🛠Lite.Ai.ToolKit: A lite C++ toolkit of 100+ Awesome AI models, such as Object Detection, Face Detection, Face Recognition, Segmentation, Matting, etc. See Model Zoo and ONNX Hub, MNN Hub, TNN Hub, NCNN Hub. Welcome to 🌟👆🏻star this repo to support me, many thanks ~ 🎉🎉
Most of my time now is focused on LLM/VLM Inference. Please check 📖Awesome-LLM-Inference and 📖CUDA-Learn-Notes for more details. Now, lite.ai.toolkit is mainly maintained by 🎉@wangzijian1010.
@misc{lite.ai.toolkit@2021,
title={lite.ai.toolkit: A lite C++ toolkit of 100+ Awesome AI models.},
url={https://github.com/DefTruth/lite.ai.toolkit},
note={Open-source software available at https://github.com/DefTruth/lite.ai.toolkit},
author={DefTruth, wangzijian1010 etc},
year={2021}
}
- Simply and User friendly. Simply and Consistent syntax like lite::cv::Type::Class, see examples.
- Minimum Dependencies. Only OpenCV and ONNXRuntime are required by default, see build.
- Many Models Supported. 300+ C++ implementations and 500+ weights 👉 Supported-Matrix.
Download prebuilt lite.ai.toolkit library from tag/v0.2.0, or just build it from source:
git clone --depth=1 https://github.com/DefTruth/lite.ai.toolkit.git # latest
cd lite.ai.toolkit && sh ./build.sh # >= 0.2.0, support Linux only, tested on Ubuntu 20.04.6 LTS
#include "lite/lite.h"
int main(int argc, char *argv[]) {
std::string onnx_path = "yolov5s.onnx";
std::string test_img_path = "test_yolov5.jpg";
std::string save_img_path = "test_results.jpg";
auto *yolov5 = new lite::cv::detection::YoloV5(onnx_path);
std::vector<lite::types::Boxf> detected_boxes;
cv::Mat img_bgr = cv::imread(test_img_path);
yolov5->detect(img_bgr, detected_boxes);
lite::utils::draw_boxes_inplace(img_bgr, detected_boxes);
cv::imwrite(save_img_path, img_bgr);
delete yolov5;
return 0;
}
You can download the prebuilt lite.ai.tooklit library and test resources from tag/v0.2.0.
export LITE_AI_TAG_URL=https://github.com/DefTruth/lite.ai.toolkit/releases/download/v0.2.0
wget ${LITE_AI_TAG_URL}/lite-ort1.17.1+ocv4.9.0+ffmpeg4.2.2-linux-x86_64.tgz
wget ${LITE_AI_TAG_URL}/yolov5s.onnx && wget ${LITE_AI_TAG_URL}/test_yolov5.jpg
🎉🎉TensorRT: Boost inference performance with NVIDIA GPU via TensorRT.
Run bash ./build.sh tensorrt
to build lite.ai.toolkit with TensorRT support, and then test yolov5 with the codes below. NOTE: lite.ai.toolkit need TensorRT 10.x (or later) and CUDA 12.x (or later). Please check build.sh, tensorrt-linux-x86_64-install.zh.md, test_lite_yolov5.cpp and NVIDIA/TensorRT for more details.
// trtexec --onnx=yolov5s.onnx --saveEngine=yolov5s.engine
auto *yolov5 = new lite::trt::cv::detection::YOLOV5(engine_path);
To quickly setup lite.ai.toolkit
, you can follow the CMakeLists.txt
listed as belows. 👇👀
set(lite.ai.toolkit_DIR YOUR-PATH-TO-LITE-INSTALL)
find_package(lite.ai.toolkit REQUIRED PATHS ${lite.ai.toolkit_DIR})
add_executable(lite_yolov5 test_lite_yolov5.cpp)
target_link_libraries(lite_yolov5 ${lite.ai.toolkit_LIBS})
The goal of lite.ai.toolkit is not to abstract on top of MNN and ONNXRuntime. So, you can use lite.ai.toolkit mixed with MNN(-DENABLE_MNN=ON, default OFF
) or ONNXRuntime(-DENABLE_ONNXRUNTIME=ON, default ON
). The lite.ai.toolkit installation package contains complete MNN and ONNXRuntime. The workflow may looks like:
#include "lite/lite.h"
// 0. use yolov5 from lite.ai.toolkit to detect objs.
auto *yolov5 = new lite::cv::detection::YoloV5(onnx_path);
// 1. use OnnxRuntime or MNN to implement your own classfier.
interpreter = std::shared_ptr<MNN::Interpreter>(MNN::Interpreter::createFromFile(mnn_path));
// or: session = new Ort::Session(ort_env, onnx_path, session_options);
classfier = interpreter->createSession(schedule_config);
// 2. then, classify the detected objs use your own classfier ...
The included headers of MNN and ONNXRuntime can be found at mnn_config.h and ort_config.h.
🔑️ Check the detailed Quick Start!Click here!
You can download the prebuilt lite.ai.tooklit library and test resources from tag/v0.2.0.
export LITE_AI_TAG_URL=https://github.com/DefTruth/lite.ai.toolkit/releases/download/v0.2.0
wget ${LITE_AI_TAG_URL}/lite-ort1.17.1+ocv4.9.0+ffmpeg4.2.2-linux-x86_64.tgz
wget ${LITE_AI_TAG_URL}/yolov5s.onnx && wget ${LITE_AI_TAG_URL}/test_yolov5.jpg
tar -zxvf lite-ort1.17.1+ocv4.9.0+ffmpeg4.2.2-linux-x86_64.tgz
write YOLOv5 example codes and name it test_lite_yolov5.cpp
:
#include "lite/lite.h"
int main(int argc, char *argv[]) {
std::string onnx_path = "yolov5s.onnx";
std::string test_img_path = "test_yolov5.jpg";
std::string save_img_path = "test_results.jpg";
auto *yolov5 = new lite::cv::detection::YoloV5(onnx_path);
std::vector<lite::types::Boxf> detected_boxes;
cv::Mat img_bgr = cv::imread(test_img_path);
yolov5->detect(img_bgr, detected_boxes);
lite::utils::draw_boxes_inplace(img_bgr, detected_boxes);
cv::imwrite(save_img_path, img_bgr);
delete yolov5;
return 0;
}
cmake_minimum_required(VERSION 3.10)
project(lite_yolov5)
set(CMAKE_CXX_STANDARD 17)
set(lite.ai.toolkit_DIR YOUR-PATH-TO-LITE-INSTALL)
find_package(lite.ai.toolkit REQUIRED PATHS ${lite.ai.toolkit_DIR})
if (lite.ai.toolkit_Found)
message(STATUS "lite.ai.toolkit_INCLUDE_DIRS: ${lite.ai.toolkit_INCLUDE_DIRS}")
message(STATUS " lite.ai.toolkit_LIBS: ${lite.ai.toolkit_LIBS}")
message(STATUS " lite.ai.toolkit_LIBS_DIRS: ${lite.ai.toolkit_LIBS_DIRS}")
endif()
add_executable(lite_yolov5 test_lite_yolov5.cpp)
target_link_libraries(lite_yolov5 ${lite.ai.toolkit_LIBS})
mkdir build && cd build && cmake .. && make -j1
Then, export the lib paths to LD_LIBRARY_PATH
which listed by lite.ai.toolkit_LIBS_DIRS
.
export LD_LIBRARY_PATH=YOUR-PATH-TO-LITE-INSTALL/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=YOUR-PATH-TO-LITE-INSTALL/third_party/opencv/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=YOUR-PATH-TO-LITE-INSTALL/third_party/onnxruntime/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=YOUR-PATH-TO-LITE-INSTALL/third_party/MNN/lib:$LD_LIBRARY_PATH # if -DENABLE_MNN=ON
cp ../yolov5s.onnx ../test_yolov.jpg .
./lite_yolov5
The output logs:
LITEORT_DEBUG LogId: ../examples/hub/onnx/cv/yolov5s.onnx
=============== Input-Dims ==============
Name: images
Dims: 1
Dims: 3
Dims: 640
Dims: 640
=============== Output-Dims ==============
Output: 0 Name: pred Dim: 0 :1
Output: 0 Name: pred Dim: 1 :25200
Output: 0 Name: pred Dim: 2 :85
Output: 1 Name: output2 Dim: 0 :1
......
Output: 3 Name: output4 Dim: 1 :3
Output: 3 Name: output4 Dim: 2 :20
Output: 3 Name: output4 Dim: 3 :20
Output: 3 Name: output4 Dim: 4 :85
========================================
detected num_anchors: 25200
generate_bboxes num: 48
- / = not supported now.
- ✅ = known work and official supported now.
- ✔️ = known work, but unofficial supported now.
- ❔ = in my plan, but not coming soon, maybe a few months later.
Class | Class | Class | Class | Class | System | Engine |
---|---|---|---|---|---|---|
✅YOLOv5 | ✅YOLOv6 | ✅YOLOv8 | ✅YOLOv8Face | ✅YOLOv5Face | Linux | TensorRT |
✅YOLOX | ✅YOLOv5BlazeFace | ✅StableDiffusion | / | / | Linux | TensorRT |
Class | Size | Type | Demo | ONNXRuntime | MNN | NCNN | TNN | Linux | MacOS | Windows | Android |
---|---|---|---|---|---|---|---|---|---|---|---|
YoloV5 | 28M | detection | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | ❔ |
YoloV3 | 236M | detection | demo | ✅ | / | / | / | ✅ | ✔️ | ✔️ | / |
TinyYoloV3 | 33M | detection | demo | ✅ | / | / | / | ✅ | ✔️ | ✔️ | / |
YoloV4 | 176M | detection | demo | ✅ | / | / | / | ✅ | ✔️ | ✔️ | / |
SSD | 76M | detection | demo | ✅ | / | / | / | ✅ | ✔️ | ✔️ | / |
SSDMobileNetV1 | 27M | detection | demo | ✅ | / | / | / | ✅ | ✔️ | ✔️ | / |
YoloX | 3.5M | detection | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | ❔ |
TinyYoloV4VOC | 22M | detection | demo | ✅ | / | / | / | ✅ | ✔️ | ✔️ | / |
TinyYoloV4COCO | 22M | detection | demo | ✅ | / | / | / | ✅ | ✔️ | ✔️ | / |
YoloR | 39M | detection | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | ❔ |
ScaledYoloV4 | 270M | detection | demo | ✅ | / | / | / | ✅ | ✔️ | ✔️ | / |
EfficientDet | 15M | detection | demo | ✅ | / | / | / | ✅ | ✔️ | ✔️ | / |
EfficientDetD7 | 220M | detection | demo | ✅ | / | / | / | ✅ | ✔️ | ✔️ | / |
EfficientDetD8 | 322M | detection | demo | ✅ | / | / | / | ✅ | ✔️ | ✔️ | / |
YOLOP | 30M | detection | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | ❔ |
NanoDet | 1.1M | detection | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | ❔ |
NanoDetPlus | 4.5M | detection | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | ❔ |
NanoDetEffi... | 12M | detection | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | ❔ |
YoloX_V_0_1_1 | 3.5M | detection | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | ❔ |
YoloV5_V_6_0 | 7.5M | detection | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | ❔ |
GlintArcFace | 92M | faceid | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | ❔ |
GlintCosFace | 92M | faceid | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | / |
GlintPartialFC | 170M | faceid | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | / |
FaceNet | 89M | faceid | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | / |
FocalArcFace | 166M | faceid | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | / |
FocalAsiaArcFace | 166M | faceid | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | / |
TencentCurricularFace | 249M | faceid | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | / |
TencentCifpFace | 130M | faceid | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | / |
CenterLossFace | 280M | faceid | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | / |
SphereFace | 80M | faceid | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | / |
PoseRobustFace | 92M | faceid | demo | ✅ | / | / | / | ✅ | ✔️ | ✔️ | / |
NaivePoseRobustFace | 43M | faceid | demo | ✅ | / | / | / | ✅ | ✔️ | ✔️ | / |
MobileFaceNet | 3.8M | faceid | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | ❔ |
CavaGhostArcFace | 15M | faceid | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | ❔ |
CavaCombinedFace | 250M | faceid | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | / |
MobileSEFocalFace | 4.5M | faceid | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | ❔ |
RobustVideoMatting | 14M | matting | demo | ✅ | ✅ | / | ✅ | ✅ | ✔️ | ✔️ | ❔ |
MGMatting | 113M | matting | demo | ✅ | ✅ | / | ✅ | ✅ | ✔️ | ✔️ | / |
MODNet | 24M | matting | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | / |
MODNetDyn | 24M | matting | demo | ✅ | / | / | / | ✅ | ✔️ | ✔️ | / |
BackgroundMattingV2 | 20M | matting | demo | ✅ | ✅ | / | ✅ | ✅ | ✔️ | ✔️ | / |
BackgroundMattingV2Dyn | 20M | matting | demo | ✅ | / | / | / | ✅ | ✔️ | ✔️ | / |
UltraFace | 1.1M | face::detect | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | ❔ |
RetinaFace | 1.6M | face::detect | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | ❔ |
FaceBoxes | 3.8M | face::detect | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | ❔ |
FaceBoxesV2 | 3.8M | face::detect | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | ❔ |
SCRFD | 2.5M | face::detect | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | ❔ |
YOLO5Face | 4.8M | face::detect | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | ❔ |
PFLD | 1.0M | face::align | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | ❔ |
PFLD98 | 4.8M | face::align | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | ❔ |
MobileNetV268 | 9.4M | face::align | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | ❔ |
MobileNetV2SE68 | 11M | face::align | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | ❔ |
PFLD68 | 2.8M | face::align | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | ❔ |
FaceLandmark1000 | 2.0M | face::align | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | ❔ |
PIPNet98 | 44.0M | face::align | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | ❔ |
PIPNet68 | 44.0M | face::align | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | ❔ |
PIPNet29 | 44.0M | face::align | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | ❔ |
PIPNet19 | 44.0M | face::align | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | ❔ |
FSANet | 1.2M | face::pose | demo | ✅ | ✅ | / | ✅ | ✅ | ✔️ | ✔️ | ❔ |
AgeGoogleNet | 23M | face::attr | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | ❔ |
GenderGoogleNet | 23M | face::attr | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | ❔ |
EmotionFerPlus | 33M | face::attr | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | ❔ |
VGG16Age | 514M | face::attr | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | / |
VGG16Gender | 512M | face::attr | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | / |
SSRNet | 190K | face::attr | demo | ✅ | ✅ | / | ✅ | ✅ | ✔️ | ✔️ | ❔ |
EfficientEmotion7 | 15M | face::attr | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | ❔ |
EfficientEmotion8 | 15M | face::attr | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | ❔ |
MobileEmotion7 | 13M | face::attr | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | ❔ |
ReXNetEmotion7 | 30M | face::attr | demo | ✅ | ✅ | / | ✅ | ✅ | ✔️ | ✔️ | / |
EfficientNetLite4 | 49M | classification | demo | ✅ | ✅ | / | ✅ | ✅ | ✔️ | ✔️ | / |
ShuffleNetV2 | 8.7M | classification | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | ❔ |
DenseNet121 | 30.7M | classification | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | / |
GhostNet | 20M | classification | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | ❔ |
HdrDNet | 13M | classification | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | ❔ |
IBNNet | 97M | classification | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | / |
MobileNetV2 | 13M | classification | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | ❔ |
ResNet | 44M | classification | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | / |
ResNeXt | 95M | classification | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | / |
DeepLabV3ResNet101 | 232M | segmentation | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | / |
FCNResNet101 | 207M | segmentation | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | / |
FastStyleTransfer | 6.4M | style | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | ❔ |
Colorizer | 123M | colorization | demo | ✅ | ✅ | / | ✅ | ✅ | ✔️ | ✔️ | / |
SubPixelCNN | 234K | resolution | demo | ✅ | ✅ | / | ✅ | ✅ | ✔️ | ✔️ | ❔ |
SubPixelCNN | 234K | resolution | demo | ✅ | ✅ | / | ✅ | ✅ | ✔️ | ✔️ | ❔ |
InsectDet | 27M | detection | demo | ✅ | ✅ | / | ✅ | ✅ | ✔️ | ✔️ | ❔ |
InsectID | 22M | classification | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | ✔️ |
PlantID | 30M | classification | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | ✔️ |
YOLOv5BlazeFace | 3.4M | face::detect | demo | ✅ | ✅ | / | / | ✅ | ✔️ | ✔️ | ❔ |
YoloV5_V_6_1 | 7.5M | detection | demo | ✅ | ✅ | / | / | ✅ | ✔️ | ✔️ | ❔ |
HeadSeg | 31M | segmentation | demo | ✅ | ✅ | / | ✅ | ✅ | ✔️ | ✔️ | ❔ |
FemalePhoto2Cartoon | 15M | style | demo | ✅ | ✅ | / | ✅ | ✅ | ✔️ | ✔️ | ❔ |
FastPortraitSeg | 400k | segmentation | demo | ✅ | ✅ | / | / | ✅ | ✔️ | ✔️ | ❔ |
PortraitSegSINet | 380k | segmentation | demo | ✅ | ✅ | / | / | ✅ | ✔️ | ✔️ | ❔ |
PortraitSegExtremeC3Net | 180k | segmentation | demo | ✅ | ✅ | / | / | ✅ | ✔️ | ✔️ | ❔ |
FaceHairSeg | 18M | segmentation | demo | ✅ | ✅ | / | / | ✅ | ✔️ | ✔️ | ❔ |
HairSeg | 18M | segmentation | demo | ✅ | ✅ | / | / | ✅ | ✔️ | ✔️ | ❔ |
MobileHumanMatting | 3M | matting | demo | ✅ | ✅ | / | / | ✅ | ✔️ | ✔️ | ❔ |
MobileHairSeg | 14M | segmentation | demo | ✅ | ✅ | / | / | ✅ | ✔️ | ✔️ | ❔ |
YOLOv6 | 17M | detection | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | ❔ |
FaceParsingBiSeNet | 50M | segmentation | demo | ✅ | ✅ | ✅ | ✅ | ✅ | ✔️ | ✔️ | ❔ |
FaceParsingBiSeNetDyn | 50M | segmentation | demo | ✅ | / | / | / | / | ✔️ | ✔️ | ❔ |
🔑️ Model Zoo!Click here!
Lite.Ai.ToolKit contains almost 100+ AI models with 500+ frozen pretrained files now. Most of the files are converted by myself. You can use it through lite::cv::Type::Class syntax, such as lite::cv::detection::YoloV5. More details can be found at Examples for Lite.Ai.ToolKit. Note, for Google Drive, I can not upload all the *.onnx files because of the storage limitation (15G).
File | Baidu Drive | Google Drive | Docker Hub | Hub (Docs) |
---|---|---|---|---|
ONNX | Baidu Drive code: 8gin | Google Drive | ONNX Docker v0.1.22.01.08 (28G), v0.1.22.02.02 (400M) | ONNX Hub |
MNN | Baidu Drive code: 9v63 | ❔ | MNN Docker v0.1.22.01.08 (11G), v0.1.22.02.02 (213M) | MNN Hub |
NCNN | Baidu Drive code: sc7f | ❔ | NCNN Docker v0.1.22.01.08 (9G), v0.1.22.02.02 (197M) | NCNN Hub |
TNN | Baidu Drive code: 6o6k | ❔ | TNN Docker v0.1.22.01.08 (11G), v0.1.22.02.02 (217M) | TNN Hub |
docker pull qyjdefdocker/lite.ai.toolkit-onnx-hub:v0.1.22.01.08 # (28G)
docker pull qyjdefdocker/lite.ai.toolkit-mnn-hub:v0.1.22.01.08 # (11G)
docker pull qyjdefdocker/lite.ai.toolkit-ncnn-hub:v0.1.22.01.08 # (9G)
docker pull qyjdefdocker/lite.ai.toolkit-tnn-hub:v0.1.22.01.08 # (11G)
docker pull qyjdefdocker/lite.ai.toolkit-onnx-hub:v0.1.22.02.02 # (400M) + YOLO5Face
docker pull qyjdefdocker/lite.ai.toolkit-mnn-hub:v0.1.22.02.02 # (213M) + YOLO5Face
docker pull qyjdefdocker/lite.ai.toolkit-ncnn-hub:v0.1.22.02.02 # (197M) + YOLO5Face
docker pull qyjdefdocker/lite.ai.toolkit-tnn-hub:v0.1.22.02.02 # (217M) + YOLO5Face
- Firstly, pull the image from docker hub.
docker pull qyjdefdocker/lite.ai.toolkit-mnn-hub:v0.1.22.01.08 # (11G) docker pull qyjdefdocker/lite.ai.toolkit-ncnn-hub:v0.1.22.01.08 # (9G) docker pull qyjdefdocker/lite.ai.toolkit-tnn-hub:v0.1.22.01.08 # (11G) docker pull qyjdefdocker/lite.ai.toolkit-onnx-hub:v0.1.22.01.08 # (28G)
- Secondly, run the container with local
share
dir usingdocker run -idt xxx
. A minimum example will show you as follows.- make a
share
dir in your local device.
mkdir share # any name is ok.
- write
run_mnn_docker_hub.sh
script like:
#!/bin/bash PORT1=6072 PORT2=6084 SERVICE_DIR=/Users/xxx/Desktop/your-path-to/share CONRAINER_DIR=/home/hub/share CONRAINER_NAME=mnn_docker_hub_d docker run -idt -p ${PORT2}:${PORT1} -v ${SERVICE_DIR}:${CONRAINER_DIR} --shm-size=16gb --name ${CONRAINER_NAME} qyjdefdocker/lite.ai.toolkit-mnn-hub:v0.1.22.01.08
- make a
- Finally, copy the model weights from
/home/hub/mnn/cv
to your localshare
dir.# activate mnn docker. sh ./run_mnn_docker_hub.sh docker exec -it mnn_docker_hub_d /bin/bash # copy the models to the share dir. cd /home/hub cp -rf mnn/cv share/
The pretrained and converted ONNX files provide by lite.ai.toolkit are listed as follows. Also, see Model Zoo and ONNX Hub, MNN Hub, TNN Hub, NCNN Hub for more details.
🔑️ More Examples!Click here!
More examples can be found at examples.
#include "lite/lite.h"
static void test_default()
{
std::string onnx_path = "../../../examples/hub/onnx/cv/yolov5s.onnx";
std::string test_img_path = "../../../examples/lite/resources/test_lite_yolov5_1.jpg";
std::string save_img_path = "../../../examples/logs/test_lite_yolov5_1.jpg";
auto *yolov5 = new lite::cv::detection::YoloV5(onnx_path);
std::vector<lite::types::Boxf> detected_boxes;
cv::Mat img_bgr = cv::imread(test_img_path);
yolov5->detect(img_bgr, detected_boxes);
lite::utils::draw_boxes_inplace(img_bgr, detected_boxes);
cv::imwrite(save_img_path, img_bgr);
delete yolov5;
}
The output is:
Or you can use Newest 🔥🔥 ! YOLO series's detector YOLOX or YoloR. They got the similar results.
More classes for general object detection (80 classes, COCO).
auto *detector = new lite::cv::detection::YoloX(onnx_path); // Newest YOLO detector !!! 2021-07
auto *detector = new lite::cv::detection::YoloV4(onnx_path);
auto *detector = new lite::cv::detection::YoloV3(onnx_path);
auto *detector = new lite::cv::detection::TinyYoloV3(onnx_path);
auto *detector = new lite::cv::detection::SSD(onnx_path);
auto *detector = new lite::cv::detection::YoloV5(onnx_path);
auto *detector = new lite::cv::detection::YoloR(onnx_path); // Newest YOLO detector !!! 2021-05
auto *detector = new lite::cv::detection::TinyYoloV4VOC(onnx_path);
auto *detector = new lite::cv::detection::TinyYoloV4COCO(onnx_path);
auto *detector = new lite::cv::detection::ScaledYoloV4(onnx_path);
auto *detector = new lite::cv::detection::EfficientDet(onnx_path);
auto *detector = new lite::cv::detection::EfficientDetD7(onnx_path);
auto *detector = new lite::cv::detection::EfficientDetD8(onnx_path);
auto *detector = new lite::cv::detection::YOLOP(onnx_path);
auto *detector = new lite::cv::detection::NanoDet(onnx_path); // Super fast and tiny!
auto *detector = new lite::cv::detection::NanoDetPlus(onnx_path); // Super fast and tiny! 2021/12/25
auto *detector = new lite::cv::detection::NanoDetEfficientNetLite(onnx_path); // Super fast and tiny!
auto *detector = new lite::cv::detection::YoloV5_V_6_0(onnx_path);
auto *detector = new lite::cv::detection::YoloV5_V_6_1(onnx_path);
auto *detector = new lite::cv::detection::YoloX_V_0_1_1(onnx_path); // Newest YOLO detector !!! 2021-07
auto *detector = new lite::cv::detection::YOLOv6(onnx_path); // Newest 2022 YOLO detector !!!
Example1: Video Matting using RobustVideoMatting2021🔥🔥🔥. Download model from Model-Zoo2.
#include "lite/lite.h"
static void test_default()
{
std::string onnx_path = "../../../examples/hub/onnx/cv/rvm_mobilenetv3_fp32.onnx";
std::string video_path = "../../../examples/lite/resources/test_lite_rvm_0.mp4";
std::string output_path = "../../../examples/logs/test_lite_rvm_0.mp4";
std::string background_path = "../../../examples/lite/resources/test_lite_matting_bgr.jpg";
auto *rvm = new lite::cv::matting::RobustVideoMatting(onnx_path, 16); // 16 threads
std::vector<lite::types::MattingContent> contents;
// 1. video matting.
cv::Mat background = cv::imread(background_path);
rvm->detect_video(video_path, output_path, contents, false, 0.4f,
20, true, true, background);
delete rvm;
}
The output is:
More classes for matting (image matting, video matting, trimap/mask-free, trimap/mask-based)
auto *matting = new lite::cv::matting::RobustVideoMatting:(onnx_path); // WACV 2022.
auto *matting = new lite::cv::matting::MGMatting(onnx_path); // CVPR 2021
auto *matting = new lite::cv::matting::MODNet(onnx_path); // AAAI 2022
auto *matting = new lite::cv::matting::MODNetDyn(onnx_path); // AAAI 2022 Dynamic Shape Inference.
auto *matting = new lite::cv::matting::BackgroundMattingV2(onnx_path); // CVPR 2020
auto *matting = new lite::cv::matting::BackgroundMattingV2Dyn(onnx_path); // CVPR 2020 Dynamic Shape Inference.
auto *matting = new lite::cv::matting::MobileHumanMatting(onnx_path); // 3Mb only !!!
Example2: 1000 Facial Landmarks Detection using FaceLandmarks1000. Download model from Model-Zoo2.
#include "lite/lite.h"
static void test_default()
{
std::string onnx_path = "../../../examples/hub/onnx/cv/FaceLandmark1000.onnx";
std::string test_img_path = "../../../examples/lite/resources/test_lite_face_landmarks_0.png";
std::string save_img_path = "../../../examples/logs/test_lite_face_landmarks_1000.jpg";
auto *face_landmarks_1000 = new lite::cv::face::align::FaceLandmark1000(onnx_path);
lite::types::Landmarks landmarks;
cv::Mat img_bgr = cv::imread(test_img_path);
face_landmarks_1000->detect(img_bgr, landmarks);
lite::utils::draw_landmarks_inplace(img_bgr, landmarks);
cv::imwrite(save_img_path, img_bgr);
delete face_landmarks_1000;
}
The output is:
More classes for face alignment (68 points, 98 points, 106 points, 1000 points)
auto *align = new lite::cv::face::align::PFLD(onnx_path); // 106 landmarks, 1.0Mb only!
auto *align = new lite::cv::face::align::PFLD98(onnx_path); // 98 landmarks, 4.8Mb only!
auto *align = new lite::cv::face::align::PFLD68(onnx_path); // 68 landmarks, 2.8Mb only!
auto *align = new lite::cv::face::align::MobileNetV268(onnx_path); // 68 landmarks, 9.4Mb only!
auto *align = new lite::cv::face::align::MobileNetV2SE68(onnx_path); // 68 landmarks, 11Mb only!
auto *align = new lite::cv::face::align::FaceLandmark1000(onnx_path); // 1000 landmarks, 2.0Mb only!
auto *align = new lite::cv::face::align::PIPNet98(onnx_path); // 98 landmarks, CVPR2021!
auto *align = new lite::cv::face::align::PIPNet68(onnx_path); // 68 landmarks, CVPR2021!
auto *align = new lite::cv::face::align::PIPNet29(onnx_path); // 29 landmarks, CVPR2021!
auto *align = new lite::cv::face::align::PIPNet19(onnx_path); // 19 landmarks, CVPR2021!
Example3: Colorization using colorization. Download model from Model-Zoo2.
#include "lite/lite.h"
static void test_default()
{
std::string onnx_path = "../../../examples/hub/onnx/cv/eccv16-colorizer.onnx";
std::string test_img_path = "../../../examples/lite/resources/test_lite_colorizer_1.jpg";
std::string save_img_path = "../../../examples/logs/test_lite_eccv16_colorizer_1.jpg";
auto *colorizer = new lite::cv::colorization::Colorizer(onnx_path);
cv::Mat img_bgr = cv::imread(test_img_path);
lite::types::ColorizeContent colorize_content;
colorizer->detect(img_bgr, colorize_content);
if (colorize_content.flag) cv::imwrite(save_img_path, colorize_content.mat);
delete colorizer;
}
The output is:
More classes for colorization (gray to rgb)
auto *colorizer = new lite::cv::colorization::Colorizer(onnx_path);
#include "lite/lite.h"
static void test_default()
{
std::string onnx_path = "../../../examples/hub/onnx/cv/ms1mv3_arcface_r100.onnx";
std::string test_img_path0 = "../../../examples/lite/resources/test_lite_faceid_0.png";
std::string test_img_path1 = "../../../examples/lite/resources/test_lite_faceid_1.png";
std::string test_img_path2 = "../../../examples/lite/resources/test_lite_faceid_2.png";
auto *glint_arcface = new lite::cv::faceid::GlintArcFace(onnx_path);
lite::types::FaceContent face_content0, face_content1, face_content2;
cv::Mat img_bgr0 = cv::imread(test_img_path0);
cv::Mat img_bgr1 = cv::imread(test_img_path1);
cv::Mat img_bgr2 = cv::imread(test_img_path2);
glint_arcface->detect(img_bgr0, face_content0);
glint_arcface->detect(img_bgr1, face_content1);
glint_arcface->detect(img_bgr2, face_content2);
if (face_content0.flag && face_content1.flag && face_content2.flag)
{
float sim01 = lite::utils::math::cosine_similarity<float>(
face_content0.embedding, face_content1.embedding);
float sim02 = lite::utils::math::cosine_similarity<float>(
face_content0.embedding, face_content2.embedding);
std::cout << "Detected Sim01: " << sim << " Sim02: " << sim02 << std::endl;
}
delete glint_arcface;
}
The output is:
Detected Sim01: 0.721159 Sim02: -0.0626267
More classes for face recognition (face id vector extract)
auto *recognition = new lite::cv::faceid::GlintCosFace(onnx_path); // DeepGlint(insightface)
auto *recognition = new lite::cv::faceid::GlintArcFace(onnx_path); // DeepGlint(insightface)
auto *recognition = new lite::cv::faceid::GlintPartialFC(onnx_path); // DeepGlint(insightface)
auto *recognition = new lite::cv::faceid::FaceNet(onnx_path);
auto *recognition = new lite::cv::faceid::FocalArcFace(onnx_path);
auto *recognition = new lite::cv::faceid::FocalAsiaArcFace(onnx_path);
auto *recognition = new lite::cv::faceid::TencentCurricularFace(onnx_path); // Tencent(TFace)
auto *recognition = new lite::cv::faceid::TencentCifpFace(onnx_path); // Tencent(TFace)
auto *recognition = new lite::cv::faceid::CenterLossFace(onnx_path);
auto *recognition = new lite::cv::faceid::SphereFace(onnx_path);
auto *recognition = new lite::cv::faceid::PoseRobustFace(onnx_path);
auto *recognition = new lite::cv::faceid::NaivePoseRobustFace(onnx_path);
auto *recognition = new lite::cv::faceid::MobileFaceNet(onnx_path); // 3.8Mb only !
auto *recognition = new lite::cv::faceid::CavaGhostArcFace(onnx_path);
auto *recognition = new lite::cv::faceid::CavaCombinedFace(onnx_path);
auto *recognition = new lite::cv::faceid::MobileSEFocalFace(onnx_path); // 4.5Mb only !
Example5: Face Detection using SCRFD 2021. Download model from Model-Zoo2.
#include "lite/lite.h"
static void test_default()
{
std::string onnx_path = "../../../examples/hub/onnx/cv/scrfd_2.5g_bnkps_shape640x640.onnx";
std::string test_img_path = "../../../examples/lite/resources/test_lite_face_detector.jpg";
std::string save_img_path = "../../../examples/logs/test_lite_scrfd.jpg";
auto *scrfd = new lite::cv::face::detect::SCRFD(onnx_path);
std::vector<lite::types::BoxfWithLandmarks> detected_boxes;
cv::Mat img_bgr = cv::imread(test_img_path);
scrfd->detect(img_bgr, detected_boxes);
lite::utils::draw_boxes_with_landmarks_inplace(img_bgr, detected_boxes);
cv::imwrite(save_img_path, img_bgr);
delete scrfd;
}
The output is:
More classes for face detection (super fast face detection)
auto *detector = new lite::face::detect::UltraFace(onnx_path); // 1.1Mb only !
auto *detector = new lite::face::detect::FaceBoxes(onnx_path); // 3.8Mb only !
auto *detector = new lite::face::detect::FaceBoxesv2(onnx_path); // 4.0Mb only !
auto *detector = new lite::face::detect::RetinaFace(onnx_path); // 1.6Mb only ! CVPR2020
auto *detector = new lite::face::detect::SCRFD(onnx_path); // 2.5Mb only ! CVPR2021, Super fast and accurate!!
auto *detector = new lite::face::detect::YOLO5Face(onnx_path); // 2021, Super fast and accurate!!
auto *detector = new lite::face::detect::YOLOv5BlazeFace(onnx_path); // 2021, Super fast and accurate!!
Example6: Object Segmentation using DeepLabV3ResNet101. Download model from Model-Zoo2.
#include "lite/lite.h"
static void test_default()
{
std::string onnx_path = "../../../examples/hub/onnx/cv/deeplabv3_resnet101_coco.onnx";
std::string test_img_path = "../../../examples/lite/resources/test_lite_deeplabv3_resnet101.png";
std::string save_img_path = "../../../examples/logs/test_lite_deeplabv3_resnet101.jpg";
auto *deeplabv3_resnet101 = new lite::cv::segmentation::DeepLabV3ResNet101(onnx_path, 16); // 16 threads
lite::types::SegmentContent content;
cv::Mat img_bgr = cv::imread(test_img_path);
deeplabv3_resnet101->detect(img_bgr, content);
if (content.flag)
{
cv::Mat out_img;
cv::addWeighted(img_bgr, 0.2, content.color_mat, 0.8, 0., out_img);
cv::imwrite(save_img_path, out_img);
if (!content.names_map.empty())
{
for (auto it = content.names_map.begin(); it != content.names_map.end(); ++it)
{
std::cout << it->first << " Name: " << it->second << std::endl;
}
}
}
delete deeplabv3_resnet101;
}
The output is:
More classes for object segmentation (general objects segmentation)
auto *segment = new lite::cv::segmentation::FCNResNet101(onnx_path);
auto *segment = new lite::cv::segmentation::DeepLabV3ResNet101(onnx_path);
#include "lite/lite.h"
static void test_default()
{
std::string onnx_path = "../../../examples/hub/onnx/cv/ssrnet.onnx";
std::string test_img_path = "../../../examples/lite/resources/test_lite_ssrnet.jpg";
std::string save_img_path = "../../../examples/logs/test_lite_ssrnet.jpg";
auto *ssrnet = new lite::cv::face::attr::SSRNet(onnx_path);
lite::types::Age age;
cv::Mat img_bgr = cv::imread(test_img_path);
ssrnet->detect(img_bgr, age);
lite::utils::draw_age_inplace(img_bgr, age);
cv::imwrite(save_img_path, img_bgr);
delete ssrnet;
}
The output is:
More classes for face attributes analysis (age, gender, emotion)
auto *attribute = new lite::cv::face::attr::AgeGoogleNet(onnx_path);
auto *attribute = new lite::cv::face::attr::GenderGoogleNet(onnx_path);
auto *attribute = new lite::cv::face::attr::EmotionFerPlus(onnx_path);
auto *attribute = new lite::cv::face::attr::VGG16Age(onnx_path);
auto *attribute = new lite::cv::face::attr::VGG16Gender(onnx_path);
auto *attribute = new lite::cv::face::attr::EfficientEmotion7(onnx_path); // 7 emotions, 15Mb only!
auto *attribute = new lite::cv::face::attr::EfficientEmotion8(onnx_path); // 8 emotions, 15Mb only!
auto *attribute = new lite::cv::face::attr::MobileEmotion7(onnx_path); // 7 emotions, 13Mb only!
auto *attribute = new lite::cv::face::attr::ReXNetEmotion7(onnx_path); // 7 emotions
auto *attribute = new lite::cv::face::attr::SSRNet(onnx_path); // age estimation, 190kb only!!!
#include "lite/lite.h"
static void test_default()
{
std::string onnx_path = "../../../examples/hub/onnx/cv/densenet121.onnx";
std::string test_img_path = "../../../examples/lite/resources/test_lite_densenet.jpg";
auto *densenet = new lite::cv::classification::DenseNet(onnx_path);
lite::types::ImageNetContent content;
cv::Mat img_bgr = cv::imread(test_img_path);
densenet->detect(img_bgr, content);
if (content.flag)
{
const unsigned int top_k = content.scores.size();
if (top_k > 0)
{
for (unsigned int i = 0; i < top_k; ++i)
std::cout << i + 1
<< ": " << content.labels.at(i)
<< ": " << content.texts.at(i)
<< ": " << content.scores.at(i)
<< std::endl;
}
}
delete densenet;
}
The output is:
More classes for image classification (1000 classes)
auto *classifier = new lite::cv::classification::EfficientNetLite4(onnx_path);
auto *classifier = new lite::cv::classification::ShuffleNetV2(onnx_path); // 8.7Mb only!
auto *classifier = new lite::cv::classification::GhostNet(onnx_path);
auto *classifier = new lite::cv::classification::HdrDNet(onnx_path);
auto *classifier = new lite::cv::classification::IBNNet(onnx_path);
auto *classifier = new lite::cv::classification::MobileNetV2(onnx_path); // 13Mb only!
auto *classifier = new lite::cv::classification::ResNet(onnx_path);
auto *classifier = new lite::cv::classification::ResNeXt(onnx_path);
#include "lite/lite.h"
static void test_default()
{
std::string onnx_path = "../../../examples/hub/onnx/cv/fsanet-var.onnx";
std::string test_img_path = "../../../examples/lite/resources/test_lite_fsanet.jpg";
std::string save_img_path = "../../../examples/logs/test_lite_fsanet.jpg";
auto *fsanet = new lite::cv::face::pose::FSANet(onnx_path);
cv::Mat img_bgr = cv::imread(test_img_path);
lite::types::EulerAngles euler_angles;
fsanet->detect(img_bgr, euler_angles);
if (euler_angles.flag)
{
lite::utils::draw_axis_inplace(img_bgr, euler_angles);
cv::imwrite(save_img_path, img_bgr);
std::cout << "yaw:" << euler_angles.yaw << " pitch:" << euler_angles.pitch << " row:" << euler_angles.roll << std::endl;
}
delete fsanet;
}
The output is:
More classes for head pose estimation (euler angle, yaw, pitch, roll)
auto *pose = new lite::cv::face::pose::FSANet(onnx_path); // 1.2Mb only!
Example10: Style Transfer using FastStyleTransfer. Download model from Model-Zoo2.
#include "lite/lite.h"
static void test_default()
{
std::string onnx_path = "../../../examples/hub/onnx/cv/style-candy-8.onnx";
std::string test_img_path = "../../../examples/lite/resources/test_lite_fast_style_transfer.jpg";
std::string save_img_path = "../../../examples/logs/test_lite_fast_style_transfer_candy.jpg";
auto *fast_style_transfer = new lite::cv::style::FastStyleTransfer(onnx_path);
lite::types::StyleContent style_content;
cv::Mat img_bgr = cv::imread(test_img_path);
fast_style_transfer->detect(img_bgr, style_content);
if (style_content.flag) cv::imwrite(save_img_path, style_content.mat);
delete fast_style_transfer;
}
The output is:
More classes for style transfer (neural style transfer, others)
auto *transfer = new lite::cv::style::FastStyleTransfer(onnx_path); // 6.4Mb only
#include "lite/lite.h"
static void test_default()
{
std::string onnx_path = "../../../examples/hub/onnx/cv/minivision_head_seg.onnx";
std::string test_img_path = "../../../examples/lite/resources/test_lite_head_seg.png";
std::string save_img_path = "../../../examples/logs/test_lite_head_seg.jpg";
auto *head_seg = new lite::cv::segmentation::HeadSeg(onnx_path, 4); // 4 threads
lite::types::HeadSegContent content;
cv::Mat img_bgr = cv::imread(test_img_path);
head_seg->detect(img_bgr, content);
if (content.flag) cv::imwrite(save_img_path, content.mask * 255.f);
delete head_seg;
}
The output is:
More classes for human segmentation (head, portrait, hair, others)
auto *segment = new lite::cv::segmentation::HeadSeg(onnx_path); // 31Mb
auto *segment = new lite::cv::segmentation::FastPortraitSeg(onnx_path); // <= 400Kb !!!
auto *segment = new lite::cv::segmentation::PortraitSegSINet(onnx_path); // <= 380Kb !!!
auto *segment = new lite::cv::segmentation::PortraitSegExtremeC3Net(onnx_path); // <= 180Kb !!! Extreme Tiny !!!
auto *segment = new lite::cv::segmentation::FaceHairSeg(onnx_path); // 18M
auto *segment = new lite::cv::segmentation::HairSeg(onnx_path); // 18M
auto *segment = new lite::cv::segmentation::MobileHairSeg(onnx_path); // 14M
Example12: Photo transfer to Cartoon Photo2Cartoon. Download model from Model-Zoo2.
#include "lite/lite.h"
static void test_default()
{
std::string head_seg_onnx_path = "../../../examples/hub/onnx/cv/minivision_head_seg.onnx";
std::string cartoon_onnx_path = "../../../examples/hub/onnx/cv/minivision_female_photo2cartoon.onnx";
std::string test_img_path = "../../../examples/lite/resources/test_lite_female_photo2cartoon.jpg";
std::string save_mask_path = "../../../examples/logs/test_lite_female_photo2cartoon_seg.jpg";
std::string save_cartoon_path = "../../../examples/logs/test_lite_female_photo2cartoon_cartoon.jpg";
auto *head_seg = new lite::cv::segmentation::HeadSeg(head_seg_onnx_path, 4); // 4 threads
auto *female_photo2cartoon = new lite::cv::style::FemalePhoto2Cartoon(cartoon_onnx_path, 4); // 4 threads
lite::types::HeadSegContent head_seg_content;
cv::Mat img_bgr = cv::imread(test_img_path);
head_seg->detect(img_bgr, head_seg_content);
if (head_seg_content.flag && !head_seg_content.mask.empty())
{
cv::imwrite(save_mask_path, head_seg_content.mask * 255.f);
// Female Photo2Cartoon Style Transfer
lite::types::FemalePhoto2CartoonContent female_cartoon_content;
female_photo2cartoon->detect(img_bgr, head_seg_content.mask, female_cartoon_content);
if (female_cartoon_content.flag && !female_cartoon_content.cartoon.empty())
cv::imwrite(save_cartoon_path, female_cartoon_content.cartoon);
}
delete head_seg;
delete female_photo2cartoon;
}
The output is:
More classes for photo style transfer.
auto *transfer = new lite::cv::style::FemalePhoto2Cartoon(onnx_path);
Example13: Face Parsing using FaceParsing. Download model from Model-Zoo2.
#include "lite/lite.h"
static void test_default()
{
std::string onnx_path = "../../../examples/hub/onnx/cv/face_parsing_512x512.onnx";
std::string test_img_path = "../../../examples/lite/resources/test_lite_face_parsing.png";
std::string save_img_path = "../../../examples/logs/test_lite_face_parsing_bisenet.jpg";
auto *face_parsing_bisenet = new lite::cv::segmentation::FaceParsingBiSeNet(onnx_path, 8); // 8 threads
lite::types::FaceParsingContent content;
cv::Mat img_bgr = cv::imread(test_img_path);
face_parsing_bisenet->detect(img_bgr, content);
if (content.flag && !content.merge.empty())
cv::imwrite(save_img_path, content.merge);
delete face_parsing_bisenet;
}
The output is:
More classes for face parsing (hair, eyes, nose, mouth, others)
auto *segment = new lite::cv::segmentation::FaceParsingBiSeNet(onnx_path); // 50Mb
auto *segment = new lite::cv::segmentation::FaceParsingBiSeNetDyn(onnx_path); // Dynamic Shape Inference.
GNU General Public License v3.0
Please consider ⭐ this repo if you like it, as it is the simplest way to support me.