From 32df929277f7597d51c8638994c3d3b39d8f63a4 Mon Sep 17 00:00:00 2001 From: DefTruth Date: Sun, 19 Sep 2021 11:12:58 +0800 Subject: [PATCH] update README.md --- README.md | 58 +++++++++++++++++++++++++++++++++++-------------------- 1 file changed, 37 insertions(+), 21 deletions(-) diff --git a/README.md b/README.md index ff971281..ce3ce6f2 100644 --- a/README.md +++ b/README.md @@ -25,11 +25,46 @@ Star 🌟👆ðŸŧ this repo if it does any helps to you ~ 🙃ðŸĪŠðŸ€ -*Lite.AI.ToolKit* 🚀🚀🌟: A lite C++ toolkit of awesome AI models which contains *[70+](https://github.com/DefTruth/lite.ai.toolkit/tree/main/docs/hub/lite.ai.toolkit.hub.onnx.md)* models now. It's a collection of personal interests. Such as YOLOX, YOLOP, YOLOR, YoloV5, YoloV4, DeepLabV3, ArcFace, etc. *Lite.AI.ToolKit* based on *[onnxruntime](https://github.com/microsoft/onnxruntime)* by default. I do have plans to reimplement it with *[ncnn](https://github.com/Tencent/ncnn)* and *[MNN](https://github.com/alibaba/MNN)*, but not coming soon. It includes [object detection](#lite.ai.toolkit-object-detection), [face detection](#lite.ai.toolkit-face-detection), [face alignment](#lite.ai.toolkit-face-alignment), [face recognition](#lite.ai.toolkit-face-recognition), [segmentation](#lite.ai.toolkit-segmentation), [colorization](#lite.ai.toolkit-colorization), [matting](#lite.ai.toolkit-matting), etc. You can use these awesome models simply through *lite::cv::Type::Class* syntax, such as *[lite::cv::detection::YoloV5](#lite.ai.toolkit-object-detection)*. +*Lite.AI.ToolKit* 🚀🚀🌟: A lite C++ toolkit of awesome AI models which contains *[70+](https://github.com/DefTruth/lite.ai.toolkit/tree/main/docs/hub/lite.ai.toolkit.hub.onnx.md)* models now. It's a collection of personal interests. Such as YOLOX, YOLOP, YOLOR, YoloV5, YoloV4, DeepLabV3, ArcFace, etc. *Lite.AI.ToolKit* based on *[onnxruntime](https://github.com/microsoft/onnxruntime)* by default. I do have plans to reimplement it with *[ncnn](https://github.com/Tencent/ncnn)* and *[MNN](https://github.com/alibaba/MNN)*, but not coming soon. The core features of *Lite.AI.ToolKit* are listed as follows. + +* Simply and User friendly. + To use Lite.AI.ToolKit, you do not need to have a lot of AI skills, C++ is enough. You can use these awesome models simply through *lite::cv::Type::Class* syntax, see [examples](#lite.ai.toolkit-Examples-for-Lite.AI.ToolKit). + ```c++ + auto *yolox = new lite::cv::detection::YoloX("yolox_nano.onnx"); // 3.5Mb only ! + auto *yolov5 = new lite::cv::detection::YoloV5("yolov5s.onnx"); // for mobile device + ``` + +* Minimum Dependencies & Easy to build. + Currently, Lite.AI.ToolKit only depends on OpencV and ONNXRuntime. 🚀 You can download the latest *ONNXRuntime* official built libs from [v1.8.1](https://github.com/microsoft/onnxruntime/releases), [v1.7.0](https://github.com/microsoft/onnxruntime/releases/tag/v1.7.0). No more attentions needed pay to build it from source. On MacOS, it takes only a few lines of command to build Lite.AI.ToolKit, see [build](#lite.ai.toolkit-Build-Lite.AI.ToolKit). + ```shell + git clone --depth=1 https://github.com/DefTruth/lite.ai.toolkit.git # latest + cd lite.ai.toolkit + sh ./build.sh # On MacOS, you can use the built OpenCV and ONNXRuntime libs in this repo. + ``` + +* Cross-platform support. + Lite.AI.ToolKit support MacOS/Linux/Windows and CPU/GPU now. More platforms may be supported in the future ~ + + +* Lots of Algorithm Modules. + Currently, Lite.AI.ToolKit includes 10+ modules for Computer Vision, see [model zoo](#lite.ai.toolkit-Model-Zoo). Such as: + * [image classification](#lite.ai.toolkit-image-classification) + * [object detection](#lite.ai.toolkit-object-detection) + * [face detection](#lite.ai.toolkit-face-detection) + * [face alignment](#lite.ai.toolkit-face-alignment) + * [face recognition](#lite.ai.toolkit-face-recognition) + * [face attributes analysis](#lite.ai.toolkit-face-attributes-analysis) + * [head pose estimation](#lite.ai.toolkit-head-pose-estimation) + * [segmentation](#lite.ai.toolkit-segmentation) + * [colorization](#lite.ai.toolkit-colorization) + * [style transfer](#lite.ai.toolkit-style-transfer) + * [matting](#lite.ai.toolkit-matting) + + ## Citations. -Cite it as follows if you use *Lite.AI.ToolKit*. Note, More models will continue to be added ~ +Cite it as follows if you use *Lite.AI.ToolKit*. Watch 👀👆ðŸŧ this repo, more models will continue to be added ~ ```BibTeX @misc{lite.ai.toolkit2021, title={lite.ai.toolkit: A lite C++ toolkit of awesome AI models.}, @@ -114,25 +149,6 @@ install `OpenCV` and `onnxruntime` libraries using Homebrew or you can download brew install onnxruntime ``` -
- Expand for More Details of Dependencies. - -### Linux. - * *todo*⚠ïļ - -### Windows. - * *todo*⚠ïļ - -### Inference Engine Plans: - * *doing*: - ❇ïļ `onnxruntime` - * *todo*: - ⚠ïļ `NCNN` - ⚠ïļ `MNN` - ⚠ïļ `OpenMP` - -
- ----> ## 1. Build Lite.AI.ToolKit