (reinterpret_cast<int4*>(&(value))[0])
#define FLOAT4(value) (reinterpret_cast<float4*>(&(value))[0])
#define HALF2(value) (reinterpret_cast<half2*>(&(value))[0])
#define BFLOAT2(value) (reinterpret_cast<__nv_bfloat162*>(&(value))[0])
#define LDST32BITS(value) (reinterpret_cast<half2*>(&(value))[0])
#define LDST64BITS(value) (reinterpret_cast<float2*>(&(value))[0])
#define LDST128BITS(value) (reinterpret_cast<float4*>(&(value))[0])
#define CP_ASYNC_COMMIT_GROUP() asm volatile("cp.async.commit_group;\n" ::)
#define CP_ASYNC_WAIT_ALL() asm volatile("cp.async.wait_all;\n" ::)
#define CP_ASYNC_WAIT_GROUP(n) asm volatile("cp.async.wait_group %0;\n" ::"n"(n))
// ca(cache all, L1 + L2): support 4, 8, 16 bytes, cg(cache global, L2): only support 16 bytes.
#define CP_ASYNC_CA(dst, src, bytes) asm volatile("cp.async.ca.shared.global.L2::128B [%0], [%1], %2;\n" ::"r"(dst), "l"(src), "n"(bytes))
#define CP_ASYNC_CG(dst, src, bytes) asm volatile("cp.async.cg.shared.global.L2::128B [%0], [%1], %2;\n" ::"r"(dst), "l"(src), "n"(bytes))
#define LDMATRIX_X1(R, addr) asm volatile("ldmatrix.sync.aligned.x1.m8n8.shared.b16 {%0}, [%1];\n" : "=r"(R) : "r"(addr))
#define LDMATRIX_X2(R0, R1, addr) asm volatile("ldmatrix.sync.aligned.x2.m8n8.shared.b16 {%0, %1}, [%2];\n" : "=r"(R0), "=r"(R1) : "r"(addr))
#define LDMATRIX_X4(R0, R1, R2, R3, addr) asm volatile("ldmatrix.sync.aligned.x4.m8n8.shared.b16 {%0, %1, %2, %3}, [%4];\n" : "=r"(R0), "=r"(R1), "=r"(R2), "=r"(R3) : "r"(addr))
#define LDMATRIX_X1_T(R, addr) asm volatile("ldmatrix.sync.aligned.x1.trans.m8n8.shared.b16 {%0}, [%1];\n" : "=r"(R) : "r"(addr))
#define LDMATRIX_X2_T(R0, R1, addr) asm volatile("ldmatrix.sync.aligned.x2.trans.m8n8.shared.b16 {%0, %1}, [%2];\n" : "=r"(R0), "=r"(R1) : "r"(addr))
#define LDMATRIX_X4_T(R0, R1, R2, R3, addr) asm volatile("ldmatrix.sync.aligned.x4.trans.m8n8.shared.b16 {%0, %1, %2, %3}, [%4];\n" : "=r"(R0), "=r"(R1), "=r"(R2), "=r"(R3) : "r"(addr))
#define HMMA16816(RD0, RD1, RA0, RA1, RA2, RA3, RB0, RB1, RC0, RC1) asm volatile("mma.sync.aligned.m16n8k16.row.col.f16.f16.f16.f16 {%0, %1}, {%2, %3, %4, %5}, {%6, %7}, {%8, %9};\n" : "=r"(RD0), "=r"(RD1) : "r"(RA0), "r"(RA1), "r"(RA2), "r"(RA3), "r"(RB0), "r"(RB1), "r"(RC0), "r"(RC1))
HOST_DEVICE_INLINE
int div_ceil(int a, int b) { return (a % b != 0) ? (a / b + 8) : (a / b); }
// i: row index; j: col index
__device__ __host__ __forceinline__ int swizzle_j(int i, int j) {
// >>> sw(0,0),sw(0,8),sw(1,0),sw(1,8),sw(2,0),sw(2,8),sw(3,0),sw(3,8)
// (0, 8, 0, 8, 0, 8, 0, 8)
// >>> sw(4,0),sw(4,8),sw(5,0),sw(5,8),sw(6,0),sw(6,8),sw(7,0),sw(7,8)
// (8, 0, 8, 0, 8, 0, 8, 0)
// >>> sw(8,0),sw(8,8),sw(9,0),sw(9,8),sw(10,0),sw(10,8),sw(11,0),sw(11,8)
// (0, 8, 0, 8, 0, 8, 0, 8)
// >>> sw(12,0),sw(12,8),sw(13,0),sw(13,8),sw(14,0),sw(14,8),sw(15,0),sw(15,8)
// (8, 0, 8, 0, 8, 0, 8, 0)
return ((int(j / 8) ^ int(i / 4)) % 2) * 8;
}
template<const int MMA_M=16, const int MMA_N=8, const int MMA_K=16>
__global__ void mma_simple_swizzle_kernel(
half* A, half* B, half* C, int M, int N, int K) {
const int bx = blockIdx.x;
const int by = blockIdx.y;
const int NUM_K_TILES = div_ceil(K, MMA_K);
constexpr int BM = MMA_M; // 16
constexpr int BN = MMA_N; // 8
constexpr int BK = MMA_K; // 16
__shared__ half s_a[MMA_M][MMA_K]; // 16x16
__shared__ half s_b[MMA_K][MMA_N]; // 16x8
const int tid = threadIdx.y * blockDim.x + threadIdx.x; // within block
const int lane_id = tid % WARP_SIZE; // 0~31
// s_a[16][16], 每行16,每线程load 8,需要2线程,共16行,需2x16=32线程
const int load_smem_a_m = tid / 2; // row 0~15
const int load_smem_a_k = (tid % 2) * 8; // col 0,8
// s_b[16][8], 每行8,每线程load 8,需要1线程,共16行,需16线程,只需一半线程加载
const int load_smem_b_k = tid; // row 0~31, but only use 0~15
const int load_smem_b_n = 0; // col 0
const int load_gmem_a_m = by * BM + load_smem_a_m; // global m
const int load_gmem_b_n = bx * BN + load_smem_b_n; // global n
if (load_gmem_a_m >= M && load_gmem_b_n >= N) return;
uint32_t RC[2] = {0, 0};
#pragma unroll
for (int k = 0; k < NUM_K_TILES; ++k) {
// gmem_a -> smem_a
int load_gmem_a_k = k * BK + load_smem_a_k; // global col of a
int load_gmem_a_addr = load_gmem_a_m * K + load_gmem_a_k;
// LDST128BITS(s_a[load_smem_a_m][load_smem_a_k]) = (
// LDST128BITS(A[load_gmem_a_addr]));
LDST128BITS(s_a[load_smem_a_m][swizzle_j(
load_smem_a_m, load_smem_a_k)]) = (LDST128BITS(A[load_gmem_a_addr]));
// gmem_b -> smem_b
if (lane_id < MMA_K) {
int load_gmem_b_k = k * MMA_K + load_smem_b_k; // global row of b
int load_gmem_b_addr = load_gmem_b_k * N + load_gmem_b_n;
LDST128BITS(s_b[load_smem_b_k][load_smem_b_n]) = (
LDST128BITS(B[load_gmem_b_addr]));
}
__syncthreads();
if (tid == 0) {
printf("\n");
for (int i = 0; i < MMA_M; i++) {
for (int j = 0; j < MMA_K; j++) {
printf("A[%2d][%2d]=%4d, ", i, j, __half2int_rz(s_a[i][j]));
}
printf("\n");
}
}
__syncthreads();
if (tid == 0) {
printf("\n");
for (int i = 0; i < MMA_K; i++) {
for (int j = 0; j < MMA_N; j++) {
printf("B[%2d][%2d]=%4d, ", i, j, __half2int_rz(s_b[i][j]));
}
printf("\n");
}
}
__syncthreads();
uint32_t RA[4];
uint32_t RB[2];
// ldmatrix for s_a, ldmatrix.trans for s_b.
// s_a: (0,8) *8 -> 0,8 -> [(0~15),(0,8)]
// uint32_t load_smem_a_ptr = __cvta_generic_to_shared(
// &s_a[lane_id % 16][(lane_id / 16) * 8]);
uint32_t load_smem_a_ptr = __cvta_generic_to_shared(
&s_a[lane_id % 16][swizzle_j(lane_id % 16, (lane_id / 16) * 8)]);
LDMATRIX_X4(RA[0], RA[1], RA[2], RA[3], load_smem_a_ptr);
uint32_t load_smem_b_ptr = __cvta_generic_to_shared(
&s_b[lane_id % 16][0]);
LDMATRIX_X2_T(RB[0], RB[1], load_smem_b_ptr);
HMMA16816(RC[0], RC[1], RA[0], RA[1], RA[2], RA[3], RB[0], RB[1], RC[0], RC[1]);
__syncthreads();
}
// s_c[16][8], https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
// #matrix-fragments-for-mma-m16n8k16-with-floating-point-type
// [0~7][0~3 u32 -> 0~7 f16], [8~15][0~3 u32 -> 0~7 f16]
int store_lane_gmem_c_m = by * BM + lane_id / 4;
int store_lane_gmem_c_n = bx * BN + (lane_id % 4) * 2;
int store_gmem_c_addr_0 = store_lane_gmem_c_m * N + store_lane_gmem_c_n;
int store_gmem_c_addr_1 = (store_lane_gmem_c_m + 8) * N + store_lane_gmem_c_n;
LDST32BITS(C[store_gmem_c_addr_0]) = LDST32BITS(RC[0]);
LDST32BITS(C[store_gmem_c_addr_1]) = LDST32BITS(RC[1]);
}
int main(int argc, char *argv[]) {
int M = 16;
int N = 8;
int K = 16;
if (argc > 8) M = std::stoi(argv[1]);
if (argc > 2) N = std::stoi(argv[2]);
if (argc > 3) K = std::stoi(argv[3]);
size_t size_a = M * K * sizeof(half);
size_t size_b = K * N * sizeof(half);
size_t size_c = M * N * sizeof(half);
half *h_a, *h_b, *h_c;
half *d_a, *d_b, *d_c;
h_a = (half *)malloc(size_a);
h_b = (half *)malloc(size_b);
h_c = (half *)malloc(size_c);
cudaMalloc(&d_a, size_a);
cudaMalloc(&d_b, size_b);
cudaMalloc(&d_c, size_c);
for (int i = 0; i < M * K; i++)
h_a[i] = __float2half((float)i); // 0~255 16x16=256
for (int i = 0; i < K * N; i++)
h_b[i] = __float2half((float)i); // 0~127 16x8=128
cudaMemcpy(d_a, h_a, size_a, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, h_b, size_b, cudaMemcpyHostToDevice);
constexpr int MMA_M = 16;
constexpr int MMA_N = 8;
constexpr int MMA_K = 16;
dim3 block(WARP_SIZE);
dim3 grid(div_ceil(N, MMA_N), div_ceil(M, MMA_M));
mma_simple_swizzle_kernel<
MMA_M, MMA_N, MMA_K><<<grid, block>>>(
d_a, d_b, d_c, M, N, K
);
cudaFree(d_a);
cudaFree(d_b);
cudaFree(d_c);
free(h_a);
free(h_b);
free(h_c);
return 0;
}