-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathOmegaNum.js
1547 lines (1512 loc) · 75.8 KB
/
OmegaNum.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//Code snippets and templates from Decimal.js
;(function (globalScope) {
"use strict";
// -- EDITABLE DEFAULTS -- //
var OmegaNum = {
// The maximum number of arrows accepted in operation.
// It will warn and then return Infinity if exceeded.
// This is to prevent loops to not be breaking, and also to prevent memory leaks.
// 1000 means operation above {1000} is disallowed.
// It is not recommended to make this number too big.
// `OmegaNum.maxArrow = 1000;`
maxArrow: 1e3,
// Specify what format is used when serializing for JSON.stringify
//
// JSON 0 JSON object
// STRING 1 String
serializeMode: 0,
// Level of debug information printed in console
//
// NONE 0 Show no information.
// NORMAL 1 Show operations.
// ALL 2 Show everything.
debug: 0
},
// -- END OF EDITABLE DEFAULTS -- //
external = true,
omegaNumError = "[OmegaNumError] ",
invalidArgument = omegaNumError + "Invalid argument: ",
isOmegaNum = /^[-\+]*(Infinity|NaN|(10(\^+|\{[1-9]\d*\})|\(10(\^+|\{[1-9]\d*\})\)\^[1-9]\d* )*((\d+(\.\d*)?|\d*\.\d+)?([Ee][-\+]*))*(0|\d+(\.\d*)?|\d*\.\d+))$/,
MAX_SAFE_INTEGER = 9007199254740991,
MAX_E = Math.log10(MAX_SAFE_INTEGER), //15.954589770191003
// OmegaNum.prototype object
P={},
// OmegaNum static object
Q={},
// OmegaNum constants
R={};
// OmegaNum prototype methods
/*
* absoluteValue abs
* affordArithmeticSeries
* affordGeometricSeries
* arrow
* ceiling ceil
* chain
* choose
* comparedTo cmp
* cubeRoot cbrt
* divide div
* equals eq
* exponential exp
* factorial fact
* floor
* gamma
* generalLogarithm log10
* greaterThan gt
* greaterThanOrEqualTo gte
* hyper
* isFinite
* isInfinite
* isInteger isint
* isNaN
* isNegative isneg
* isPositive ispos
* iteratedexp
* iteratedlog
* lambertw
* layeradd
* layeradd10
* lessThan lt
* lessThanOrEqualTo lte
* logarithm logBase
* minus sub
* modulo mod
* naturalLogarithm ln log
* negated neg
* notEquals neq
* pentate pent
* plus add
* reciprocate rec
* root
* round
* slog
* squareRoot sqrt
* ssqrt ssrt
* sumArithmeticSeries
* sumGeometricSeries
* times mul
* tetrate tetr
* toExponential
* toFixed
* toHyperE
* toJSON
* toNumber
* toPower pow
* toPrecision
* toString
* toStringWithDecimalPlaces
* valueOf
*/
R.ZERO=0;
R.ONE=1;
R.E=Math.E;
R.LN2=Math.LN2;
R.LN10=Math.LN10;
R.LOG2E=Math.LOG2E;
R.LOG10E=Math.LOG10E;
R.PI=Math.PI;
R.SQRT1_2=Math.SQRT1_2;
R.SQRT2=Math.SQRT2;
R.MAX_SAFE_INTEGER=MAX_SAFE_INTEGER;
R.MIN_SAFE_INTEGER=Number.MIN_SAFE_INTEGER;
R.NaN=Number.NaN;
R.NEGATIVE_INFINITY=Number.NEGATIVE_INFINITY;
R.POSITIVE_INFINITY=Number.POSITIVE_INFINITY;
R.E_MAX_SAFE_INTEGER="e"+MAX_SAFE_INTEGER;
R.EE_MAX_SAFE_INTEGER="ee"+MAX_SAFE_INTEGER;
R.TETRATED_MAX_SAFE_INTEGER="10^^"+MAX_SAFE_INTEGER;
P.absoluteValue=P.abs=function(){
var x=this.clone();
x.sign=1;
return x;
};
Q.absoluteValue=Q.abs=function(x){
return new OmegaNum(x).abs();
};
P.negate=P.neg=function (){
var x=this.clone();
x.sign=x.sign*-1;
return x;
};
Q.negate=Q.neg=function (x){
return new OmegaNum(x).neg();
};
P.compareTo=P.cmp=function (other){
if (!(other instanceof OmegaNum)) other=new OmegaNum(other);
if (isNaN(this.array[0])||isNaN(other.array[0])) return NaN;
if (this.array[0]==Infinity&&other.array[0]!=Infinity) return this.sign;
if (this.array[0]!=Infinity&&other.array[0]==Infinity) return -other.sign;
if (this.array.length==1&&this.array[0]===0&&other.array.length==1&&other.array[0]===0) return 0;
if (this.sign!=other.sign) return this.sign;
var m=this.sign;
var r;
if (this.array.length>other.array.length) r=1;
else if (this.array.length<other.array.length) r=-1;
else{
for (var i=this.array.length-1;i>=0;--i){
if (this.array[i]>other.array[i]){
r=1;
break;
}else if (this.array[i]<other.array[i]){
r=-1;
break;
}
}
r=r||0;
}
return r*m;
};
Q.compare=Q.cmp=function (x,y){
return new OmegaNum(x).cmp(y);
};
P.greaterThan=P.gt=function (other){
return this.cmp(other)>0;
};
Q.greaterThan=Q.gt=function (x,y){
return new OmegaNum(x).gt(y);
};
P.greaterThanOrEqualTo=P.gte=function (other){
return this.cmp(other)>=0;
};
Q.greaterThanOrEqualTo=Q.gte=function (x,y){
return new OmegaNum(x).gte(y);
};
P.lessThan=P.lt=function (other){
return this.cmp(other)<0;
};
Q.lessThan=Q.lt=function (x,y){
return new OmegaNum(x).lt(y);
};
P.lessThanOrEqualTo=P.lte=function (other){
return this.cmp(other)<=0;
};
Q.lessThanOrEqualTo=Q.lte=function (x,y){
return new OmegaNum(x).lte(y);
};
P.equalsTo=P.equal=P.eq=function (other){
return this.cmp(other)===0;
};
Q.equalsTo=Q.equal=Q.eq=function (x,y){
return new OmegaNum(x).eq(y);
};
P.notEqualsTo=P.notEqual=P.neq=function (other){
return this.cmp(other)!==0;
};
Q.notEqualsTo=Q.notEqual=Q.neq=function (x,y){
return new OmegaNum(x).neq(y);
};
P.minimum=P.min=function (other){
return this.lt(other)?this.clone():new OmegaNum(other);
};
Q.minimum=Q.min=function (x,y){
return new OmegaNum(x).min(y);
};
P.maximum=P.max=function (other){
return this.gt(other)?this.clone():new OmegaNum(other);
};
Q.maximum=Q.max=function (x,y){
return new OmegaNum(x).max(y);
};
P.isPositive=P.ispos=function (){
return this.gt(OmegaNum.ZERO);
};
Q.isPositive=Q.ispos=function (x){
return new OmegaNum(x).ispos();
};
P.isNegative=P.isneg=function (){
return this.lt(OmegaNum.ZERO);
};
Q.isNegative=Q.isneg=function (x){
return new OmegaNum(x).isneg();
};
P.isNaN=function (){
return isNaN(this.array[0]);
};
Q.isNaN=function (x){
return new OmegaNum(x).isNaN();
};
P.isFinite=function (){
return isFinite(this.array[0]);
};
Q.isFinite=function (x){
return new OmegaNum(x).isFinite();
};
P.isInfinite=function (){
return this.array[0]==Infinity;
};
Q.isInfinite=function (x){
return new OmegaNum(x).isInfinite();
};
P.isInteger=P.isint=function (){
if (this.sign==-1) return this.abs().isint();
if (this.gt(OmegaNum.MAX_SAFE_INTEGER)) return true;
return Number.isInteger(this.toNumber());
};
Q.isInteger=Q.isint=function (x){
return new OmegaNum(x).isint();
};
P.floor=function (){
if (this.isInteger()) return this.clone();
return new OmegaNum(Math.floor(this.toNumber()));
};
Q.floor=function (x){
return new OmegaNum(x).floor();
};
P.ceiling=P.ceil=function (){
if (this.isInteger()) return this.clone();
return new OmegaNum(Math.ceil(this.toNumber()));
};
Q.ceiling=Q.ceil=function (x){
return new OmegaNum(x).ceil();
};
P.round=function (){
if (this.isInteger()) return this.clone();
return new OmegaNum(Math.round(this.toNumber()));
};
Q.round=function (x){
return new OmegaNum(x).round();
};
P.plus=P.add=function (other){
var x=this.clone();
other=new OmegaNum(other);
if (OmegaNum.debug>=OmegaNum.NORMAL) console.log(this+"+"+other);
if (x.sign==-1) return x.neg().add(other.neg()).neg();
if (other.sign==-1) return x.sub(other.neg());
if (x.eq(OmegaNum.ZERO)) return other;
if (other.eq(OmegaNum.ZERO)) return x;
if (x.isNaN()||other.isNaN()||x.isInfinite()&&other.isInfinite()&&x.eq(other.neg())) return OmegaNum.NaN.clone();
if (x.isInfinite()) return x;
if (other.isInfinite()) return other;
var p=x.min(other);
var q=x.max(other);
var t;
if (q.gt(OmegaNum.E_MAX_SAFE_INTEGER)||q.div(p).gt(OmegaNum.MAX_SAFE_INTEGER)){
t=q;
}else if (!q.array[1]){
t=new OmegaNum(x.toNumber()+other.toNumber());
}else if (q.array[1]==1){
var a=p.array[1]?p.array[0]:Math.log10(p.array[0]);
t=new OmegaNum([a+Math.log10(Math.pow(10,q.array[0]-a)+1),1]);
}
p=q=null;
return t;
};
Q.plus=Q.add=function (x,y){
return new OmegaNum(x).add(y);
};
P.minus=P.sub=function (other){
var x=this.clone();
other=new OmegaNum(other);
if (OmegaNum.debug>=OmegaNum.NORMAL) console.log(x+"-"+other);
if (x.sign==-1) return x.neg().sub(other.neg()).neg();
if (other.sign==-1) return x.add(other.neg());
if (x.eq(other)) return OmegaNum.ZERO.clone();
if (other.eq(OmegaNum.ZERO)) return x;
if (x.isNaN()||other.isNaN()||x.isInfinite()&&other.isInfinite()) return OmegaNum.NaN.clone();
if (x.isInfinite()) return x;
if (other.isInfinite()) return other.neg();
var p=x.min(other);
var q=x.max(other);
var n=other.gt(x);
var t;
if (q.gt(OmegaNum.E_MAX_SAFE_INTEGER)||q.div(p).gt(OmegaNum.MAX_SAFE_INTEGER)){
t=q;
t=n?t.neg():t;
}else if (!q.array[1]){
t=new OmegaNum(x.toNumber()-other.toNumber());
}else if (q.array[1]==1){
var a=p.array[1]?p.array[0]:Math.log10(p.array[0]);
t=new OmegaNum([a+Math.log10(Math.pow(10,q.array[0]-a)-1),1]);
t=n?t.neg():t;
}
p=q=null;
return t;
};
Q.minus=Q.sub=function (x,y){
return new OmegaNum(x).sub(y);
};
P.times=P.mul=function (other){
var x=this.clone();
other=new OmegaNum(other);
if (OmegaNum.debug>=OmegaNum.NORMAL) console.log(x+"*"+other);
if (x.sign*other.sign==-1) return x.abs().mul(other.abs()).neg();
if (x.sign==-1) return x.abs().mul(other.abs());
if (x.isNaN()||other.isNaN()||x.eq(OmegaNum.ZERO)&&other.isInfinite()||x.isInfinite()&&other.abs().eq(OmegaNum.ZERO)) return OmegaNum.NaN.clone();
if (other.eq(OmegaNum.ZERO)) return OmegaNum.ZERO.clone();
if (other.eq(OmegaNum.ONE)) return x.clone();
if (x.isInfinite()) return x;
if (other.isInfinite()) return other;
if (x.max(other).gt(OmegaNum.EE_MAX_SAFE_INTEGER)) return x.max(other);
var n=x.toNumber()*other.toNumber();
if (n<=MAX_SAFE_INTEGER) return new OmegaNum(n);
return OmegaNum.pow(10,x.log10().add(other.log10()));
};
Q.times=Q.mul=function (x,y){
return new OmegaNum(x).mul(y);
};
P.divide=P.div=function (other){
var x=this.clone();
other=new OmegaNum(other);
if (OmegaNum.debug>=OmegaNum.NORMAL) console.log(x+"/"+other);
if (x.sign*other.sign==-1) return x.abs().div(other.abs()).neg();
if (x.sign==-1) return x.abs().div(other.abs());
if (x.isNaN()||other.isNaN()||x.isInfinite()&&other.isInfinite()||x.eq(OmegaNum.ZERO)&&other.eq(OmegaNum.ZERO)) return OmegaNum.NaN.clone();
if (other.eq(OmegaNum.ZERO)) return OmegaNum.POSITIVE_INFINITY.clone();
if (other.eq(OmegaNum.ONE)) return x.clone();
if (x.eq(other)) return OmegaNum.ONE.clone();
if (x.isInfinite()) return x;
if (other.isInfinite()) return OmegaNum.ZERO.clone();
if (x.max(other).gt(OmegaNum.EE_MAX_SAFE_INTEGER)) return x.gt(other)?x.clone():OmegaNum.ZERO.clone();
var n=x.toNumber()/other.toNumber();
if (n<=MAX_SAFE_INTEGER) return new OmegaNum(n);
var pw=OmegaNum.pow(10,x.log10().sub(other.log10()));
var fp=pw.floor();
if (pw.sub(fp).lt(new OmegaNum(1e-9))) return fp;
return pw;
};
Q.divide=Q.div=function (x,y){
return new OmegaNum(x).div(y);
};
P.reciprocate=P.rec=function (){
if (OmegaNum.debug>=OmegaNum.NORMAL) console.log(this+"^-1");
if (this.isNaN()||this.eq(OmegaNum.ZERO)) return OmegaNum.NaN.clone();
if (this.abs().gt("2e323")) return OmegaNum.ZERO.clone();
return new OmegaNum(1/this);
};
Q.reciprocate=Q.rec=function (x){
return new OmegaNum(x).rec();
};
P.modular=P.mod=function (other){
other=new OmegaNum(other);
if (other.eq(OmegaNum.ZERO)) return OmegaNum.ZERO.clone();
if (this.sign*other.sign==-1) return this.abs().mod(other.abs()).neg();
if (this.sign==-1) return this.abs().mod(other.abs());
return this.sub(this.div(other).floor().mul(other));
};
Q.modular=Q.mod=function (x,y){
return new OmegaNum(x).mod(y);
};
//All of these are from Patashu's break_eternity.js
//from HyperCalc source code
var f_gamma=function (n){
if (!isFinite(n)) return n;
if (n<-50){
if (n==Math.trunc(n)) return Number.NEGATIVE_INFINITY;
return 0;
}
var scal1=1;
while (n<10){
scal1=scal1*n;
++n;
}
n-=1;
var l=0.9189385332046727; //0.5*Math.log(2*Math.PI)
l+=(n+0.5)*Math.log(n);
l-=n;
var n2=n*n;
var np=n;
l+=1/(12*np);
np*=n2;
l+=1/(360*np);
np*=np*n2;
l+=1/(1260*np);
np*=n2;
l+=1/(1680*np);
np*=n2;
l+=1/(1188*np);
np*=n2;
l+=691/(360360*np);
np*=n2;
l+=7/(1092*np);
np*=n2;
l+=3617/(122400*np);
return Math.exp(l)/scal1;
};
//from HyperCalc source code
P.gamma=function (){
var x=this.clone();
if (x.gt(OmegaNum.TETRATED_MAX_SAFE_INTEGER)) return x;
if (x.gt(OmegaNum.E_MAX_SAFE_INTEGER)) return OmegaNum.exp(x);
if (x.gt(OmegaNum.MAX_SAFE_INTEGER)) return OmegaNum.exp(OmegaNum.mul(x,OmegaNum.ln(x).sub(1)));
var n=x.array[0];
if (n>1){
if (n<24) return new OmegaNum(f_gamma(x.sign*n));
var t=n-1;
var l=0.9189385332046727; //0.5*Math.log(2*Math.PI)
l+=((t+0.5)*Math.log(t));
l-=t;
var n2=t*t;
var np=t;
var lm=12*np;
var adj=1/lm;
var l2=l+adj;
if (l2==l) return OmegaNum.exp(l);
l=l2;
np*=n2;
lm=360*np;
adj=1/lm;
l2=l-adj;
if (l2==l) return OmegaNum.exp(l);
l=l2;
np*=n2;
lm=1260*np;
var lt=1/lm;
l+=lt;
np*=n2;
lm=1680*np;
lt=1/lm;
l-=lt;
return OmegaNum.exp(l);
}else return this.rec();
};
Q.gamma=function (x){
return new OmegaNum(x).gamma();
};
//end break_eternity.js excerpt
Q.factorials=[1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600, 6227020800, 87178291200, 1307674368000, 20922789888000, 355687428096000, 6402373705728000, 121645100408832000, 2432902008176640000, 51090942171709440000, 1124000727777607680000, 25852016738884976640000, 620448401733239439360000, 15511210043330985984000000, 403291461126605635584000000, 10888869450418352160768000000, 304888344611713860501504000000, 8841761993739701954543616000000, 265252859812191058636308480000000, 8222838654177922817725562880000000, 263130836933693530167218012160000000, 8683317618811886495518194401280000000, 295232799039604140847618609643520000000, 10333147966386144929666651337523200000000, 371993326789901217467999448150835200000000, 13763753091226345046315979581580902400000000, 523022617466601111760007224100074291200000000, 20397882081197443358640281739902897356800000000, 815915283247897734345611269596115894272000000000, 33452526613163807108170062053440751665152000000000, 1405006117752879898543142606244511569936384000000000, 60415263063373835637355132068513997507264512000000000, 2658271574788448768043625811014615890319638528000000000, 119622220865480194561963161495657715064383733760000000000, 5502622159812088949850305428800254892961651752960000000000, 258623241511168180642964355153611979969197632389120000000000, 12413915592536072670862289047373375038521486354677760000000000, 608281864034267560872252163321295376887552831379210240000000000, 30414093201713378043612608166064768844377641568960512000000000000, 1551118753287382280224243016469303211063259720016986112000000000000, 80658175170943878571660636856403766975289505440883277824000000000000, 4274883284060025564298013753389399649690343788366813724672000000000000, 230843697339241380472092742683027581083278564571807941132288000000000000, 12696403353658275925965100847566516959580321051449436762275840000000000000, 710998587804863451854045647463724949736497978881168458687447040000000000000, 40526919504877216755680601905432322134980384796226602145184481280000000000000, 2350561331282878571829474910515074683828862318181142924420699914240000000000000, 138683118545689835737939019720389406345902876772687432540821294940160000000000000, 8320987112741390144276341183223364380754172606361245952449277696409600000000000000, 507580213877224798800856812176625227226004528988036003099405939480985600000000000000, 31469973260387937525653122354950764088012280797258232192163168247821107200000000000000, 1982608315404440064116146708361898137544773690227268628106279599612729753600000000000000, 126886932185884164103433389335161480802865516174545192198801894375214704230400000000000000, 8247650592082470666723170306785496252186258551345437492922123134388955774976000000000000000, 544344939077443064003729240247842752644293064388798874532860126869671081148416000000000000000, 36471110918188685288249859096605464427167635314049524593701628500267962436943872000000000000000, 2480035542436830599600990418569171581047399201355367672371710738018221445712183296000000000000000, 171122452428141311372468338881272839092270544893520369393648040923257279754140647424000000000000000, 11978571669969891796072783721689098736458938142546425857555362864628009582789845319680000000000000000, 850478588567862317521167644239926010288584608120796235886430763388588680378079017697280000000000000000, 61234458376886086861524070385274672740778091784697328983823014963978384987221689274204160000000000000000, 4470115461512684340891257138125051110076800700282905015819080092370422104067183317016903680000000000000000, 330788544151938641225953028221253782145683251820934971170611926835411235700971565459250872320000000000000000, 24809140811395398091946477116594033660926243886570122837795894512655842677572867409443815424000000000000000000, 1885494701666050254987932260861146558230394535379329335672487982961844043495537923117729972224000000000000000000, 145183092028285869634070784086308284983740379224208358846781574688061991349156420080065207861248000000000000000000, 11324281178206297831457521158732046228731749579488251990048962825668835325234200766245086213177344000000000000000000, 894618213078297528685144171539831652069808216779571907213868063227837990693501860533361810841010176000000000000000000, 71569457046263802294811533723186532165584657342365752577109445058227039255480148842668944867280814080000000000000000000, 5797126020747367985879734231578109105412357244731625958745865049716390179693892056256184534249745940480000000000000000000, 475364333701284174842138206989404946643813294067993328617160934076743994734899148613007131808479167119360000000000000000000, 39455239697206586511897471180120610571436503407643446275224357528369751562996629334879591940103770870906880000000000000000000, 3314240134565353266999387579130131288000666286242049487118846032383059131291716864129885722968716753156177920000000000000000000, 281710411438055027694947944226061159480056634330574206405101912752560026159795933451040286452340924018275123200000000000000000000, 24227095383672732381765523203441259715284870552429381750838764496720162249742450276789464634901319465571660595200000000000000000000, 2107757298379527717213600518699389595229783738061356212322972511214654115727593174080683423236414793504734471782400000000000000000000, 185482642257398439114796845645546284380220968949399346684421580986889562184028199319100141244804501828416633516851200000000000000000000, 16507955160908461081216919262453619309839666236496541854913520707833171034378509739399912570787600662729080382999756800000000000000000000, 1485715964481761497309522733620825737885569961284688766942216863704985393094065876545992131370884059645617234469978112000000000000000000000, 135200152767840296255166568759495142147586866476906677791741734597153670771559994765685283954750449427751168336768008192000000000000000000000, 12438414054641307255475324325873553077577991715875414356840239582938137710983519518443046123837041347353107486982656753664000000000000000000000, 1156772507081641574759205162306240436214753229576413535186142281213246807121467315215203289516844845303838996289387078090752000000000000000000000, 108736615665674308027365285256786601004186803580182872307497374434045199869417927630229109214583415458560865651202385340530688000000000000000000000, 10329978488239059262599702099394727095397746340117372869212250571234293987594703124871765375385424468563282236864226607350415360000000000000000000000, 991677934870949689209571401541893801158183648651267795444376054838492222809091499987689476037000748982075094738965754305639874560000000000000000000000, 96192759682482119853328425949563698712343813919172976158104477319333745612481875498805879175589072651261284189679678167647067832320000000000000000000000, 9426890448883247745626185743057242473809693764078951663494238777294707070023223798882976159207729119823605850588608460429412647567360000000000000000000000, 933262154439441526816992388562667004907159682643816214685929638952175999932299156089414639761565182862536979208272237582511852109168640000000000000000000000, 93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000, 9425947759838359420851623124482936749562312794702543768327889353416977599316221476503087861591808346911623490003549599583369706302603264000000000000000000000000, 961446671503512660926865558697259548455355905059659464369444714048531715130254590603314961882364451384985595980362059157503710042865532928000000000000000000000000, 99029007164861804075467152545817733490901658221144924830052805546998766658416222832141441073883538492653516385977292093222882134415149891584000000000000000000000000, 10299016745145627623848583864765044283053772454999072182325491776887871732475287174542709871683888003235965704141638377695179741979175588724736000000000000000000000000, 1081396758240290900504101305800329649720646107774902579144176636573226531909905153326984536526808240339776398934872029657993872907813436816097280000000000000000000000000, 114628056373470835453434738414834942870388487424139673389282723476762012382449946252660360871841673476016298287096435143747350528228224302506311680000000000000000000000000, 12265202031961379393517517010387338887131568154382945052653251412013535324922144249034658613287059061933743916719318560380966506520420000368175349760000000000000000000000000, 1324641819451828974499891837121832599810209360673358065686551152497461815091591578895743130235002378688844343005686404521144382704205360039762937774080000000000000000000000000, 144385958320249358220488210246279753379312820313396029159834075622223337844983482099636001195615259277084033387619818092804737714758384244334160217374720000000000000000000000000, 15882455415227429404253703127090772871724410234473563207581748318444567162948183030959960131517678520479243672638179990208521148623422266876757623911219200000000000000000000000000, 1762952551090244663872161047107075788761409536026565516041574063347346955087248316436555574598462315773196047662837978913145847497199871623320096254145331200000000000000000000000000, 197450685722107402353682037275992488341277868034975337796656295094902858969771811440894224355027779366597957338237853638272334919686385621811850780464277094400000000000000000000000000, 22311927486598136465966070212187151182564399087952213171022161345724023063584214692821047352118139068425569179220877461124773845924561575264739138192463311667200000000000000000000000000, 2543559733472187557120132004189335234812341496026552301496526393412538629248600474981599398141467853800514886431180030568224218435400019580180261753940817530060800000000000000000000000000, 292509369349301569068815180481773552003419272043053514672100535242441942363589054622883930786268803187059211939585703515345785120071002251720730101703194015956992000000000000000000000000000, 33931086844518982011982560935885732032396635556994207701963662088123265314176330336254535971207181169698868584991941607780111073928236261199604691797570505851011072000000000000000000000000000, 3969937160808720895401959629498630647790406360168322301129748464310422041758630649341780708631240196854767624444057168110272995649603642560353748940315749184568295424000000000000000000000000000, 468452584975429065657431236280838416439267950499862031533310318788629800927518416622330123618486343228862579684398745837012213486653229822121742374957258403779058860032000000000000000000000000000, 55745857612076058813234317117419771556272886109483581752463927935846946310374691578057284710599874844234646982443450754604453404911734348832487342619913750049708004343808000000000000000000000000000, 6689502913449127057588118054090372586752746333138029810295671352301633557244962989366874165271984981308157637893214090552534408589408121859898481114389650005964960521256960000000000000000000000000000, 809429852527344373968162284544935082997082306309701607045776233628497660426640521713391773997910182738287074185078904956856663439318382745047716214841147650721760223072092160000000000000000000000000000, 98750442008336013624115798714482080125644041369783596059584700502676714572050143649033796427745042294071023050579626404736512939596842694895821378210620013388054747214795243520000000000000000000000000000, 12146304367025329675766243241881295855454217088483382315328918161829235892362167668831156960612640202170735835221294047782591091570411651472186029519906261646730733907419814952960000000000000000000000000000, 1506141741511140879795014161993280686076322918971939407100785852066825250652908790935063463115967385069171243567440461925041295354731044782551067660468376444194611004520057054167040000000000000000000000000000, 188267717688892609974376770249160085759540364871492425887598231508353156331613598866882932889495923133646405445930057740630161919341380597818883457558547055524326375565007131770880000000000000000000000000000000, 23721732428800468856771473051394170805702085973808045661837377170052497697783313457227249544076486314839447086187187275319400401837013955325179315652376928996065123321190898603130880000000000000000000000000000000, 3012660018457659544809977077527059692324164918673621799053346900596667207618480809067860692097713761984609779945772783965563851033300772326297773087851869982500270661791244122597621760000000000000000000000000000000, 385620482362580421735677065923463640617493109590223590278828403276373402575165543560686168588507361534030051833058916347592172932262498857766114955245039357760034644709279247692495585280000000000000000000000000000000, 49745042224772874403902341504126809639656611137138843145968864022652168932196355119328515747917449637889876686464600208839390308261862352651828829226610077151044469167497022952331930501120000000000000000000000000000000, 6466855489220473672507304395536485253155359447828049608975952322944781961185526165512707047229268452925683969240398027149120740074042105844737747799459310029635780991774612983803150965145600000000000000000000000000000000, 847158069087882051098456875815279568163352087665474498775849754305766436915303927682164623187034167333264599970492141556534816949699515865660644961729169613882287309922474300878212776434073600000000000000000000000000000000, 111824865119600430744996307607616902997562475571842633838412167568361169672820118454045730260688510087990927196104962685462595837360336094267205134948250389032461924909766607715924086489297715200000000000000000000000000000000, 14872707060906857289084508911813048098675809251055070300508818286592035566485075754388082124671571841702793317081960037166525246368924700537538282948117301741317436012998958826217903503076596121600000000000000000000000000000000, 1992942746161518876737324194182948445222558439641379420268181650403332765909000151088003004705990626788174304488982644980314383013435909872030129915047718433336536425741860482713199069412263880294400000000000000000000000000000000, 269047270731805048359538766214698040105045389351586221736204522804449923397715020396880405635308734616403531106012657072342441706813847832724067538531441988500432417475151165166281874370655623839744000000000000000000000000000000000, 36590428819525486576897272205198933454286172951815726156123815101405189582089242773975735166401987907830880230417721361838572072126683305250473185240276110436058808776620558462614334914409164842205184000000000000000000000000000000000, 5012888748274991661034926292112253883237205694398754483388962668892510972746226260034675717797072343372830591567227826571884373881355612819314826377917827129740056802397016509378163883274055583382110208000000000000000000000000000000000, 691778647261948849222819828311491035886734385827028118707676848307166514238979223884785249055995983385450621636277440066920043595627074569065446040152660143904127838730788278294186615891819670506731208704000000000000000000000000000000000, 96157231969410890041971956135297253988256079629956908500367081914696145479218112119985149618783441690577636407442564169301886059792163365100096999581219760002673769583579570682891939608962934200435638009856000000000000000000000000000000000, 13462012475717524605876073858941615558355851148193967190051391468057460367090535696797920946629681836680869097041958983702264048370902871114013579941370766400374327741701139895604871545254810788060989321379840000000000000000000000000000000000, 1898143759076170969428526414110767793728175011895349373797246196996101911759765533248506853474785138972002542682916216702019230820297304827075914771733278062452780211579860725280286887880928321116599494314557440000000000000000000000000000000000, 269536413788816277658850750803729026709400851689139611079208959973446471469886705721287973193419489734024361060974102771686730776482217285444779897586125484868294790044340222989800738079091821598557128192667156480000000000000000000000000000000000, 38543707171800727705215657364933250819444321791546964384326881276202845420193798918144180166658987031965483631719296696351202501036957071818603525354815944336166154976340651887541505545310130488593669331551403376640000000000000000000000000000000000, 5550293832739304789551054660550388117999982337982762871343070903773209740507907044212761943998894132603029642967578724274573160149321818341878907651093495984407926316593053871805976798524658790357488383743402086236160000000000000000000000000000000000, 804792605747199194484902925779806277109997439007500616344745281047115412373646521410850481879839649227439298230298915019813108221651663659572441609408556917739149315905992811411866635786075524601835815642793302504243200000000000000000000000000000000000, 117499720439091082394795827163851716458059626095095089986332811032878850206552392125984170354456588787206137541623641592892713800361142894297576474973649309989915800122274950466132528824767026591868029083847822165619507200000000000000000000000000000000000, 17272458904546389112034986593086202319334765035978978227990923221833190980363201642519673042105118551719302218618675314155228928653088005461743741821126448568517622617974417718521481737240752909004600275325629858346067558400000000000000000000000000000000000, 2556323917872865588581178015776757943261545225324888777742656636831312265093753843092911610231557545654456728355563946494973881440657024808338073789526714388140608147460213822341179297111631430532680840748193219035217998643200000000000000000000000000000000000, 380892263763056972698595524350736933545970238573408427883655838887865527498969322620843829924502074302514052524979028027751108334657896696442372994639480443832950613971571859528835715269633083149369445271480789636247481797836800000000000000000000000000000000000, 57133839564458545904789328652610540031895535786011264182548375833179829124845398393126574488675311145377107878746854204162666250198684504466355949195922066574942592095735778929325357290444962472405416790722118445437122269675520000000000000000000000000000000000000, 8627209774233240431623188626544191544816225903687700891564804750810154197851655157362112747789971982951943289690774984828562603780001360174419748328584232052816331406456102618328128950857189333333217935399039885261005462721003520000000000000000000000000000000000000, 1311335885683452545606724671234717114812066337360530535517850322123143438073451583919041137664075741408695380032997797693941515774560206746511801745944803272028082373781327597985875600530292778666649126180654062559672830333592535040000000000000000000000000000000000000, 200634390509568239477828874698911718566246149616161171934231099284840946025238092339613294062603588435530393145048663047173051913507711632216305667129554900620296603188543122491838966881134795135997316305640071571629943041039657861120000000000000000000000000000000000000, 30897696138473508879585646703632404659201907040888820477871589289865505687886666220300447285640952619071680544337494109264649994680187591361311072737951454695525676891035640863743200899694758450943586711068571022031011228320107310612480000000000000000000000000000000000000, 4789142901463393876335775239063022722176295591337767174070096339929153381622433264146569329274347655956110484372311586936020749175429076661003216274382475477806479918110524333880196139452687559896255940215628508414806740389616633144934400000000000000000000000000000000000000, 747106292628289444708380937293831544659502112248691679154935029028947927533099589206864815366798234329153235562080607562019236871366935959116501738803666174537810867225241796085310597754619259343815926673638047312709851500780194770609766400000000000000000000000000000000000000, 117295687942641442819215807155131552511541831623044593627324799557544824622696635505477776012587322789677057983246655387237020188804608945581290772992175589402436306154362961985393763847475223716979100487761173428095446685622490578985733324800000000000000000000000000000000000000, 18532718694937347965436097530510785296823609396441045793117318330092082290386068409865488609988797000768975161352971551183449189831128213401843942132763743125584936372389347993692214687901085347282697877066265401639080576328353511479745865318400000000000000000000000000000000000000, 2946702272495038326504339507351214862194953894034126281105653614484641084171384877168612688988218723122267050655122476638168421183149385930893186799109435156968004883209906330997062135376272570217948962453536198860613811636208208325279592585625600000000000000000000000000000000000000, 471472363599206132240694321176194377951192623045460204976904578317542573467421580346978030238114995699562728104819596262106947389303901748942909887857509625114880781313585012959529941660203611234871833992565791817698209861793313332044734813700096000000000000000000000000000000000000000, 75907050539472187290751785709367294850142012310319093001281637109124354328254874435863462868336514307629599224875954998199218529677928181579808491945059049643495805791487187086484320607292781408814365272803092482649411787748723446459202305005715456000000000000000000000000000000000000000, 12296942187394494341101789284917501765723005994271693066207625211678145401177289658609880984670515317835995074429904709708273401807824365415928975695099566042246320538220924308010459938381430588227927174194100982189204709615293198326390773410925903872000000000000000000000000000000000000000, 2004401576545302577599591653441552787812849977066285969791842909503537700391898214353410600501293996807267197132074467682448564494675371562796423038301229264886150247730010662205704969956173185881152129393638460096840367667292791327201696065980922331136000000000000000000000000000000000000000, 328721858553429622726333031164414657201307396238870899045862237158580182864271307153959338482212215476391820329660212699921564577126760936298613378281401599441328640627721748601735615072812402484508949220556707455881820297436017777661078154820871262306304000000000000000000000000000000000000000, 54239106661315887749844950142128418438215720379413698342567269131165730172604765680403290849565015553604650354393935095487058155225915554489271207416431263907819225703574088519286376487014046409943976621391856730220500349076942933314077895545443758280540160000000000000000000000000000000000000000, 9003691705778437366474261723593317460743809582982673924866166675773511208652391102946946281027792581898371958829393225850851653767501982045219020431127589808697991466793298694201538496844331704050700119151048217216603057946772526930136930660543663874569666560000000000000000000000000000000000000000, 1503616514864999040201201707840084015944216200358106545452649834854176371844949314192140028931641361177028117124508668717092226179172831001551576411998307498052564574954480881931656928973003394576466919898225052275172710677111011997332867420310791867053134315520000000000000000000000000000000000000000, 252607574497319838753801886917134114678628321660161899636045172255501630469951484784279524860515748677740723676917456344471493998101035608260664837215715659672830848592352788164518364067464570288846442542901808782229015393754650015551921726612213033664926565007360000000000000000000000000000000000000000, 42690680090047052749392518888995665380688186360567361038491634111179775549421800928543239701427161526538182301399050122215682485679075017796052357489455946484708413412107621199803603527401512378815048789750405684196703601544535852628274771797464002689372589486243840000000000000000000000000000000000000000, 7257415615307998967396728211129263114716991681296451376543577798900561843401706157852350749242617459511490991237838520776666022565442753025328900773207510902400430280058295603966612599658257104398558294257568966313439612262571094946806711205568880457193340212661452800000000000000000000000000000000000000000];
P.factorial=P.fact=function (){
var x=this.clone();
var f=OmegaNum.factorials;
if (x.lt(OmegaNum.ZERO)||!x.isint()) return x.add(1).gamma();
if (x.lte(170)) return new OmegaNum(f[+x]);
var errorFixer=1;
var e=+x;
if (e<500) e+=163879/209018880*Math.pow(e,5);
if (e<1000) e+=-571/2488320*Math.pow(e,4);
if (e<50000) e+=-139/51840*Math.pow(e,3);
if (e<1e7) e+=1/288*Math.pow(e,2);
if (e<1e20) e+=1/12*e;
return x.div(OmegaNum.E).pow(x).mul(x.mul(OmegaNum.PI).mul(2).sqrt()).times(errorFixer);
};
Q.factorial=Q.fact=function (x){
return new OmegaNum(x).fact();
};
P.toPower=P.pow=function (other){
other=new OmegaNum(other);
if (OmegaNum.debug>=OmegaNum.NORMAL) console.log(this+"^"+other);
if (other.eq(OmegaNum.ZERO)) return OmegaNum.ONE.clone();
if (other.eq(OmegaNum.ONE)) return this.clone();
if (other.lt(OmegaNum.ZERO)) return this.pow(other.neg()).rec();
if (this.lt(OmegaNum.ZERO)&&other.isint()){
if (other.mod(2).lt(OmegaNum.ONE)) return this.abs().pow(other);
return this.abs().pow(other).neg();
}
if (this.lt(OmegaNum.ZERO)) return OmegaNum.NaN.clone();
if (this.eq(OmegaNum.ONE)) return OmegaNum.ONE.clone();
if (this.eq(OmegaNum.ZERO)) return OmegaNum.ZERO.clone();
if (this.max(other).gt(OmegaNum.TETRATED_MAX_SAFE_INTEGER)) return this.max(other);
if (this.eq(10)){
if (other.gt(OmegaNum.ZERO)){
other.array[1]=(other.array[1]+1)||1;
other.standardize();
return other;
}else{
return new OmegaNum(Math.pow(10,other.toNumber()));
}
}
if (other.lt(OmegaNum.ONE)) return this.root(other.rec());
var n=Math.pow(this.toNumber(),other.toNumber());
if (n<=MAX_SAFE_INTEGER) return new OmegaNum(n);
return OmegaNum.pow(10,this.log10().mul(other));
};
Q.toPower=Q.pow=function (x,y){
return new OmegaNum(x).pow(y);
};
P.exponential=P.exp=function (){
return OmegaNum.pow(Math.E,this);
};
Q.exponential=Q.exp=function (x){
return OmegaNum.pow(Math.E,x);
};
P.squareRoot=P.sqrt=function (){
return this.root(2);
};
Q.squareRoot=Q.sqrt=function (x){
return new OmegaNum(x).root(2);
};
P.cubeRoot=P.cbrt=function (){
return this.root(3);
};
Q.cubeRoot=Q.cbrt=function (x){
return new OmegaNum(x).root(3);
};
P.root=function (other){
other=new OmegaNum(other);
if (OmegaNum.debug>=OmegaNum.NORMAL) console.log(this+"root"+other);
if (other.eq(OmegaNum.ONE)) return this.clone();
if (other.lt(OmegaNum.ZERO)) return this.root(other.neg()).rec();
if (other.lt(OmegaNum.ONE)) return this.pow(other.rec());
if (this.lt(OmegaNum.ZERO)&&other.isint()&&other.mod(2).eq(OmegaNum.ONE)) return this.neg().root(other).neg();
if (this.lt(OmegaNum.ZERO)) return OmegaNum.NaN.clone();
if (this.eq(OmegaNum.ONE)) return OmegaNum.ONE.clone();
if (this.eq(OmegaNum.ZERO)) return OmegaNum.ZERO.clone();
if (this.max(other).gt(OmegaNum.TETRATED_MAX_SAFE_INTEGER)) return this.gt(other)?this.clone():OmegaNum.ZERO.clone();
return OmegaNum.pow(10,this.log10().div(other));
};
Q.root=function (x,y){
return new OmegaNum(x).root(y);
};
P.generalLogarithm=P.log10=function (){
var x=this.clone();
if (OmegaNum.debug>=OmegaNum.NORMAL) console.log("log"+this);
if (x.lt(OmegaNum.ZERO)) return OmegaNum.NaN.clone();
if (x.eq(OmegaNum.ZERO)) return OmegaNum.NEGATIVE_INFINITY.clone();
if (x.lte(OmegaNum.MAX_SAFE_INTEGER)) return new OmegaNum(Math.log10(x.toNumber()));
if (!x.isFinite()) return x;
if (x.gt(OmegaNum.TETRATED_MAX_SAFE_INTEGER)) return x;
x.array[1]--;
return x.standardize();
};
Q.generalLogarithm=Q.log10=function (x){
return new OmegaNum(x).log10();
};
P.logarithm=P.logBase=function (base){
if (base===undefined) base=Math.E;
return this.log10().div(OmegaNum.log10(base));
};
Q.logarithm=Q.logBase=function (x,base){
return new OmegaNum(x).logBase(base);
};
P.naturalLogarithm=P.log=P.ln=function (){
return this.logBase(Math.E);
};
Q.naturalLogarithm=Q.log=Q.ln=function (x){
return new OmegaNum(x).ln();
};
//All of these are from Patashu's break_eternity.js
var OMEGA=0.56714329040978387299997; //W(1,0)
//from https://math.stackexchange.com/a/465183
//The evaluation can become inaccurate very close to the branch point
var f_lambertw=function (z,tol){
if (tol===undefined) tol=1e-10;
var w;
var wn;
if (!Number.isFinite(z)) return z;
if (z===0) return z;
if (z===1) return OMEGA;
if (z<10) w=0;
else w=Math.log(z)-Math.log(Math.log(z));
for (var i=0;i<100;++i){
wn=(z*Math.exp(-w)+w*w)/(w+1);
if (Math.abs(wn-w)<tol*Math.abs(wn)) return wn;
w=wn;
}
throw Error("Iteration failed to converge: "+z);
//return Number.NaN;
};
//from https://github.com/scipy/scipy/blob/8dba340293fe20e62e173bdf2c10ae208286692f/scipy/special/lambertw.pxd
//The evaluation can become inaccurate very close to the branch point
//at ``-1/e``. In some corner cases, `lambertw` might currently
//fail to converge, or can end up on the wrong branch.
var d_lambertw=function (z,tol){
if (tol===undefined) tol=1e-10;
z=new OmegaNum(z);
var w;
var ew, wewz, wn;
if (!z.isFinite()) return z;
if (z===0) return z;
if (z===1){
//Split out this case because the asymptotic series blows up
return OMEGA;
}
//Get an initial guess for Halley's method
w=OmegaNum.ln(z);
//Halley's method; see 5.9 in [1]
for (var i=0;i<100;++i){
ew=OmegaNum.exp(-w);
wewz=w.sub(z.mul(ew));
wn=w.sub(wewz.div(w.add(OmegaNum.ONE).sub((w.add(2)).mul(wewz).div((OmegaNum.mul(2,w).add(2))))));
if (OmegaNum.abs(wn.sub(w)).lt(OmegaNum.abs(wn).mul(tol))) return wn;
w = wn;
}
throw Error("Iteration failed to converge: "+z);
//return Decimal.dNaN;
};
//The Lambert W function, also called the omega function or product logarithm, is the solution W(x) === x*e^x.
//https://en.wikipedia.org/wiki/Lambert_W_function
//Some special values, for testing: https://en.wikipedia.org/wiki/Lambert_W_function#Special_values
P.lambertw=function (){
var x=this.clone();
if (x.isNaN()) return x;
if (x.lt(-0.3678794411710499)) throw Error("lambertw is unimplemented for results less than -1, sorry!");
if (x.gt(OmegaNum.TETRATED_MAX_SAFE_INTEGER)) return x;
if (x.gt(OmegaNum.EE_MAX_SAFE_INTEGER)){
x.array[1]--;
return x;
}
if (x.gt(OmegaNum.MAX_SAFE_INTEGER)) return d_lambertw(x);
else return new OmegaNum(f_lambertw(x.sign*x.array[0]));
};
Q.lambertw=function (x){
return new OmegaNum(x).lambertw();
};
//end break_eternity.js excerpt
//Uses linear approximations for real height
P.tetrate=P.tetr=function (other,payload){
if (payload===undefined) payload=OmegaNum.ONE;
var t=this.clone();
other=new OmegaNum(other);
payload=new OmegaNum(payload);
if (payload.neq(OmegaNum.ONE)) other=other.add(payload.slog(t));
if (OmegaNum.debug>=OmegaNum.NORMAL) console.log(t+"^^"+other);
var negln;
if (t.isNaN()||other.isNaN()||payload.isNaN()) return OmegaNum.NaN.clone();
if (other.isInfinite()&&other.sign>0){
if (t.gte(Math.exp(1/Math.E))) return OmegaNum.POSITIVE_INFINITY.clone();
//Formula for infinite height power tower.
negln = t.ln().neg();
return negln.lambertw().div(negln);
}
if (other.lte(-2)) return OmegaNum.NaN.clone();
if (t.eq(OmegaNum.ZERO)){
if (other.eq(OmegaNum.ZERO)) return OmegaNum.NaN.clone();
if (other.mod(2).eq(OmegaNum.ZERO)) return OmegaNum.ZERO.clone();
return OmegaNum.ONE.clone();
}
if (t.eq(OmegaNum.ONE)){
if (other.eq(OmegaNum.ONE.neg())) return OmegaNum.NaN.clone();
return OmegaNum.ONE.clone();
}
if (other.eq(OmegaNum.ONE.neg())) return OmegaNum.ZERO.clone();
if (other.eq(OmegaNum.ZERO)) return OmegaNum.ONE.clone();
if (other.eq(OmegaNum.ONE)) return t;
if (other.eq(2)) return t.pow(t);
if (t.eq(2)){
if (other.eq(3)) return new OmegaNum(16);
if (other.eq(4)) return new OmegaNum(65536);
}
var m=t.max(other);
if (m.gt("10^^^"+MAX_SAFE_INTEGER)) return m;
if (m.gt(OmegaNum.TETRATED_MAX_SAFE_INTEGER)||other.gt(OmegaNum.MAX_SAFE_INTEGER)){
if (this.lt(Math.exp(1/Math.E))){
negln = t.ln().neg();
return negln.lambertw().div(negln);
}
var j=t.slog(10).add(other);
j.array[2]=(other.array[2]||0)+1;
j.standardize();
return j;
}
var y=other.toNumber();
var f=Math.floor(y);
var r=t.pow(y-f);
var l=OmegaNum.NaN;
for (var i=0,m=OmegaNum.E_MAX_SAFE_INTEGER;f!==0&&r.lt(m)&&i<100;++i){
if (f>0){
r=t.pow(r);
if (l.eq(r)){
f=0;
break;
}
l=r;
--f;
}else{
r=r.logBase(t);
if (l.eq(r)){
f=0;
break;
}
l=r;
++f;
}
}
if (i==100||this.lt(Math.exp(1/Math.E))) f=0;
r.array[1]=(r.array[1]+f)||f;
r.standardize();
return r;
};
Q.tetrate=Q.tetr=function (x,y,payload){
return new OmegaNum(x).tetr(y,payload);
};
//Implementation of functions from break_eternity.js
P.iteratedexp=function (other,payload){
return this.tetr(other,payload);
};
Q.iteratedexp=function (x,y,payload){
return new OmegaNum(x).iteratedexp(other,payload);
};
//This implementation is highly inaccurate and slow, and probably be given custom code
P.iteratedlog=function (base,other){
if (base===undefined) base=10;
if (other===undefined) other=OmegaNum.ONE.clone();
var t=this.clone();
if (other.eq(ExpantaNum.ZERO)) return t;
if (other.eq(ExpantaNum.ONE)) return t.logBase(base);
base=new OmegaNum(base);
other=new OmegaNum(other);
return base.tetr(t.slog(base).sub(other));
};
Q.iteratedlog=function (x,y,z){
return new OmegaNum(x).iteratedlog(y,z);
};
P.layeradd=function (other,base){
if (base===undefined) base=10;
if (other===undefined) other=OmegaNum.ONE.clone();
var t=this.clone();
base=new OmegaNum(base);
other=new OmegaNum(other);
return base.tetr(t.slog(base).add(other));
};
Q.layeradd=function (x,y,z){
return new OmegaNum(x).layeradd(y,z);
};
P.layeradd10=function (other){
return this.layeradd(other);
};
Q.layeradd10=function (x,y){
return new OmegaNum(x).layeradd10(y);
};
//End implementation from break_eternity.js
//All of these are from Patashu's break_eternity.js
//The super square-root function - what number, tetrated to height 2, equals this?
//Other sroots are possible to calculate probably through guess and check methods, this one is easy though.
//https://en.wikipedia.org/wiki/Tetration#Super-root
P.ssqrt=P.ssrt=function (){
var x=this.clone();
if (x.lt(Math.exp(-1/Math.E))) return OmegaNum.NaN.clone();
if (!x.isFinite()) return x;
if (x.gt(OmegaNum.TETRATED_MAX_SAFE_INTEGER)) return x;
if (x.gt(OmegaNum.EE_MAX_SAFE_INTEGER)){
x.array[1]--;
return x;
}
var l=x.ln();
return l.div(l.lambertw());
};
Q.ssqrt=Q.ssrt=function (x){
return new OmegaNum(x).ssqrt();
};
//Super-logarithm, one of tetration's inverses, tells you what size power tower you'd have to tetrate base to to get number. By definition, will never be higher than 1.8e308 in break_eternity.js, since a power tower 1.8e308 numbers tall is the largest representable number.
//Uses linear approximation
//https://en.wikipedia.org/wiki/Super-logarithm
P.slog=function (base){
if (base===undefined) base=10;
var x=new OmegaNum(this);
base=new OmegaNum(base);
if (x.isNaN()||base.isNaN()||x.isInfinite()&&base.isInfinite()) return OmegaNum.NaN.clone();
if (x.isInfinite()) return x;
if (base.isInfinite()) return OmegaNum.ZERO.clone();
if (x.lt(OmegaNum.ZERO)) return OmegaNum.ONE.neg();
if (x.eq(OmegaNum.ONE)) return OmegaNum.ZERO.clone();
if (x.eq(base)) return OmegaNum.ONE.clone();
if (base.lt(Math.exp(1/Math.E))){
var a=OmegaNum.tetr(base,Infinity);
if (x.eq(a)) return OmegaNum.POSITIVE_INFINITY.clone();
if (x.gt(a)) return OmegaNum.NaN.clone();
}
if (x.max(base).gt("10^^^"+MAX_SAFE_INTEGER)){
if (x.gt(base)) return x;
return OmegaNum.ZERO.clone();
}
if (x.max(base).gt(OmegaNum.TETRATED_MAX_SAFE_INTEGER)){
if (x.gt(base)){
x.array[2]--;
x.standardize();
return x.sub(x.array[1]);
}
return OmegaNum.ZERO.clone();
}
var r=0;
var t=(x.array[1]||0)-(base.array[1]||0);
if (t>3){
var l=t-3;
r+=l;
x.array[1]=x.array[1]-l;
}
for (var i=0;i<100;++i){
if (x.lt(OmegaNum.ZERO)){
x=OmegaNum.pow(base,x);
--r;
}else if (x.lte(1)){
return new OmegaNum(r+x.toNumber()-1);
}else{
++r;
x=OmegaNum.logBase(x,base);
}
}
if (x.gt(10))
return new OmegaNum(r);
};
Q.slog=function (x,y){
return new OmegaNum(x).slog(y);
};
//end break_eternity.js excerpt
P.pentate=P.pent=function (other){
return this.arrow(3)(other);
};
Q.pentate=Q.pent=function (x,y){
return OmegaNum.arrow(x,3,y);
};
//Uses linear approximations for real height
P.arrow=function (arrows){
var t=this.clone();
arrows=new OmegaNum(arrows);
if (!arrows.isint()||arrows.lt(OmegaNum.ZERO)) return function(other){return OmegaNum.NaN.clone();};
if (arrows.eq(OmegaNum.ZERO)) return function(other){return t.mul(other);};
if (arrows.eq(OmegaNum.ONE)) return function(other){return t.pow(other);};
if (arrows.eq(2)) return function(other){return t.tetr(other);};
return function (other){
other=new OmegaNum(other);
if (OmegaNum.debug>=OmegaNum.NORMAL) console.log(t+"{"+arrows+"}"+other);
if (other.lt(OmegaNum.ZERO)) return OmegaNum.NaN.clone();
if (other.eq(OmegaNum.ZERO)) return OmegaNum.ONE.clone();
if (other.eq(OmegaNum.ONE)) return t.clone();
if (arrows.gte(OmegaNum.maxArrow)){
console.warn("Number too large to reasonably handle it: tried to "+arrows.add(2)+"-ate.");
return OmegaNum.POSITIVE_INFINITY.clone();
}
if (other.eq(2)) return t.arrow(arrows-1)(t);
if (t.max(other).gt("10{"+arrows.add(OmegaNum.ONE)+"}"+MAX_SAFE_INTEGER)) return t.max(other);
var r;
if (t.gt("10{"+arrows+"}"+MAX_SAFE_INTEGER)||other.gt(OmegaNum.MAX_SAFE_INTEGER)){
if (t.gt("10{"+arrows+"}"+MAX_SAFE_INTEGER)){
r=t.clone();
r.array[arrows]--;
r.standardize();
}else if (t.gt("10{"+arrows.sub(OmegaNum.ONE)+"}"+MAX_SAFE_INTEGER)){
r=new OmegaNum(t.array[arrows.sub(OmegaNum.ONE)]);
}else{
r=OmegaNum.ZERO;
}
var j=r.add(other);
j.array[arrows]=(other.array[arrows]||0)+1;
j.standardize();
return j;
}
var y=other.toNumber();
var f=Math.floor(y);
r=t.arrow(arrows.sub(1))(y-f);
for (var i=0,m=new OmegaNum("10{"+arrows.sub(OmegaNum.ONE)+"}"+MAX_SAFE_INTEGER);f!==0&&r.lt(m)&&i<100;++i){
if (f>0){
r=t.arrow(arrows.sub(OmegaNum.ONE))(r);
--f;
}
}
if (i==100) f=0;
r.array[arrows.sub(OmegaNum.ONE)]=(r.array[arrows.sub(OmegaNum.ONE)]+f)||f;
r.standardize();
return r;
};
};
P.chain=function (other,arrows){
return this.arrow(arrows)(other);
};
Q.arrow=function (x,z,y){
return new OmegaNum(x).arrow(z)(y);
};
Q.chain=function (x,y,z){
return new OmegaNum(x).arrow(z)(y);
};
Q.hyper=function (z){
z=new OmegaNum(z);
if (z.eq(OmegaNum.ZERO)) return function(x,y){return new OmegaNum(y).eq(OmegaNum.ZERO)?new OmegaNum(x):new OmegaNum(x).add(OmegaNum.ONE);};
if (z.eq(OmegaNum.ONE)) return function(x,y){return OmegaNum.add(x,y);};
return function(x,y){return new OmegaNum(x).arrow(z.sub(2))(y);};
};
// All of these are from Patashu's break_eternity.js
Q.affordGeometricSeries = function (resourcesAvailable, priceStart, priceRatio, currentOwned) {
/*
If you have resourcesAvailable, the price of something starts at
priceStart, and on each purchase it gets multiplied by priceRatio,
and you have already bought currentOwned, how many of the object
can you buy.
*/
resourcesAvailable=new OmegaNum(resourcesAvailable);
priceStart=new OmegaNum(priceStart);
priceRatio=new OmegaNum(priceRatio);
var actualStart = priceStart.mul(priceRatio.pow(currentOwned));
return OmegaNum.floor(resourcesAvailable.div(actualStart).mul(priceRatio.sub(OmegaNum.ONE)).add(OmegaNum.ONE).log10().div(priceRatio.log10()));
};
Q.affordArithmeticSeries = function (resourcesAvailable, priceStart, priceAdd, currentOwned) {
/*
If you have resourcesAvailable, the price of something starts at
priceStart, and on each purchase it gets increased by priceAdd,
and you have already bought currentOwned, how many of the object
can you buy.
*/
resourcesAvailable=new OmegaNum(resourcesAvailable);
priceStart=new OmegaNum(priceStart);
priceAdd=new OmegaNum(priceAdd);
currentOwned=new OmegaNum(currentOwned);
var actualStart = priceStart.add(currentOwned.mul(priceAdd));
var b = actualStart.sub(priceAdd.div(2));
var b2 = b.pow(2);
return b.neg().add(b2.add(priceAdd.mul(resourcesAvailable).mul(2)).sqrt()).div(priceAdd).floor();
};
Q.sumGeometricSeries = function (numItems, priceStart, priceRatio, currentOwned) {
/*
If you want to buy numItems of something, the price of something starts at
priceStart, and on each purchase it gets multiplied by priceRatio,
and you have already bought currentOwned, what will be the price of numItems
of something.
*/
priceStart=new OmegaNum(priceStart);
priceRatio=new OmegaNum(priceRatio);
return priceStart.mul(priceRatio.pow(currentOwned)).mul(OmegaNum.sub(OmegaNum.ONE, priceRatio.pow(numItems))).div(OmegaNum.sub(OmegaNum.ONE, priceRatio));
};
Q.sumArithmeticSeries = function (numItems, priceStart, priceAdd, currentOwned) {
/*
If you want to buy numItems of something, the price of something starts at
priceStart, and on each purchase it gets increased by priceAdd,
and you have already bought currentOwned, what will be the price of numItems
of something.
*/
numItems=new OmegaNum(numItems);
priceStart=new OmegaNum(priceStart);
currentOwned=new OmegaNum(currentOwned);
var actualStart = priceStart.add(currentOwned.mul(priceAdd));
return numItems.div(2).mul(actualStart.mul(2).plus(numItems.sub(OmegaNum.ONE).mul(priceAdd)));
};
// Binomial Coefficients n choose k
Q.choose = function (n, k) {
/*
If you have n items and you take k out,
how many ways could you do this?
*/
return new OmegaNum(n).factorial().div(new OmegaNum(k).factorial().mul(new OmegaNum(n).sub(new OmegaNum(k)).factorial()));
};
P.choose = function (other) {
return OmegaNum.choose(this, other);
};
//end break_eternity.js excerpt
P.standardize=function (){
var b;
var x=this;
if (OmegaNum.debug>=OmegaNum.ALL) console.log(x.toString());
if (!x.array||!x.array.length) x.array=[0];
if (x.sign!=1&&x.sign!=-1){
if (typeof x.sign!="number") x.sign=Number(x.sign);
x.sign=x.sign<0?-1:1;
}
for (var l=x.array.length,i=0;i<l;i++){
var e=x.array[i];