diff --git a/search.json b/search.json
index 292b70c15..57a58f054 100644
--- a/search.json
+++ b/search.json
@@ -683,7 +683,7 @@
"href": "python/examples.html",
"title": "Examples",
"section": "",
- "text": "1 Basic model with static forcing\n\nimport geopandas as gpd\nimport numpy as np\nimport pandas as pd\nimport matplotlib.pyplot as plt\nfrom pathlib import Path\n\nimport ribasim\n\nSetup the basins:\n\nprofile = pd.DataFrame(\n data={\n \"node_id\": [1, 1, 3, 3, 6, 6, 9, 9],\n \"area\": [0.01, 1000.0] * 4,\n \"level\": [0.0, 1.0] * 4,\n }\n)\n\n# Convert steady forcing to m/s\n# 2 mm/d precipitation, 1 mm/d evaporation\nseconds_in_day = 24 * 3600\nprecipitation = 0.002 / seconds_in_day\nevaporation = 0.001 / seconds_in_day\n\nstatic = pd.DataFrame(\n data={\n \"node_id\": [0],\n \"drainage\": [0.0],\n \"potential_evaporation\": [evaporation],\n \"infiltration\": [0.0],\n \"precipitation\": [precipitation],\n \"urban_runoff\": [0.0],\n }\n)\nstatic = static.iloc[[0, 0, 0, 0]]\nstatic[\"node_id\"] = [1, 3, 6, 9]\n\nbasin = ribasim.Basin(profile=profile, static=static)\n\nSetup linear resistance:\n\nlinear_resistance = ribasim.LinearResistance(\n static=pd.DataFrame(\n data={\"node_id\": [10, 12], \"resistance\": [5e3, (3600.0 * 24) / 100.0]}\n )\n)\n\nSetup Manning resistance:\n\nmanning_resistance = ribasim.ManningResistance(\n static=pd.DataFrame(\n data={\n \"node_id\": [2],\n \"length\": [900.0],\n \"manning_n\": [0.04],\n \"profile_width\": [6.0],\n \"profile_slope\": [3.0],\n }\n )\n)\n\nSet up a rating curve node:\n\n# Discharge: lose 1% of storage volume per day at storage = 1000.0.\nq1000 = 1000.0 * 0.01 / seconds_in_day\n\nrating_curve = ribasim.TabulatedRatingCurve(\n static=pd.DataFrame(\n data={\n \"node_id\": [4, 4],\n \"level\": [0.0, 1.0],\n \"discharge\": [0.0, q1000],\n }\n )\n)\n\nSetup fractional flows:\n\nfractional_flow = ribasim.FractionalFlow(\n static=pd.DataFrame(\n data={\n \"node_id\": [5, 8, 13],\n \"fraction\": [0.3, 0.6, 0.1],\n }\n )\n)\n\nSetup pump:\n\npump = ribasim.Pump(\n static=pd.DataFrame(\n data={\n \"node_id\": [7],\n \"flow_rate\": [0.5 / 3600],\n }\n )\n)\n\nSetup level boundary:\n\nlevel_boundary = ribasim.LevelBoundary(\n static=pd.DataFrame(\n data={\n \"node_id\": [11, 17],\n \"level\": [0.5, 1.5],\n }\n )\n)\n\nSetup flow boundary:\n\nflow_boundary = ribasim.FlowBoundary(\n static=pd.DataFrame(\n data={\n \"node_id\": [15, 16],\n \"flow_rate\": [1e-4, 1e-4],\n }\n )\n)\n\nSetup terminal:\n\nterminal = ribasim.Terminal(\n static=pd.DataFrame(\n data={\n \"node_id\": [14],\n }\n )\n)\n\nSet up the nodes:\n\nxy = np.array(\n [\n (0.0, 0.0), # 1: Basin,\n (1.0, 0.0), # 2: ManningResistance\n (2.0, 0.0), # 3: Basin\n (3.0, 0.0), # 4: TabulatedRatingCurve\n (3.0, 1.0), # 5: FractionalFlow\n (3.0, 2.0), # 6: Basin\n (4.0, 1.0), # 7: Pump\n (4.0, 0.0), # 8: FractionalFlow\n (5.0, 0.0), # 9: Basin\n (6.0, 0.0), # 10: LinearResistance\n (2.0, 2.0), # 11: LevelBoundary\n (2.0, 1.0), # 12: LinearResistance\n (3.0, -1.0), # 13: FractionalFlow\n (3.0, -2.0), # 14: Terminal\n (3.0, 3.0), # 15: FlowBoundary\n (0.0, 1.0), # 16: FlowBoundary\n (6.0, 1.0), # 17: LevelBoundary\n ]\n)\nnode_xy = gpd.points_from_xy(x=xy[:, 0], y=xy[:, 1])\n\nnode_id, node_type = ribasim.Node.get_node_ids_and_types(\n basin,\n manning_resistance,\n rating_curve,\n pump,\n fractional_flow,\n linear_resistance,\n level_boundary,\n flow_boundary,\n terminal,\n)\n\n# Make sure the feature id starts at 1: explicitly give an index.\nnode = ribasim.Node(\n static=gpd.GeoDataFrame(\n data={\"type\": node_type},\n index=pd.Index(node_id, name=\"fid\"),\n geometry=node_xy,\n crs=\"EPSG:28992\",\n )\n)\n\nSetup the edges:\n\nfrom_id = np.array(\n [1, 2, 3, 4, 4, 5, 6, 8, 7, 9, 11, 12, 4, 13, 15, 16, 10], dtype=np.int64\n)\nto_id = np.array(\n [2, 3, 4, 5, 8, 6, 7, 9, 9, 10, 12, 3, 13, 14, 6, 1, 17], dtype=np.int64\n)\nlines = ribasim.utils.geometry_from_connectivity(node, from_id, to_id)\nedge = ribasim.Edge(\n static=gpd.GeoDataFrame(\n data={\n \"from_node_id\": from_id,\n \"to_node_id\": to_id,\n \"edge_type\": len(from_id) * [\"flow\"],\n },\n geometry=lines,\n crs=\"EPSG:28992\",\n )\n)\n\nSetup a model:\n\nmodel = ribasim.Model(\n modelname=\"basic\",\n node=node,\n edge=edge,\n basin=basin,\n level_boundary=level_boundary,\n flow_boundary=flow_boundary,\n pump=pump,\n linear_resistance=linear_resistance,\n manning_resistance=manning_resistance,\n tabulated_rating_curve=rating_curve,\n fractional_flow=fractional_flow,\n terminal=terminal,\n starttime=\"2020-01-01 00:00:00\",\n endtime=\"2021-01-01 00:00:00\",\n)\n\nLet’s take a look at the model:\n\nmodel.plot()\n\n<Axes: >\n\n\n\n\n\nWrite the model to a TOML and GeoPackage:\n\ndatadir = Path(\"data\")\nmodel.write(datadir / \"basic\")\n\n\n\n2 Update the basic model with transient forcing\nThis assumes you have already created the basic model with static forcing.\n\nimport numpy as np\nimport pandas as pd\nimport xarray as xr\n\nimport ribasim\n\n\nmodel = ribasim.Model.from_toml(datadir / \"basic/basic.toml\")\n\n\ntime = pd.date_range(model.starttime, model.endtime)\nday_of_year = time.day_of_year.to_numpy()\nseconds_per_day = 24 * 60 * 60\nevaporation = (\n (-1.0 * np.cos(day_of_year / 365.0 * 2 * np.pi) + 1.0) * 0.0025 / seconds_per_day\n)\nrng = np.random.default_rng(seed=0)\nprecipitation = (\n rng.lognormal(mean=-1.0, sigma=1.7, size=time.size) * 0.001 / seconds_per_day\n)\n\nWe’ll use xarray to easily broadcast the values.\n\ntimeseries = (\n pd.DataFrame(\n data={\n \"node_id\": 1,\n \"time\": time,\n \"drainage\": 0.0,\n \"potential_evaporation\": evaporation,\n \"infiltration\": 0.0,\n \"precipitation\": precipitation,\n \"urban_runoff\": 0.0,\n }\n )\n .set_index(\"time\")\n .to_xarray()\n)\n\nbasin_ids = model.basin.static[\"node_id\"].to_numpy()\nbasin_nodes = xr.DataArray(\n np.ones(len(basin_ids)), coords={\"node_id\": basin_ids}, dims=[\"node_id\"]\n)\nforcing = (timeseries * basin_nodes).to_dataframe().reset_index()\n\n\nstate = pd.DataFrame(\n data={\n \"node_id\": basin_ids,\n \"level\": 1.4,\n \"concentration\": 0.0,\n }\n)\n\n\nmodel.basin.forcing = forcing\nmodel.basin.state = state\n\n\nmodel.modelname = \"basic_transient\"\nmodel.write(datadir / \"basic_transient\")\n\nNow run the model with ribasim basic-transient/basic.toml. After running the model, read back the output:\n\ndf_basin = pd.read_feather(datadir / \"basic_transient/output/basin.arrow\")\ndf_basin_wide = df_basin.pivot_table(\n index=\"time\", columns=\"node_id\", values=[\"storage\", \"level\"]\n)\ndf_basin_wide[\"level\"].plot()\n\n<Axes: xlabel='time'>\n\n\n\n\n\n\ndf_flow = pd.read_feather(datadir / \"basic_transient/output/flow.arrow\")\ndf_flow[\"edge\"] = list(zip(df_flow.from_node_id, df_flow.to_node_id))\ndf_flow[\"flow_m3d\"] = df_flow.flow * 86400\nax = df_flow.pivot_table(index=\"time\", columns=\"edge\", values=\"flow_m3d\").plot()\nax.legend(bbox_to_anchor=(1.3, 1), title=\"Edge\")\n\n<matplotlib.legend.Legend at 0x7f9a09bcc890>\n\n\n\n\n\n\ntype(df_flow)\n\npandas.core.frame.DataFrame\n\n\n\n\n3 Model with discrete control\nThe model constructed below consists of a single basin which slowly drains trough a TabulatedRatingCurve, but is held within a range around a target level (setpoint) by two connected pumps. These two pumps behave like a reversible pump. When pumping can be done in only one direction, and the other direction is only possible under gravity, use an Outlet for that direction.\nSet up the nodes:\n\nxy = np.array(\n [\n (0.0, 0.0), # 1: Basin\n (1.0, 0.5), # 2: Pump\n (1.0, -0.5), # 3: Pump\n (2.0, 0.0), # 4: LevelBoundary\n (-1.0, 0.0), # 5: TabulatedRatingCurve\n (-2.0, 0.0), # 6: Terminal\n (1.0, 0.0), # 7: DiscreteControl\n ]\n)\n\nnode_xy = gpd.points_from_xy(x=xy[:, 0], y=xy[:, 1])\n\nnode_type = [\n \"Basin\",\n \"Pump\",\n \"Pump\",\n \"LevelBoundary\",\n \"TabulatedRatingCurve\",\n \"Terminal\",\n \"DiscreteControl\",\n]\n\n# Make sure the feature id starts at 1: explicitly give an index.\nnode = ribasim.Node(\n static=gpd.GeoDataFrame(\n data={\"type\": node_type},\n index=pd.Index(np.arange(len(xy)) + 1, name=\"fid\"),\n geometry=node_xy,\n crs=\"EPSG:28992\",\n )\n)\n\nSetup the edges:\n\nfrom_id = np.array([1, 3, 4, 2, 1, 5, 7, 7], dtype=np.int64)\nto_id = np.array([3, 4, 2, 1, 5, 6, 2, 3], dtype=np.int64)\n\nedge_type = 6 * [\"flow\"] + 2 * [\"control\"]\n\nlines = ribasim.utils.geometry_from_connectivity(node, from_id, to_id)\nedge = ribasim.Edge(\n static=gpd.GeoDataFrame(\n data={\"from_node_id\": from_id, \"to_node_id\": to_id, \"edge_type\": edge_type},\n geometry=lines,\n crs=\"EPSG:28992\",\n )\n)\n\nSetup the basins:\n\nprofile = pd.DataFrame(\n data={\n \"node_id\": [1, 1],\n \"area\": [1000.0, 1000.0],\n \"level\": [0.0, 1.0],\n }\n)\n\nstatic = pd.DataFrame(\n data={\n \"node_id\": [1],\n \"drainage\": [0.0],\n \"potential_evaporation\": [0.0],\n \"infiltration\": [0.0],\n \"precipitation\": [0.0],\n \"urban_runoff\": [0.0],\n }\n)\n\nstate = pd.DataFrame(data={\"node_id\": [1], \"level\": [20.0]})\n\nbasin = ribasim.Basin(profile=profile, static=static, state=state)\n\nSetup the discrete control:\n\ncondition = pd.DataFrame(\n data={\n \"node_id\": 3 * [7],\n \"listen_feature_id\": 3 * [1],\n \"variable\": 3 * [\"level\"],\n \"greater_than\": [5.0, 10.0, 15.0], # min, setpoint, max\n }\n)\n\nlogic = pd.DataFrame(\n data={\n \"node_id\": 5 * [7],\n \"truth_state\": [\"FFF\", \"U**\", \"T*F\", \"**D\", \"TTT\"],\n \"control_state\": [\"in\", \"in\", \"none\", \"out\", \"out\"],\n }\n)\n\ndiscrete_control = ribasim.DiscreteControl(condition=condition, logic=logic)\n\nThe above control logic can be summarized as follows: - If the level gets above the maximum, activate the control state “out” until the setpoint is reached; - If the level gets below the minimum, active the control state “in” until the setpoint is reached; - Otherwise activate the control state “none”.\nSetup the pump:\n\npump = ribasim.Pump(\n static=pd.DataFrame(\n data={\n \"node_id\": 3 * [2] + 3 * [3],\n \"control_state\": 2 * [\"none\", \"in\", \"out\"],\n \"flow_rate\": [0.0, 2e-3, 0.0, 0.0, 0.0, 2e-3],\n }\n )\n)\n\nThe pump data defines the following:\n\n\n\nControl state\nPump #2 flow rate (m/s)\nPump #3 flow rate (m/s)\n\n\n\n\n“none”\n0.0\n0.0\n\n\n“in”\n2e-3\n0.0\n\n\n“out”\n0.0\n2e-3\n\n\n\nSetup the level boundary:\n\nlevel_boundary = ribasim.LevelBoundary(\n static=pd.DataFrame(data={\"node_id\": [4], \"level\": [10.0]})\n)\n\nSetup the rating curve:\n\nrating_curve = ribasim.TabulatedRatingCurve(\n static=pd.DataFrame(\n data={\"node_id\": 2 * [5], \"level\": [2.0, 15.0], \"discharge\": [0.0, 1e-3]}\n )\n)\n\nSetup the terminal:\n\nterminal = ribasim.Terminal(static=pd.DataFrame(data={\"node_id\": [6]}))\n\nSetup a model:\n\nmodel = ribasim.Model(\n modelname=\"level_setpoint_with_minmax\",\n node=node,\n edge=edge,\n basin=basin,\n pump=pump,\n level_boundary=level_boundary,\n tabulated_rating_curve=rating_curve,\n terminal=terminal,\n discrete_control=discrete_control,\n starttime=\"2020-01-01 00:00:00\",\n endtime=\"2021-01-01 00:00:00\",\n)\n\nLet’s take a look at the model:\n\nmodel.plot()\n\n<Axes: >\n\n\n\n\n\nListen edges are plotted with a dashed line since they are not present in the “Edge / static” schema but only in the “Control / condition” schema.\n\ndatadir = Path(\"data\")\nmodel.write(datadir / \"level_setpoint_with_minmax\")\n\nNow run the model with level_setpoint_with_minmax/level_setpoint_with_minmax.toml. After running the model, read back the output:\n\nfrom matplotlib.dates import date2num\n\ndf_basin = pd.read_feather(datadir / \"level_setpoint_with_minmax/output/basin.arrow\")\ndf_basin_wide = df_basin.pivot_table(\n index=\"time\", columns=\"node_id\", values=[\"storage\", \"level\"]\n)\n\nax = df_basin_wide[\"level\"].plot()\n\ngreater_than = model.discrete_control.condition.greater_than\n\nax.hlines(\n greater_than,\n df_basin.time[0],\n df_basin.time.max(),\n lw=1,\n ls=\"--\",\n color=\"k\",\n)\n\ndf_control = pd.read_feather(\n datadir / \"level_setpoint_with_minmax/output/control.arrow\"\n)\n\ny_min, y_max = ax.get_ybound()\nax.fill_between(df_control.time[:2], 2 * [y_min], 2 * [y_max], alpha=0.2, color=\"C0\")\nax.fill_between(df_control.time[2:4], 2 * [y_min], 2 * [y_max], alpha=0.2, color=\"C0\")\n\nax.set_xticks(\n date2num(df_control.time).tolist(),\n df_control.control_state.tolist(),\n rotation=50,\n)\n\nax.set_yticks(greater_than, [\"min\", \"setpoint\", \"max\"])\nax.set_ylabel(\"level\")\nplt.show()\n\n\n\n\nThe highlighted regions show where a pump is active.\nLet’s print an overview of what happened with control:\n\nmodel.print_discrete_control_record(\n datadir / \"level_setpoint_with_minmax/output/control.arrow\"\n)\n\n0. At 2020-01-01 00:00:00 the control node with ID 7 reached truth state TTT:\n For node ID 1 (Basin): level > 5.0\n For node ID 1 (Basin): level > 10.0\n For node ID 1 (Basin): level > 15.0\n\n This yielded control state \"out\":\n For node ID 2 (Pump): flow_rate = 0.0\n For node ID 3 (Pump): flow_rate = 0.002\n\n1. At 2020-02-09 01:17:29.324000 the control node with ID 7 reached truth state TFF:\n For node ID 1 (Basin): level > 5.0\n For node ID 1 (Basin): level < 10.0\n For node ID 1 (Basin): level < 15.0\n\n This yielded control state \"none\":\n For node ID 2 (Pump): flow_rate = 0.0\n For node ID 3 (Pump): flow_rate = 0.0\n\n2. At 2020-07-05 13:24:51.165000 the control node with ID 7 reached truth state FFF:\n For node ID 1 (Basin): level < 5.0\n For node ID 1 (Basin): level < 10.0\n For node ID 1 (Basin): level < 15.0\n\n This yielded control state \"in\":\n For node ID 2 (Pump): flow_rate = 0.002\n For node ID 3 (Pump): flow_rate = 0.0\n\n3. At 2020-08-11 11:49:59.015000 the control node with ID 7 reached truth state TTF:\n For node ID 1 (Basin): level > 5.0\n For node ID 1 (Basin): level > 10.0\n For node ID 1 (Basin): level < 15.0\n\n This yielded control state \"none\":\n For node ID 2 (Pump): flow_rate = 0.0\n For node ID 3 (Pump): flow_rate = 0.0\n\n\n\nNote that crossing direction specific truth states (containing “U”, “D”) are not present in this overview even though they are part of the control logic. This is because in the control logic for this model these truth states are only used to sustain control states, while the overview only shows changes in control states.\n\n\n4 Model with PID control\nSet up the nodes:\n\nxy = np.array(\n [\n (0.0, 0.0), # 1: FlowBoundary\n (1.0, 0.0), # 2: Basin\n (2.0, 0.5), # 3: Pump\n (3.0, 0.0), # 4: LevelBoundary\n (1.5, 1.0), # 5: PidControl\n (2.0, -0.5), # 6: outlet\n (1.5, -1.0), # 7: PidControl\n ]\n)\n\nnode_xy = gpd.points_from_xy(x=xy[:, 0], y=xy[:, 1])\n\nnode_type = [\n \"FlowBoundary\",\n \"Basin\",\n \"Pump\",\n \"LevelBoundary\",\n \"PidControl\",\n \"Outlet\",\n \"PidControl\",\n]\n\n# Make sure the feature id starts at 1: explicitly give an index.\nnode = ribasim.Node(\n static=gpd.GeoDataFrame(\n data={\"type\": node_type},\n index=pd.Index(np.arange(len(xy)) + 1, name=\"fid\"),\n geometry=node_xy,\n crs=\"EPSG:28992\",\n )\n)\n\nSetup the edges:\n\nfrom_id = np.array([1, 2, 3, 4, 6, 5, 7], dtype=np.int64)\nto_id = np.array([2, 3, 4, 6, 2, 3, 6], dtype=np.int64)\n\nlines = ribasim.utils.geometry_from_connectivity(node, from_id, to_id)\nedge = ribasim.Edge(\n static=gpd.GeoDataFrame(\n data={\n \"from_node_id\": from_id,\n \"to_node_id\": to_id,\n \"edge_type\": 5 * [\"flow\"] + 2 * [\"control\"],\n },\n geometry=lines,\n crs=\"EPSG:28992\",\n )\n)\n\nSetup the basins:\n\nprofile = pd.DataFrame(\n data={\"node_id\": [2, 2], \"level\": [0.0, 1.0], \"area\": [1000.0, 1000.0]}\n)\n\nstatic = pd.DataFrame(\n data={\n \"node_id\": [2],\n \"drainage\": [0.0],\n \"potential_evaporation\": [0.0],\n \"infiltration\": [0.0],\n \"precipitation\": [0.0],\n \"urban_runoff\": [0.0],\n }\n)\n\nstate = pd.DataFrame(\n data={\n \"node_id\": [2],\n \"level\": [6.0],\n }\n)\n\nbasin = ribasim.Basin(profile=profile, static=static, state=state)\n\nSetup the pump:\n\npump = ribasim.Pump(\n static=pd.DataFrame(\n data={\n \"node_id\": [3],\n \"flow_rate\": [0.0], # Will be overwritten by PID controller\n }\n )\n)\n\nSetup the outlet:\n\noutlet = ribasim.Outlet(\n static=pd.DataFrame(\n data={\n \"node_id\": [6],\n \"flow_rate\": [0.0], # Will be overwritten by PID controller\n }\n )\n)\n\nSetup flow boundary:\n\nflow_boundary = ribasim.FlowBoundary(\n static=pd.DataFrame(data={\"node_id\": [1], \"flow_rate\": [1e-3]})\n)\n\nSetup flow boundary:\n\nlevel_boundary = ribasim.LevelBoundary(\n static=pd.DataFrame(\n data={\n \"node_id\": [4],\n \"level\": [1.0], # Not relevant\n }\n )\n)\n\nSetup PID control:\n\npid_control = ribasim.PidControl(\n time=pd.DataFrame(\n data={\n \"node_id\": 4 * [5, 7],\n \"time\": [\n \"2020-01-01 00:00:00\",\n \"2020-01-01 00:00:00\",\n \"2020-05-01 00:00:00\",\n \"2020-05-01 00:00:00\",\n \"2020-07-01 00:00:00\",\n \"2020-07-01 00:00:00\",\n \"2020-12-01 00:00:00\",\n \"2020-12-01 00:00:00\",\n ],\n \"listen_node_id\": 4 * [2, 2],\n \"target\": [5.0, 5.0, 5.0, 5.0, 7.5, 7.5, 7.5, 7.5],\n \"proportional\": 4 * [-1e-3, 1e-3],\n \"integral\": 4 * [-1e-7, 1e-7],\n \"derivative\": 4 * [0.0, 0.0],\n }\n )\n)\n\nNote that the coefficients for the pump and the outlet are equal in magnitude but opposite in sign. This way the pump and the outlet equally work towards the same goal, while having opposite effects on the controlled basin due to their connectivity to this basin.\nSetup a model:\n\nmodel = ribasim.Model(\n modelname=\"pid_control\",\n node=node,\n edge=edge,\n basin=basin,\n flow_boundary=flow_boundary,\n level_boundary=level_boundary,\n pump=pump,\n outlet=outlet,\n pid_control=pid_control,\n starttime=\"2020-01-01 00:00:00\",\n endtime=\"2020-12-01 00:00:00\",\n)\n\nLet’s take a look at the model:\n\nmodel.plot()\n\n<Axes: >\n\n\n\n\n\nWrite the model to a TOML and GeoPackage:\n\ndatadir = Path(\"data\")\nmodel.write(datadir / \"pid_control\")\n\nNow run the model with ribasim pid_control/pid_control.toml. After running the model, read back the output:\n\nfrom matplotlib.dates import date2num\n\ndf_basin = pd.read_feather(datadir / \"pid_control/output/basin.arrow\")\ndf_basin_wide = df_basin.pivot_table(\n index=\"time\", columns=\"node_id\", values=[\"storage\", \"level\"]\n)\nax = df_basin_wide[\"level\"].plot()\nax.set_ylabel(\"level [m]\")\n\n# Plot target level\ntarget_levels = model.pid_control.time.target.to_numpy()[::2]\ntimes = date2num(model.pid_control.time.time)[::2]\nax.plot(times, target_levels, color=\"k\", ls=\":\", label=\"target level\");"
+ "text": "1 Basic model with static forcing\n\nimport geopandas as gpd\nimport numpy as np\nimport pandas as pd\nimport matplotlib.pyplot as plt\nfrom pathlib import Path\n\nimport ribasim\n\nSetup the basins:\n\nprofile = pd.DataFrame(\n data={\n \"node_id\": [1, 1, 3, 3, 6, 6, 9, 9],\n \"area\": [0.01, 1000.0] * 4,\n \"level\": [0.0, 1.0] * 4,\n }\n)\n\n# Convert steady forcing to m/s\n# 2 mm/d precipitation, 1 mm/d evaporation\nseconds_in_day = 24 * 3600\nprecipitation = 0.002 / seconds_in_day\nevaporation = 0.001 / seconds_in_day\n\nstatic = pd.DataFrame(\n data={\n \"node_id\": [0],\n \"drainage\": [0.0],\n \"potential_evaporation\": [evaporation],\n \"infiltration\": [0.0],\n \"precipitation\": [precipitation],\n \"urban_runoff\": [0.0],\n }\n)\nstatic = static.iloc[[0, 0, 0, 0]]\nstatic[\"node_id\"] = [1, 3, 6, 9]\n\nbasin = ribasim.Basin(profile=profile, static=static)\n\nSetup linear resistance:\n\nlinear_resistance = ribasim.LinearResistance(\n static=pd.DataFrame(\n data={\"node_id\": [10, 12], \"resistance\": [5e3, (3600.0 * 24) / 100.0]}\n )\n)\n\nSetup Manning resistance:\n\nmanning_resistance = ribasim.ManningResistance(\n static=pd.DataFrame(\n data={\n \"node_id\": [2],\n \"length\": [900.0],\n \"manning_n\": [0.04],\n \"profile_width\": [6.0],\n \"profile_slope\": [3.0],\n }\n )\n)\n\nSet up a rating curve node:\n\n# Discharge: lose 1% of storage volume per day at storage = 1000.0.\nq1000 = 1000.0 * 0.01 / seconds_in_day\n\nrating_curve = ribasim.TabulatedRatingCurve(\n static=pd.DataFrame(\n data={\n \"node_id\": [4, 4],\n \"level\": [0.0, 1.0],\n \"discharge\": [0.0, q1000],\n }\n )\n)\n\nSetup fractional flows:\n\nfractional_flow = ribasim.FractionalFlow(\n static=pd.DataFrame(\n data={\n \"node_id\": [5, 8, 13],\n \"fraction\": [0.3, 0.6, 0.1],\n }\n )\n)\n\nSetup pump:\n\npump = ribasim.Pump(\n static=pd.DataFrame(\n data={\n \"node_id\": [7],\n \"flow_rate\": [0.5 / 3600],\n }\n )\n)\n\nSetup level boundary:\n\nlevel_boundary = ribasim.LevelBoundary(\n static=pd.DataFrame(\n data={\n \"node_id\": [11, 17],\n \"level\": [0.5, 1.5],\n }\n )\n)\n\nSetup flow boundary:\n\nflow_boundary = ribasim.FlowBoundary(\n static=pd.DataFrame(\n data={\n \"node_id\": [15, 16],\n \"flow_rate\": [1e-4, 1e-4],\n }\n )\n)\n\nSetup terminal:\n\nterminal = ribasim.Terminal(\n static=pd.DataFrame(\n data={\n \"node_id\": [14],\n }\n )\n)\n\nSet up the nodes:\n\nxy = np.array(\n [\n (0.0, 0.0), # 1: Basin,\n (1.0, 0.0), # 2: ManningResistance\n (2.0, 0.0), # 3: Basin\n (3.0, 0.0), # 4: TabulatedRatingCurve\n (3.0, 1.0), # 5: FractionalFlow\n (3.0, 2.0), # 6: Basin\n (4.0, 1.0), # 7: Pump\n (4.0, 0.0), # 8: FractionalFlow\n (5.0, 0.0), # 9: Basin\n (6.0, 0.0), # 10: LinearResistance\n (2.0, 2.0), # 11: LevelBoundary\n (2.0, 1.0), # 12: LinearResistance\n (3.0, -1.0), # 13: FractionalFlow\n (3.0, -2.0), # 14: Terminal\n (3.0, 3.0), # 15: FlowBoundary\n (0.0, 1.0), # 16: FlowBoundary\n (6.0, 1.0), # 17: LevelBoundary\n ]\n)\nnode_xy = gpd.points_from_xy(x=xy[:, 0], y=xy[:, 1])\n\nnode_id, node_type = ribasim.Node.get_node_ids_and_types(\n basin,\n manning_resistance,\n rating_curve,\n pump,\n fractional_flow,\n linear_resistance,\n level_boundary,\n flow_boundary,\n terminal,\n)\n\n# Make sure the feature id starts at 1: explicitly give an index.\nnode = ribasim.Node(\n static=gpd.GeoDataFrame(\n data={\"type\": node_type},\n index=pd.Index(node_id, name=\"fid\"),\n geometry=node_xy,\n crs=\"EPSG:28992\",\n )\n)\n\nSetup the edges:\n\nfrom_id = np.array(\n [1, 2, 3, 4, 4, 5, 6, 8, 7, 9, 11, 12, 4, 13, 15, 16, 10], dtype=np.int64\n)\nto_id = np.array(\n [2, 3, 4, 5, 8, 6, 7, 9, 9, 10, 12, 3, 13, 14, 6, 1, 17], dtype=np.int64\n)\nlines = ribasim.utils.geometry_from_connectivity(node, from_id, to_id)\nedge = ribasim.Edge(\n static=gpd.GeoDataFrame(\n data={\n \"from_node_id\": from_id,\n \"to_node_id\": to_id,\n \"edge_type\": len(from_id) * [\"flow\"],\n },\n geometry=lines,\n crs=\"EPSG:28992\",\n )\n)\n\nSetup a model:\n\nmodel = ribasim.Model(\n modelname=\"basic\",\n node=node,\n edge=edge,\n basin=basin,\n level_boundary=level_boundary,\n flow_boundary=flow_boundary,\n pump=pump,\n linear_resistance=linear_resistance,\n manning_resistance=manning_resistance,\n tabulated_rating_curve=rating_curve,\n fractional_flow=fractional_flow,\n terminal=terminal,\n starttime=\"2020-01-01 00:00:00\",\n endtime=\"2021-01-01 00:00:00\",\n)\n\nLet’s take a look at the model:\n\nmodel.plot()\n\n<Axes: >\n\n\n\n\n\nWrite the model to a TOML and GeoPackage:\n\ndatadir = Path(\"data\")\nmodel.write(datadir / \"basic\")\n\n\n\n2 Update the basic model with transient forcing\nThis assumes you have already created the basic model with static forcing.\n\nimport numpy as np\nimport pandas as pd\nimport xarray as xr\n\nimport ribasim\n\n\nmodel = ribasim.Model.from_toml(datadir / \"basic/basic.toml\")\n\n\ntime = pd.date_range(model.starttime, model.endtime)\nday_of_year = time.day_of_year.to_numpy()\nseconds_per_day = 24 * 60 * 60\nevaporation = (\n (-1.0 * np.cos(day_of_year / 365.0 * 2 * np.pi) + 1.0) * 0.0025 / seconds_per_day\n)\nrng = np.random.default_rng(seed=0)\nprecipitation = (\n rng.lognormal(mean=-1.0, sigma=1.7, size=time.size) * 0.001 / seconds_per_day\n)\n\nWe’ll use xarray to easily broadcast the values.\n\ntimeseries = (\n pd.DataFrame(\n data={\n \"node_id\": 1,\n \"time\": time,\n \"drainage\": 0.0,\n \"potential_evaporation\": evaporation,\n \"infiltration\": 0.0,\n \"precipitation\": precipitation,\n \"urban_runoff\": 0.0,\n }\n )\n .set_index(\"time\")\n .to_xarray()\n)\n\nbasin_ids = model.basin.static[\"node_id\"].to_numpy()\nbasin_nodes = xr.DataArray(\n np.ones(len(basin_ids)), coords={\"node_id\": basin_ids}, dims=[\"node_id\"]\n)\nforcing = (timeseries * basin_nodes).to_dataframe().reset_index()\n\n\nstate = pd.DataFrame(\n data={\n \"node_id\": basin_ids,\n \"level\": 1.4,\n \"concentration\": 0.0,\n }\n)\n\n\nmodel.basin.forcing = forcing\nmodel.basin.state = state\n\n\nmodel.modelname = \"basic_transient\"\nmodel.write(datadir / \"basic_transient\")\n\nNow run the model with ribasim basic-transient/basic.toml. After running the model, read back the output:\n\ndf_basin = pd.read_feather(datadir / \"basic_transient/output/basin.arrow\")\ndf_basin_wide = df_basin.pivot_table(\n index=\"time\", columns=\"node_id\", values=[\"storage\", \"level\"]\n)\ndf_basin_wide[\"level\"].plot()\n\n<Axes: xlabel='time'>\n\n\n\n\n\n\ndf_flow = pd.read_feather(datadir / \"basic_transient/output/flow.arrow\")\ndf_flow[\"edge\"] = list(zip(df_flow.from_node_id, df_flow.to_node_id))\ndf_flow[\"flow_m3d\"] = df_flow.flow * 86400\nax = df_flow.pivot_table(index=\"time\", columns=\"edge\", values=\"flow_m3d\").plot()\nax.legend(bbox_to_anchor=(1.3, 1), title=\"Edge\")\n\n<matplotlib.legend.Legend at 0x7f75574d6350>\n\n\n\n\n\n\ntype(df_flow)\n\npandas.core.frame.DataFrame\n\n\n\n\n3 Model with discrete control\nThe model constructed below consists of a single basin which slowly drains trough a TabulatedRatingCurve, but is held within a range around a target level (setpoint) by two connected pumps. These two pumps behave like a reversible pump. When pumping can be done in only one direction, and the other direction is only possible under gravity, use an Outlet for that direction.\nSet up the nodes:\n\nxy = np.array(\n [\n (0.0, 0.0), # 1: Basin\n (1.0, 0.5), # 2: Pump\n (1.0, -0.5), # 3: Pump\n (2.0, 0.0), # 4: LevelBoundary\n (-1.0, 0.0), # 5: TabulatedRatingCurve\n (-2.0, 0.0), # 6: Terminal\n (1.0, 0.0), # 7: DiscreteControl\n ]\n)\n\nnode_xy = gpd.points_from_xy(x=xy[:, 0], y=xy[:, 1])\n\nnode_type = [\n \"Basin\",\n \"Pump\",\n \"Pump\",\n \"LevelBoundary\",\n \"TabulatedRatingCurve\",\n \"Terminal\",\n \"DiscreteControl\",\n]\n\n# Make sure the feature id starts at 1: explicitly give an index.\nnode = ribasim.Node(\n static=gpd.GeoDataFrame(\n data={\"type\": node_type},\n index=pd.Index(np.arange(len(xy)) + 1, name=\"fid\"),\n geometry=node_xy,\n crs=\"EPSG:28992\",\n )\n)\n\nSetup the edges:\n\nfrom_id = np.array([1, 3, 4, 2, 1, 5, 7, 7], dtype=np.int64)\nto_id = np.array([3, 4, 2, 1, 5, 6, 2, 3], dtype=np.int64)\n\nedge_type = 6 * [\"flow\"] + 2 * [\"control\"]\n\nlines = ribasim.utils.geometry_from_connectivity(node, from_id, to_id)\nedge = ribasim.Edge(\n static=gpd.GeoDataFrame(\n data={\"from_node_id\": from_id, \"to_node_id\": to_id, \"edge_type\": edge_type},\n geometry=lines,\n crs=\"EPSG:28992\",\n )\n)\n\nSetup the basins:\n\nprofile = pd.DataFrame(\n data={\n \"node_id\": [1, 1],\n \"area\": [1000.0, 1000.0],\n \"level\": [0.0, 1.0],\n }\n)\n\nstatic = pd.DataFrame(\n data={\n \"node_id\": [1],\n \"drainage\": [0.0],\n \"potential_evaporation\": [0.0],\n \"infiltration\": [0.0],\n \"precipitation\": [0.0],\n \"urban_runoff\": [0.0],\n }\n)\n\nstate = pd.DataFrame(data={\"node_id\": [1], \"level\": [20.0]})\n\nbasin = ribasim.Basin(profile=profile, static=static, state=state)\n\nSetup the discrete control:\n\ncondition = pd.DataFrame(\n data={\n \"node_id\": 3 * [7],\n \"listen_feature_id\": 3 * [1],\n \"variable\": 3 * [\"level\"],\n \"greater_than\": [5.0, 10.0, 15.0], # min, setpoint, max\n }\n)\n\nlogic = pd.DataFrame(\n data={\n \"node_id\": 5 * [7],\n \"truth_state\": [\"FFF\", \"U**\", \"T*F\", \"**D\", \"TTT\"],\n \"control_state\": [\"in\", \"in\", \"none\", \"out\", \"out\"],\n }\n)\n\ndiscrete_control = ribasim.DiscreteControl(condition=condition, logic=logic)\n\nThe above control logic can be summarized as follows: - If the level gets above the maximum, activate the control state “out” until the setpoint is reached; - If the level gets below the minimum, active the control state “in” until the setpoint is reached; - Otherwise activate the control state “none”.\nSetup the pump:\n\npump = ribasim.Pump(\n static=pd.DataFrame(\n data={\n \"node_id\": 3 * [2] + 3 * [3],\n \"control_state\": 2 * [\"none\", \"in\", \"out\"],\n \"flow_rate\": [0.0, 2e-3, 0.0, 0.0, 0.0, 2e-3],\n }\n )\n)\n\nThe pump data defines the following:\n\n\n\nControl state\nPump #2 flow rate (m/s)\nPump #3 flow rate (m/s)\n\n\n\n\n“none”\n0.0\n0.0\n\n\n“in”\n2e-3\n0.0\n\n\n“out”\n0.0\n2e-3\n\n\n\nSetup the level boundary:\n\nlevel_boundary = ribasim.LevelBoundary(\n static=pd.DataFrame(data={\"node_id\": [4], \"level\": [10.0]})\n)\n\nSetup the rating curve:\n\nrating_curve = ribasim.TabulatedRatingCurve(\n static=pd.DataFrame(\n data={\"node_id\": 2 * [5], \"level\": [2.0, 15.0], \"discharge\": [0.0, 1e-3]}\n )\n)\n\nSetup the terminal:\n\nterminal = ribasim.Terminal(static=pd.DataFrame(data={\"node_id\": [6]}))\n\nSetup a model:\n\nmodel = ribasim.Model(\n modelname=\"level_setpoint_with_minmax\",\n node=node,\n edge=edge,\n basin=basin,\n pump=pump,\n level_boundary=level_boundary,\n tabulated_rating_curve=rating_curve,\n terminal=terminal,\n discrete_control=discrete_control,\n starttime=\"2020-01-01 00:00:00\",\n endtime=\"2021-01-01 00:00:00\",\n)\n\nLet’s take a look at the model:\n\nmodel.plot()\n\n<Axes: >\n\n\n\n\n\nListen edges are plotted with a dashed line since they are not present in the “Edge / static” schema but only in the “Control / condition” schema.\n\ndatadir = Path(\"data\")\nmodel.write(datadir / \"level_setpoint_with_minmax\")\n\nNow run the model with level_setpoint_with_minmax/level_setpoint_with_minmax.toml. After running the model, read back the output:\n\nfrom matplotlib.dates import date2num\n\ndf_basin = pd.read_feather(datadir / \"level_setpoint_with_minmax/output/basin.arrow\")\ndf_basin_wide = df_basin.pivot_table(\n index=\"time\", columns=\"node_id\", values=[\"storage\", \"level\"]\n)\n\nax = df_basin_wide[\"level\"].plot()\n\ngreater_than = model.discrete_control.condition.greater_than\n\nax.hlines(\n greater_than,\n df_basin.time[0],\n df_basin.time.max(),\n lw=1,\n ls=\"--\",\n color=\"k\",\n)\n\ndf_control = pd.read_feather(\n datadir / \"level_setpoint_with_minmax/output/control.arrow\"\n)\n\ny_min, y_max = ax.get_ybound()\nax.fill_between(df_control.time[:2], 2 * [y_min], 2 * [y_max], alpha=0.2, color=\"C0\")\nax.fill_between(df_control.time[2:4], 2 * [y_min], 2 * [y_max], alpha=0.2, color=\"C0\")\n\nax.set_xticks(\n date2num(df_control.time).tolist(),\n df_control.control_state.tolist(),\n rotation=50,\n)\n\nax.set_yticks(greater_than, [\"min\", \"setpoint\", \"max\"])\nax.set_ylabel(\"level\")\nplt.show()\n\n\n\n\nThe highlighted regions show where a pump is active.\nLet’s print an overview of what happened with control:\n\nmodel.print_discrete_control_record(\n datadir / \"level_setpoint_with_minmax/output/control.arrow\"\n)\n\n0. At 2020-01-01 00:00:00 the control node with ID 7 reached truth state TTT:\n For node ID 1 (Basin): level > 5.0\n For node ID 1 (Basin): level > 10.0\n For node ID 1 (Basin): level > 15.0\n\n This yielded control state \"out\":\n For node ID 2 (Pump): flow_rate = 0.0\n For node ID 3 (Pump): flow_rate = 0.002\n\n1. At 2020-02-09 01:17:29.324000 the control node with ID 7 reached truth state TFF:\n For node ID 1 (Basin): level > 5.0\n For node ID 1 (Basin): level < 10.0\n For node ID 1 (Basin): level < 15.0\n\n This yielded control state \"none\":\n For node ID 2 (Pump): flow_rate = 0.0\n For node ID 3 (Pump): flow_rate = 0.0\n\n2. At 2020-07-05 13:24:51.165000 the control node with ID 7 reached truth state FFF:\n For node ID 1 (Basin): level < 5.0\n For node ID 1 (Basin): level < 10.0\n For node ID 1 (Basin): level < 15.0\n\n This yielded control state \"in\":\n For node ID 2 (Pump): flow_rate = 0.002\n For node ID 3 (Pump): flow_rate = 0.0\n\n3. At 2020-08-11 11:49:59.015000 the control node with ID 7 reached truth state TTF:\n For node ID 1 (Basin): level > 5.0\n For node ID 1 (Basin): level > 10.0\n For node ID 1 (Basin): level < 15.0\n\n This yielded control state \"none\":\n For node ID 2 (Pump): flow_rate = 0.0\n For node ID 3 (Pump): flow_rate = 0.0\n\n\n\nNote that crossing direction specific truth states (containing “U”, “D”) are not present in this overview even though they are part of the control logic. This is because in the control logic for this model these truth states are only used to sustain control states, while the overview only shows changes in control states.\n\n\n4 Model with PID control\nSet up the nodes:\n\nxy = np.array(\n [\n (0.0, 0.0), # 1: FlowBoundary\n (1.0, 0.0), # 2: Basin\n (2.0, 0.5), # 3: Pump\n (3.0, 0.0), # 4: LevelBoundary\n (1.5, 1.0), # 5: PidControl\n (2.0, -0.5), # 6: outlet\n (1.5, -1.0), # 7: PidControl\n ]\n)\n\nnode_xy = gpd.points_from_xy(x=xy[:, 0], y=xy[:, 1])\n\nnode_type = [\n \"FlowBoundary\",\n \"Basin\",\n \"Pump\",\n \"LevelBoundary\",\n \"PidControl\",\n \"Outlet\",\n \"PidControl\",\n]\n\n# Make sure the feature id starts at 1: explicitly give an index.\nnode = ribasim.Node(\n static=gpd.GeoDataFrame(\n data={\"type\": node_type},\n index=pd.Index(np.arange(len(xy)) + 1, name=\"fid\"),\n geometry=node_xy,\n crs=\"EPSG:28992\",\n )\n)\n\nSetup the edges:\n\nfrom_id = np.array([1, 2, 3, 4, 6, 5, 7], dtype=np.int64)\nto_id = np.array([2, 3, 4, 6, 2, 3, 6], dtype=np.int64)\n\nlines = ribasim.utils.geometry_from_connectivity(node, from_id, to_id)\nedge = ribasim.Edge(\n static=gpd.GeoDataFrame(\n data={\n \"from_node_id\": from_id,\n \"to_node_id\": to_id,\n \"edge_type\": 5 * [\"flow\"] + 2 * [\"control\"],\n },\n geometry=lines,\n crs=\"EPSG:28992\",\n )\n)\n\nSetup the basins:\n\nprofile = pd.DataFrame(\n data={\"node_id\": [2, 2], \"level\": [0.0, 1.0], \"area\": [1000.0, 1000.0]}\n)\n\nstatic = pd.DataFrame(\n data={\n \"node_id\": [2],\n \"drainage\": [0.0],\n \"potential_evaporation\": [0.0],\n \"infiltration\": [0.0],\n \"precipitation\": [0.0],\n \"urban_runoff\": [0.0],\n }\n)\n\nstate = pd.DataFrame(\n data={\n \"node_id\": [2],\n \"level\": [6.0],\n }\n)\n\nbasin = ribasim.Basin(profile=profile, static=static, state=state)\n\nSetup the pump:\n\npump = ribasim.Pump(\n static=pd.DataFrame(\n data={\n \"node_id\": [3],\n \"flow_rate\": [0.0], # Will be overwritten by PID controller\n }\n )\n)\n\nSetup the outlet:\n\noutlet = ribasim.Outlet(\n static=pd.DataFrame(\n data={\n \"node_id\": [6],\n \"flow_rate\": [0.0], # Will be overwritten by PID controller\n }\n )\n)\n\nSetup flow boundary:\n\nflow_boundary = ribasim.FlowBoundary(\n static=pd.DataFrame(data={\"node_id\": [1], \"flow_rate\": [1e-3]})\n)\n\nSetup flow boundary:\n\nlevel_boundary = ribasim.LevelBoundary(\n static=pd.DataFrame(\n data={\n \"node_id\": [4],\n \"level\": [1.0], # Not relevant\n }\n )\n)\n\nSetup PID control:\n\npid_control = ribasim.PidControl(\n time=pd.DataFrame(\n data={\n \"node_id\": 4 * [5, 7],\n \"time\": [\n \"2020-01-01 00:00:00\",\n \"2020-01-01 00:00:00\",\n \"2020-05-01 00:00:00\",\n \"2020-05-01 00:00:00\",\n \"2020-07-01 00:00:00\",\n \"2020-07-01 00:00:00\",\n \"2020-12-01 00:00:00\",\n \"2020-12-01 00:00:00\",\n ],\n \"listen_node_id\": 4 * [2, 2],\n \"target\": [5.0, 5.0, 5.0, 5.0, 7.5, 7.5, 7.5, 7.5],\n \"proportional\": 4 * [-1e-3, 1e-3],\n \"integral\": 4 * [-1e-7, 1e-7],\n \"derivative\": 4 * [0.0, 0.0],\n }\n )\n)\n\nNote that the coefficients for the pump and the outlet are equal in magnitude but opposite in sign. This way the pump and the outlet equally work towards the same goal, while having opposite effects on the controlled basin due to their connectivity to this basin.\nSetup a model:\n\nmodel = ribasim.Model(\n modelname=\"pid_control\",\n node=node,\n edge=edge,\n basin=basin,\n flow_boundary=flow_boundary,\n level_boundary=level_boundary,\n pump=pump,\n outlet=outlet,\n pid_control=pid_control,\n starttime=\"2020-01-01 00:00:00\",\n endtime=\"2020-12-01 00:00:00\",\n)\n\nLet’s take a look at the model:\n\nmodel.plot()\n\n<Axes: >\n\n\n\n\n\nWrite the model to a TOML and GeoPackage:\n\ndatadir = Path(\"data\")\nmodel.write(datadir / \"pid_control\")\n\nNow run the model with ribasim pid_control/pid_control.toml. After running the model, read back the output:\n\nfrom matplotlib.dates import date2num\n\ndf_basin = pd.read_feather(datadir / \"pid_control/output/basin.arrow\")\ndf_basin_wide = df_basin.pivot_table(\n index=\"time\", columns=\"node_id\", values=[\"storage\", \"level\"]\n)\nax = df_basin_wide[\"level\"].plot()\nax.set_ylabel(\"level [m]\")\n\n# Plot target level\ntarget_levels = model.pid_control.time.target.to_numpy()[::2]\ntimes = date2num(model.pid_control.time.time)[::2]\nax.plot(times, target_levels, color=\"k\", ls=\":\", label=\"target level\");"
},
{
"objectID": "python/reference/Pump.html",