diff --git a/.nojekyll b/.nojekyll
index cf2280ce0..dbf79b8a1 100644
--- a/.nojekyll
+++ b/.nojekyll
@@ -1 +1 @@
-25570dff
\ No newline at end of file
+0ef9f0c3
\ No newline at end of file
diff --git a/build/index.html b/build/index.html
index bbe20c410..ec4929da1 100644
--- a/build/index.html
+++ b/build/index.html
@@ -250,11 +250,11 @@
Ribasim.config is a submodule of Ribasim to handle the configuration of a Ribasim model. It is implemented using the Configurations package. A full configuration is represented by Config, which is the main API. Ribasim.config is a submodule mainly to avoid name clashes between the configuration sections and the rest of Ribasim.
graphflow, graphcontrol: directed graph with vertices equal to ids flow: store the flow on every flow edge edgeidsflow, edgeidscontrol: get the external edge id from (src, dst) edgeconnectiontypeflow, edgeconnectiontypescontrol: get (srcnodetype, dstnodetype) from edge id
if autodiff T = DiffCache{SparseArrays.SparseMatrixCSC{Float64, Int64}, Vector{Float64}} else T = SparseMatrixCSC{Float64, Int} end
nodeid: node ID of the DiscreteControl node; these are not unique but repeated by the amount of conditions of this DiscreteControl node listenfeatureid: the ID of the node/edge being condition on variable: the name of the variable in the condition greaterthan: The threshold value in the condition conditionvalue: The current value of each condition controlstate: Dictionary: node ID => (control state, control state start) logic_mapping: Dictionary: (control node ID, truth state) => control state record: Namedtuple with discrete control information for output
The Model struct is an initialized model, combined with the Config used to create it and saved outputs. The Basic Model Interface (BMI) is implemented on the Model. A Model can be created from the path to a TOML configuration file, or a Config object.
nodeid: node ID of the Outlet node active: whether this node is active and thus contributes flow flowrate: target flow rate minflowrate: The minimal flow rate of the outlet maxflowrate: The maximum flow rate of the outlet controlmapping: dictionary from (nodeid, controlstate) to target flow rate ispid_controlled: whether the flow rate of this outlet is governed by PID control
PID control currently only supports regulating basin levels.
nodeid: node ID of the PidControl node active: whether this node is active and thus sets flow rates listennodeid: the id of the basin being controlled pidparams: a vector interpolation for parameters changing over time. The parameters are respectively target, proportional, integral, derivative, where the last three are the coefficients for the PID equation. error: the current error; basintarget - currentlevel
nodeid: node ID of the Pump node active: whether this node is active and thus contributes flow flowrate: target flow rate minflowrate: The minimal flow rate of the pump maxflowrate: The maximum flow rate of the pump controlmapping: dictionary from (nodeid, controlstate) to target flow rate ispid_controlled: whether the flow rate of this pump is governed by PID control
Rating curve from level to discharge. The rating curve is a lookup table with linear interpolation in between. Relation can be updated in time, which is done by moving data from the time field into the tables, which is done in the update_tabulated_rating_curve callback.
Type parameter C indicates the content backing the StructVector, which can be a NamedTuple of Vectors or Arrow Primitives, and is added to avoid type instabilities.
nodeid: node ID of the TabulatedRatingCurve node active: whether this node is active and thus contributes flows tables: The current Q(h) relationships time: The time table used for updating the tables controlmapping: dictionary from (nodeid, controlstate) to Q(h) and/or active state
demand: water flux demand of user over time active: whether this node is active and thus demands water allocated: water flux currently allocated to user returnfactor: the factor in [0,1] of how much of the abstracted water is given back to the system minlevel: The level of the source basin below which the user does not abstract priority: integer > 0, the lower the number the higher the priority of the users demand
Parse a TOML file to a Config. Keys can be overruled using keyword arguments. To overrule keys from a subsection, e.g. dt from the solver section, use underscores: solver_dt.
Create the different callbacks that are used to store output and feed the simulation with new data. The different callbacks are combined to a CallbackSet that goes to the integrator. Returns the CallbackSet and the SavedValues for flow.
Convert a Real that represents the seconds passed since the simulation start to the nearest DateTime. This is used to convert between the solver’s inner float time, and the calendar.
For an element id and a vector of elements ids, get the range of indices of the last consecutive block of id. Returns the empty range 1:0 if id is not in ids.
Find the index of element x in a sorted collection a. Returns the index of x if it exists, or nothing if it doesn’t. If x occurs more than once, throw an error.
Get a sparse matrix whose sparsity matches the sparsity of the Jacobian of the ODE problem. All nodes are taken into consideration, also the ones that are inactive.
In Ribasim the Jacobian is typically sparse because each state only depends on a small number of other states.
Note: the name ‘prototype’ does not mean this code is a prototype, it comes from the naming convention of this sparsity structure in the differentialequations.jl docs.
Get the current water level of a node ID. The ID can belong to either a Basin or a LevelBoundary. storage: tells ForwardDiff whether this call is for differentiation or not
Load data from Arrow files if available, otherwise the GeoPackage. Always returns a StructVector of the given struct type T, which is empty if the table is not found. This function validates the schema, and enforces the required sort order.
Process the data in the static and time tables for a given node type. The ‘defaults’ named tuple dictates how missing data is filled in. ‘time_interpolatables’ is a vector of Symbols of parameter names for which a time interpolation (linear) object must be constructed. The control mapping for DiscreteControl is also constructed in this function. This function currently does not support node states that are defined by more than one row in a table, as is the case for TabulatedRatingCurve.
Run a Model, given a path to a TOML configuration file, or a Config object. Running a model includes initialization, solving to the end with [solve!](@ref) and writing output with BMI.finalize.
Convert a DateTime to a float that is the number of seconds since the start of the simulation. This is used to convert between the solver’s inner float time, and the calendar.
From a timeseries table time, load the most recent applicable data into table. table must be a NamedTuple of vectors with all variables that must be loaded. The most recent applicable data is non-NaN data for a given ID that is on or before t.
Update table at row index i, with the values of a given row. table must be a NamedTuple of vectors with all variables that must be loaded. The row must contain all the column names that are present in the table. If a value is NaN, it is not set.
The controlled basin affects itself and the basins upstream and downstream of the controlled pump affect eachother if there is a basin upstream of the pump. The state for the integral term and the controlled basin affect eachother, and the same for the integral state and the basin upstream of the pump if it is indeed a basin.
If both the unique node upstream and the unique node downstream of these nodes are basins, then these directly depend on eachother and affect the Jacobian 2x Basins always depend on themselves.
If both the unique node upstream and the nodes down stream (or one node further if a fractional flow is in between) are basins, then the downstream basin depends on the upstream basin(s) and affect the Jacobian as many times as there are downstream basins Upstream basins always depend on themselves.
Check that nodes that have fractional flow outneighbors do not have any other type of outneighbor, that the fractions leaving a node add up to ≈1 and that the fractions are non-negative.
Return the names of the fields contained in the Model.
@@ -401,7 +401,7 @@
1.2.3 plot
-
Model.plot(self, ax=None)
+
Model.plot(ax=None)
Plot the nodes and edges of the model.
1.2.3.1 Parameters
@@ -450,34 +450,34 @@
1.2.4 sort
-
Model.sort(self)
+
Model.sort()
Sort all input tables as required.
Tables are sorted by “node_id”, unless otherwise specified. Sorting is done automatically before writing the table.
1.2.5 validate_model
-
Model.validate_model(self)
+
Model.validate_model()
Validate the model.
Checks: - Whether all node types in the node field are valid - Whether the node IDs of the node_type fields are valid - Whether the node IDs in the node field correspond to the node IDs on the node type fields
1.2.6 validate_model_node_IDs
-
Model.validate_model_node_IDs(self)
+
Model.validate_model_node_IDs()
Check whether the node IDs in the node field correspond to the node IDs on the node type fields.
1.2.7 validate_model_node_field_IDs
-
Model.validate_model_node_field_IDs(self)
+
Model.validate_model_node_field_IDs()
Check whether the node IDs of the node_type fields are valid.
1.2.8 validate_model_node_types
-
Model.validate_model_node_types(self)
+
Model.validate_model_node_types()
Check whether all node types in the node field are valid.
1.2.9 write
-
Model.write(self, directory)
+
Model.write(directory)
Write the contents of the model to a GeoPackage and a TOML configuration file.
If directory does not exist, it is created before writing. The GeoPackage and TOML file will be called {modelname}.gpkg and {modelname}.toml respectively.
Plot the nodes. Each node type is given a separate marker.
1.2.1.1 Parameters
@@ -246,7 +246,7 @@
1.2.2 write_layer
-
Node.write_layer(self, path)
+
Node.write_layer(path)
Write the contents of the input to a GeoPackage.
1.2.2.1 Parameters
diff --git a/search.json b/search.json
index 180ab2da2..e806dfee9 100644
--- a/search.json
+++ b/search.json
@@ -277,7 +277,7 @@
"href": "python/reference/Model.html",
"title": "1 Model",
"section": "",
- "text": "Model()\nA full Ribasim model schematisation with all input.\nRibasim model containing the location of the nodes, the edges between the nodes, and the node parametrization.\n\n\n\n\n\n\n\n\n\n\n\nName\nType\nDescription\nDefault\n\n\n\n\nmodelname\nstr\nModel name, used in TOML and GeoPackage file name.\nrequired\n\n\nnode\nNode\nThe ID, type and geometry of each node.\nrequired\n\n\nedge\nEdge\nHow the nodes are connected.\nrequired\n\n\nbasin\nBasin\nThe waterbodies.\nrequired\n\n\nfractional_flow\nOptional[FractionalFlow]\nSplit flows into fractions.\nrequired\n\n\nlevel_boundary\nOptional[LevelBoundary]\nBoundary condition specifying the water level.\nrequired\n\n\nflow_boundary\nOptional[FlowBoundary]\nBoundary conditions specifying the flow.\nrequired\n\n\nlinear_resistance\n\nLinear flow resistance.\nrequired\n\n\nmanning_resistance\nOptional[ManningResistance]\nFlow resistance based on the Manning formula.\nrequired\n\n\ntabulated_rating_curve\nOptional[TabulatedRatingCurve]\nTabulated rating curve describing flow based on the upstream water level.\nrequired\n\n\npump\nOptional[Pump]\nPrescribed flow rate from one basin to the other.\nrequired\n\n\noutlet\nOptional[Outlet]\nPrescribed flow rate from one basin to the other.\nrequired\n\n\nterminal\nOptional[Terminal]\nWater sink without state or properties.\nrequired\n\n\ndiscrete_control\nOptional[DiscreteControl]\nDiscrete control logic.\nrequired\n\n\npid_control\nOptional[PidControl]\nPID controller attempting to set the level of a basin to a desired value using a pump/outlet.\nrequired\n\n\nuser\nOptional[User]\nUser node type with demand and priority.\nrequired\n\n\nstarttime\nUnion[str, datetime.datetime]\nStarting time of the simulation.\nrequired\n\n\nendtime\nUnion[str, datetime.datetime]\nEnd time of the simulation.\nrequired\n\n\nsolver\nOptional[Solver]\nSolver settings.\nrequired\n\n\nlogging\nOptional[logging]\nLogging settings.\nrequired\n\n\n\n\n\n\n\n\n\nName\nDescription\n\n\n\n\nfields\nReturn the names of the fields contained in the Model.\n\n\nfrom_toml\nInitialize a model from the TOML configuration file.\n\n\nplot\nPlot the nodes and edges of the model.\n\n\nsort\nSort all input tables as required.\n\n\nvalidate_model\nValidate the model.\n\n\nvalidate_model_node_IDs\nCheck whether the node IDs in the node field correspond to the node IDs on the node type fields.\n\n\nvalidate_model_node_field_IDs\nCheck whether the node IDs of the node_type fields are valid.\n\n\nvalidate_model_node_types\nCheck whether all node types in the node field are valid.\n\n\nwrite\nWrite the contents of the model to a GeoPackage and a TOML configuration file.\n\n\n\n\n\nModel.fields(cls)\nReturn the names of the fields contained in the Model.\n\n\n\nModel.from_toml(path)\nInitialize a model from the TOML configuration file.\n\n\n\n\n\n\n\n\n\n\n\nName\nType\nDescription\nDefault\n\n\n\n\npath\nFilePath\nPath to the configuration TOML file.\nrequired\n\n\n\n\n\n\n\n\n\nType\nDescription\n\n\n\n\nModel\n\n\n\n\n\n\n\n\nModel.plot(self, ax=None)\nPlot the nodes and edges of the model.\n\n\n\n\n\n\n\n\n\n\n\nName\nType\nDescription\nDefault\n\n\n\n\nax\nmatplotlib.pyplot.Artist\nAxes on which to draw the plot.\nNone\n\n\n\n\n\n\n\n\n\nType\nDescription\n\n\n\n\nmatplotlib.pyplot.Artist\n\n\n\n\n\n\n\n\nModel.sort(self)\nSort all input tables as required.\nTables are sorted by “node_id”, unless otherwise specified. Sorting is done automatically before writing the table.\n\n\n\nModel.validate_model(self)\nValidate the model.\nChecks: - Whether all node types in the node field are valid - Whether the node IDs of the node_type fields are valid - Whether the node IDs in the node field correspond to the node IDs on the node type fields\n\n\n\nModel.validate_model_node_IDs(self)\nCheck whether the node IDs in the node field correspond to the node IDs on the node type fields.\n\n\n\nModel.validate_model_node_field_IDs(self)\nCheck whether the node IDs of the node_type fields are valid.\n\n\n\nModel.validate_model_node_types(self)\nCheck whether all node types in the node field are valid.\n\n\n\nModel.write(self, directory)\nWrite the contents of the model to a GeoPackage and a TOML configuration file.\nIf directory does not exist, it is created before writing. The GeoPackage and TOML file will be called {modelname}.gpkg and {modelname}.toml respectively.\n\n\n\n\n\nName\nType\nDescription\nDefault\n\n\n\n\ndirectory\nFilePath\n\nrequired"
+ "text": "Model()\nA full Ribasim model schematisation with all input.\nRibasim model containing the location of the nodes, the edges between the nodes, and the node parametrization.\n\n\n\n\n\n\n\n\n\n\n\nName\nType\nDescription\nDefault\n\n\n\n\nmodelname\nstr\nModel name, used in TOML and GeoPackage file name.\nrequired\n\n\nnode\nNode\nThe ID, type and geometry of each node.\nrequired\n\n\nedge\nEdge\nHow the nodes are connected.\nrequired\n\n\nbasin\nBasin\nThe waterbodies.\nrequired\n\n\nfractional_flow\nOptional[FractionalFlow]\nSplit flows into fractions.\nrequired\n\n\nlevel_boundary\nOptional[LevelBoundary]\nBoundary condition specifying the water level.\nrequired\n\n\nflow_boundary\nOptional[FlowBoundary]\nBoundary conditions specifying the flow.\nrequired\n\n\nlinear_resistance\n\nLinear flow resistance.\nrequired\n\n\nmanning_resistance\nOptional[ManningResistance]\nFlow resistance based on the Manning formula.\nrequired\n\n\ntabulated_rating_curve\nOptional[TabulatedRatingCurve]\nTabulated rating curve describing flow based on the upstream water level.\nrequired\n\n\npump\nOptional[Pump]\nPrescribed flow rate from one basin to the other.\nrequired\n\n\noutlet\nOptional[Outlet]\nPrescribed flow rate from one basin to the other.\nrequired\n\n\nterminal\nOptional[Terminal]\nWater sink without state or properties.\nrequired\n\n\ndiscrete_control\nOptional[DiscreteControl]\nDiscrete control logic.\nrequired\n\n\npid_control\nOptional[PidControl]\nPID controller attempting to set the level of a basin to a desired value using a pump/outlet.\nrequired\n\n\nuser\nOptional[User]\nUser node type with demand and priority.\nrequired\n\n\nstarttime\nUnion[str, datetime.datetime]\nStarting time of the simulation.\nrequired\n\n\nendtime\nUnion[str, datetime.datetime]\nEnd time of the simulation.\nrequired\n\n\nsolver\nOptional[Solver]\nSolver settings.\nrequired\n\n\nlogging\nOptional[logging]\nLogging settings.\nrequired\n\n\n\n\n\n\n\n\n\nName\nDescription\n\n\n\n\nfields\nReturn the names of the fields contained in the Model.\n\n\nfrom_toml\nInitialize a model from the TOML configuration file.\n\n\nplot\nPlot the nodes and edges of the model.\n\n\nsort\nSort all input tables as required.\n\n\nvalidate_model\nValidate the model.\n\n\nvalidate_model_node_IDs\nCheck whether the node IDs in the node field correspond to the node IDs on the node type fields.\n\n\nvalidate_model_node_field_IDs\nCheck whether the node IDs of the node_type fields are valid.\n\n\nvalidate_model_node_types\nCheck whether all node types in the node field are valid.\n\n\nwrite\nWrite the contents of the model to a GeoPackage and a TOML configuration file.\n\n\n\n\n\nModel.fields()\nReturn the names of the fields contained in the Model.\n\n\n\nModel.from_toml(path)\nInitialize a model from the TOML configuration file.\n\n\n\n\n\n\n\n\n\n\n\nName\nType\nDescription\nDefault\n\n\n\n\npath\nFilePath\nPath to the configuration TOML file.\nrequired\n\n\n\n\n\n\n\n\n\nType\nDescription\n\n\n\n\nModel\n\n\n\n\n\n\n\n\nModel.plot(ax=None)\nPlot the nodes and edges of the model.\n\n\n\n\n\n\n\n\n\n\n\nName\nType\nDescription\nDefault\n\n\n\n\nax\nmatplotlib.pyplot.Artist\nAxes on which to draw the plot.\nNone\n\n\n\n\n\n\n\n\n\nType\nDescription\n\n\n\n\nmatplotlib.pyplot.Artist\n\n\n\n\n\n\n\n\nModel.sort()\nSort all input tables as required.\nTables are sorted by “node_id”, unless otherwise specified. Sorting is done automatically before writing the table.\n\n\n\nModel.validate_model()\nValidate the model.\nChecks: - Whether all node types in the node field are valid - Whether the node IDs of the node_type fields are valid - Whether the node IDs in the node field correspond to the node IDs on the node type fields\n\n\n\nModel.validate_model_node_IDs()\nCheck whether the node IDs in the node field correspond to the node IDs on the node type fields.\n\n\n\nModel.validate_model_node_field_IDs()\nCheck whether the node IDs of the node_type fields are valid.\n\n\n\nModel.validate_model_node_types()\nCheck whether all node types in the node field are valid.\n\n\n\nModel.write(directory)\nWrite the contents of the model to a GeoPackage and a TOML configuration file.\nIf directory does not exist, it is created before writing. The GeoPackage and TOML file will be called {modelname}.gpkg and {modelname}.toml respectively.\n\n\n\n\n\nName\nType\nDescription\nDefault\n\n\n\n\ndirectory\nFilePath\n\nrequired"
},
{
"objectID": "python/reference/Model.html#parameters",
@@ -291,7 +291,7 @@
"href": "python/reference/Model.html#methods",
"title": "1 Model",
"section": "",
- "text": "Name\nDescription\n\n\n\n\nfields\nReturn the names of the fields contained in the Model.\n\n\nfrom_toml\nInitialize a model from the TOML configuration file.\n\n\nplot\nPlot the nodes and edges of the model.\n\n\nsort\nSort all input tables as required.\n\n\nvalidate_model\nValidate the model.\n\n\nvalidate_model_node_IDs\nCheck whether the node IDs in the node field correspond to the node IDs on the node type fields.\n\n\nvalidate_model_node_field_IDs\nCheck whether the node IDs of the node_type fields are valid.\n\n\nvalidate_model_node_types\nCheck whether all node types in the node field are valid.\n\n\nwrite\nWrite the contents of the model to a GeoPackage and a TOML configuration file.\n\n\n\n\n\nModel.fields(cls)\nReturn the names of the fields contained in the Model.\n\n\n\nModel.from_toml(path)\nInitialize a model from the TOML configuration file.\n\n\n\n\n\n\n\n\n\n\n\nName\nType\nDescription\nDefault\n\n\n\n\npath\nFilePath\nPath to the configuration TOML file.\nrequired\n\n\n\n\n\n\n\n\n\nType\nDescription\n\n\n\n\nModel\n\n\n\n\n\n\n\n\nModel.plot(self, ax=None)\nPlot the nodes and edges of the model.\n\n\n\n\n\n\n\n\n\n\n\nName\nType\nDescription\nDefault\n\n\n\n\nax\nmatplotlib.pyplot.Artist\nAxes on which to draw the plot.\nNone\n\n\n\n\n\n\n\n\n\nType\nDescription\n\n\n\n\nmatplotlib.pyplot.Artist\n\n\n\n\n\n\n\n\nModel.sort(self)\nSort all input tables as required.\nTables are sorted by “node_id”, unless otherwise specified. Sorting is done automatically before writing the table.\n\n\n\nModel.validate_model(self)\nValidate the model.\nChecks: - Whether all node types in the node field are valid - Whether the node IDs of the node_type fields are valid - Whether the node IDs in the node field correspond to the node IDs on the node type fields\n\n\n\nModel.validate_model_node_IDs(self)\nCheck whether the node IDs in the node field correspond to the node IDs on the node type fields.\n\n\n\nModel.validate_model_node_field_IDs(self)\nCheck whether the node IDs of the node_type fields are valid.\n\n\n\nModel.validate_model_node_types(self)\nCheck whether all node types in the node field are valid.\n\n\n\nModel.write(self, directory)\nWrite the contents of the model to a GeoPackage and a TOML configuration file.\nIf directory does not exist, it is created before writing. The GeoPackage and TOML file will be called {modelname}.gpkg and {modelname}.toml respectively.\n\n\n\n\n\nName\nType\nDescription\nDefault\n\n\n\n\ndirectory\nFilePath\n\nrequired"
+ "text": "Name\nDescription\n\n\n\n\nfields\nReturn the names of the fields contained in the Model.\n\n\nfrom_toml\nInitialize a model from the TOML configuration file.\n\n\nplot\nPlot the nodes and edges of the model.\n\n\nsort\nSort all input tables as required.\n\n\nvalidate_model\nValidate the model.\n\n\nvalidate_model_node_IDs\nCheck whether the node IDs in the node field correspond to the node IDs on the node type fields.\n\n\nvalidate_model_node_field_IDs\nCheck whether the node IDs of the node_type fields are valid.\n\n\nvalidate_model_node_types\nCheck whether all node types in the node field are valid.\n\n\nwrite\nWrite the contents of the model to a GeoPackage and a TOML configuration file.\n\n\n\n\n\nModel.fields()\nReturn the names of the fields contained in the Model.\n\n\n\nModel.from_toml(path)\nInitialize a model from the TOML configuration file.\n\n\n\n\n\n\n\n\n\n\n\nName\nType\nDescription\nDefault\n\n\n\n\npath\nFilePath\nPath to the configuration TOML file.\nrequired\n\n\n\n\n\n\n\n\n\nType\nDescription\n\n\n\n\nModel\n\n\n\n\n\n\n\n\nModel.plot(ax=None)\nPlot the nodes and edges of the model.\n\n\n\n\n\n\n\n\n\n\n\nName\nType\nDescription\nDefault\n\n\n\n\nax\nmatplotlib.pyplot.Artist\nAxes on which to draw the plot.\nNone\n\n\n\n\n\n\n\n\n\nType\nDescription\n\n\n\n\nmatplotlib.pyplot.Artist\n\n\n\n\n\n\n\n\nModel.sort()\nSort all input tables as required.\nTables are sorted by “node_id”, unless otherwise specified. Sorting is done automatically before writing the table.\n\n\n\nModel.validate_model()\nValidate the model.\nChecks: - Whether all node types in the node field are valid - Whether the node IDs of the node_type fields are valid - Whether the node IDs in the node field correspond to the node IDs on the node type fields\n\n\n\nModel.validate_model_node_IDs()\nCheck whether the node IDs in the node field correspond to the node IDs on the node type fields.\n\n\n\nModel.validate_model_node_field_IDs()\nCheck whether the node IDs of the node_type fields are valid.\n\n\n\nModel.validate_model_node_types()\nCheck whether all node types in the node field are valid.\n\n\n\nModel.write(directory)\nWrite the contents of the model to a GeoPackage and a TOML configuration file.\nIf directory does not exist, it is created before writing. The GeoPackage and TOML file will be called {modelname}.gpkg and {modelname}.toml respectively.\n\n\n\n\n\nName\nType\nDescription\nDefault\n\n\n\n\ndirectory\nFilePath\n\nrequired"
},
{
"objectID": "python/reference/utils.geometry_from_connectivity.html",
@@ -319,7 +319,7 @@
"href": "python/reference/Edge.html",
"title": "1 Edge",
"section": "",
- "text": "Edge()\nDefines the connections between nodes.\n\n\n\n\n\n\n\n\n\n\n\nName\nType\nDescription\nDefault\n\n\n\n\nstatic\npandas.DataFrame\nTable describing the flow connections.\nrequired\n\n\n\n\n\n\n\n\n\nName\nDescription\n\n\n\n\nwrite_layer\nWrite the contents of the input to a GeoPackage.\n\n\n\n\n\nEdge.write_layer(self, path)\nWrite the contents of the input to a GeoPackage.\n\n\n\n\n\nName\nType\nDescription\nDefault\n\n\n\n\npath\nFilePath\n\nrequired"
+ "text": "Edge()\nDefines the connections between nodes.\n\n\n\n\n\n\n\n\n\n\n\nName\nType\nDescription\nDefault\n\n\n\n\nstatic\npandas.DataFrame\nTable describing the flow connections.\nrequired\n\n\n\n\n\n\n\n\n\nName\nDescription\n\n\n\n\nwrite_layer\nWrite the contents of the input to a GeoPackage.\n\n\n\n\n\nEdge.write_layer(path)\nWrite the contents of the input to a GeoPackage.\n\n\n\n\n\nName\nType\nDescription\nDefault\n\n\n\n\npath\nFilePath\n\nrequired"
},
{
"objectID": "python/reference/Edge.html#parameters",
@@ -333,7 +333,7 @@
"href": "python/reference/Edge.html#methods",
"title": "1 Edge",
"section": "",
- "text": "Name\nDescription\n\n\n\n\nwrite_layer\nWrite the contents of the input to a GeoPackage.\n\n\n\n\n\nEdge.write_layer(self, path)\nWrite the contents of the input to a GeoPackage.\n\n\n\n\n\nName\nType\nDescription\nDefault\n\n\n\n\npath\nFilePath\n\nrequired"
+ "text": "Name\nDescription\n\n\n\n\nwrite_layer\nWrite the contents of the input to a GeoPackage.\n\n\n\n\n\nEdge.write_layer(path)\nWrite the contents of the input to a GeoPackage.\n\n\n\n\n\nName\nType\nDescription\nDefault\n\n\n\n\npath\nFilePath\n\nrequired"
},
{
"objectID": "python/reference/FractionalFlow.html",
@@ -417,7 +417,7 @@
"href": "python/reference/Node.html",
"title": "1 Node",
"section": "",
- "text": "Node()\nThe Ribasim nodes as Point geometries.\n\n\n\n\n\n\n\n\n\n\n\nName\nType\nDescription\nDefault\n\n\n\n\nstatic\ngeopandas.GeoDataFrame\nTable with node ID, type and geometry.\nrequired\n\n\n\n\n\n\n\n\n\nName\nDescription\n\n\n\n\nplot\nPlot the nodes. Each node type is given a separate marker.\n\n\nwrite_layer\nWrite the contents of the input to a GeoPackage.\n\n\n\n\n\nNode.plot(self, ax=None, zorder=None)\nPlot the nodes. Each node type is given a separate marker.\n\n\n\n\n\n\n\n\n\n\n\nName\nType\nDescription\nDefault\n\n\n\n\nax\nOptional\nThe axis on which the nodes will be plotted.\nNone\n\n\n\n\n\n\n\n\n\nType\nDescription\n\n\n\n\nNone\n\n\n\n\n\n\n\n\nNode.write_layer(self, path)\nWrite the contents of the input to a GeoPackage.\n\n\n\n\n\nName\nType\nDescription\nDefault\n\n\n\n\npath\nFilePath\n\nrequired"
+ "text": "Node()\nThe Ribasim nodes as Point geometries.\n\n\n\n\n\n\n\n\n\n\n\nName\nType\nDescription\nDefault\n\n\n\n\nstatic\ngeopandas.GeoDataFrame\nTable with node ID, type and geometry.\nrequired\n\n\n\n\n\n\n\n\n\nName\nDescription\n\n\n\n\nplot\nPlot the nodes. Each node type is given a separate marker.\n\n\nwrite_layer\nWrite the contents of the input to a GeoPackage.\n\n\n\n\n\nNode.plot(ax=None, zorder=None)\nPlot the nodes. Each node type is given a separate marker.\n\n\n\n\n\n\n\n\n\n\n\nName\nType\nDescription\nDefault\n\n\n\n\nax\nOptional\nThe axis on which the nodes will be plotted.\nNone\n\n\n\n\n\n\n\n\n\nType\nDescription\n\n\n\n\nNone\n\n\n\n\n\n\n\n\nNode.write_layer(path)\nWrite the contents of the input to a GeoPackage.\n\n\n\n\n\nName\nType\nDescription\nDefault\n\n\n\n\npath\nFilePath\n\nrequired"
},
{
"objectID": "python/reference/Node.html#parameters",
@@ -431,7 +431,7 @@
"href": "python/reference/Node.html#methods",
"title": "1 Node",
"section": "",
- "text": "Name\nDescription\n\n\n\n\nplot\nPlot the nodes. Each node type is given a separate marker.\n\n\nwrite_layer\nWrite the contents of the input to a GeoPackage.\n\n\n\n\n\nNode.plot(self, ax=None, zorder=None)\nPlot the nodes. Each node type is given a separate marker.\n\n\n\n\n\n\n\n\n\n\n\nName\nType\nDescription\nDefault\n\n\n\n\nax\nOptional\nThe axis on which the nodes will be plotted.\nNone\n\n\n\n\n\n\n\n\n\nType\nDescription\n\n\n\n\nNone\n\n\n\n\n\n\n\n\nNode.write_layer(self, path)\nWrite the contents of the input to a GeoPackage.\n\n\n\n\n\nName\nType\nDescription\nDefault\n\n\n\n\npath\nFilePath\n\nrequired"
+ "text": "Name\nDescription\n\n\n\n\nplot\nPlot the nodes. Each node type is given a separate marker.\n\n\nwrite_layer\nWrite the contents of the input to a GeoPackage.\n\n\n\n\n\nNode.plot(ax=None, zorder=None)\nPlot the nodes. Each node type is given a separate marker.\n\n\n\n\n\n\n\n\n\n\n\nName\nType\nDescription\nDefault\n\n\n\n\nax\nOptional\nThe axis on which the nodes will be plotted.\nNone\n\n\n\n\n\n\n\n\n\nType\nDescription\n\n\n\n\nNone\n\n\n\n\n\n\n\n\nNode.write_layer(path)\nWrite the contents of the input to a GeoPackage.\n\n\n\n\n\nName\nType\nDescription\nDefault\n\n\n\n\npath\nFilePath\n\nrequired"
},
{
"objectID": "python/reference/Pump.html",
@@ -508,7 +508,7 @@
"href": "python/examples.html",
"title": "Examples",
"section": "",
- "text": "1 Basic model with static forcing\n\nimport geopandas as gpd\nimport numpy as np\nimport pandas as pd\nimport matplotlib.pyplot as plt\nfrom pathlib import Path\n\nimport ribasim\n\nSetup the basins:\n\nprofile = pd.DataFrame(\n data={\n \"node_id\": [1, 1, 3, 3, 6, 6, 9, 9],\n \"area\": [0.01, 1000.0] * 4,\n \"level\": [0.0, 1.0] * 4,\n }\n)\n\n# Convert steady forcing to m/s\n# 2 mm/d precipitation, 1 mm/d evaporation\nseconds_in_day = 24 * 3600\nprecipitation = 0.002 / seconds_in_day\nevaporation = 0.001 / seconds_in_day\n\nstatic = pd.DataFrame(\n data={\n \"node_id\": [0],\n \"drainage\": [0.0],\n \"potential_evaporation\": [evaporation],\n \"infiltration\": [0.0],\n \"precipitation\": [precipitation],\n \"urban_runoff\": [0.0],\n }\n)\nstatic = static.iloc[[0, 0, 0, 0]]\nstatic[\"node_id\"] = [1, 3, 6, 9]\n\nbasin = ribasim.Basin(profile=profile, static=static)\n\nSetup linear resistance:\n\nlinear_resistance = ribasim.LinearResistance(\n static=pd.DataFrame(\n data={\"node_id\": [10, 12], \"resistance\": [5e3, (3600.0 * 24) / 100.0]}\n )\n)\n\nSetup Manning resistance:\n\nmanning_resistance = ribasim.ManningResistance(\n static=pd.DataFrame(\n data={\n \"node_id\": [2],\n \"length\": [900.0],\n \"manning_n\": [0.04],\n \"profile_width\": [6.0],\n \"profile_slope\": [3.0],\n }\n )\n)\n\nSet up a rating curve node:\n\n# Discharge: lose 1% of storage volume per day at storage = 1000.0.\nq1000 = 1000.0 * 0.01 / seconds_in_day\n\nrating_curve = ribasim.TabulatedRatingCurve(\n static=pd.DataFrame(\n data={\n \"node_id\": [4, 4],\n \"level\": [0.0, 1.0],\n \"discharge\": [0.0, q1000],\n }\n )\n)\n\nSetup fractional flows:\n\nfractional_flow = ribasim.FractionalFlow(\n static=pd.DataFrame(\n data={\n \"node_id\": [5, 8, 13],\n \"fraction\": [0.3, 0.6, 0.1],\n }\n )\n)\n\nSetup pump:\n\npump = ribasim.Pump(\n static=pd.DataFrame(\n data={\n \"node_id\": [7],\n \"flow_rate\": [0.5 / 3600],\n }\n )\n)\n\nSetup level boundary:\n\nlevel_boundary = ribasim.LevelBoundary(\n static=pd.DataFrame(\n data={\n \"node_id\": [11, 17],\n \"level\": [0.5, 1.5],\n }\n )\n)\n\nSetup flow boundary:\n\nflow_boundary = ribasim.FlowBoundary(\n static=pd.DataFrame(\n data={\n \"node_id\": [15, 16],\n \"flow_rate\": [1e-4, 1e-4],\n }\n )\n)\n\nSetup terminal:\n\nterminal = ribasim.Terminal(\n static=pd.DataFrame(\n data={\n \"node_id\": [14],\n }\n )\n)\n\nSet up the nodes:\n\nxy = np.array(\n [\n (0.0, 0.0), # 1: Basin,\n (1.0, 0.0), # 2: ManningResistance\n (2.0, 0.0), # 3: Basin\n (3.0, 0.0), # 4: TabulatedRatingCurve\n (3.0, 1.0), # 5: FractionalFlow\n (3.0, 2.0), # 6: Basin\n (4.0, 1.0), # 7: Pump\n (4.0, 0.0), # 8: FractionalFlow\n (5.0, 0.0), # 9: Basin\n (6.0, 0.0), # 10: LinearResistance\n (2.0, 2.0), # 11: LevelBoundary\n (2.0, 1.0), # 12: LinearResistance\n (3.0, -1.0), # 13: FractionalFlow\n (3.0, -2.0), # 14: Terminal\n (3.0, 3.0), # 15: FlowBoundary\n (0.0, 1.0), # 16: FlowBoundary\n (6.0, 1.0), # 17: LevelBoundary\n ]\n)\nnode_xy = gpd.points_from_xy(x=xy[:, 0], y=xy[:, 1])\n\nnode_id, node_type = ribasim.Node.get_node_ids_and_types(\n basin,\n manning_resistance,\n rating_curve,\n pump,\n fractional_flow,\n linear_resistance,\n level_boundary,\n flow_boundary,\n terminal,\n)\n\n# Make sure the feature id starts at 1: explicitly give an index.\nnode = ribasim.Node(\n static=gpd.GeoDataFrame(\n data={\"type\": node_type},\n index=pd.Index(node_id, name=\"fid\"),\n geometry=node_xy,\n crs=\"EPSG:28992\",\n )\n)\n\nSetup the edges:\n\nfrom_id = np.array(\n [1, 2, 3, 4, 4, 5, 6, 8, 7, 9, 11, 12, 4, 13, 15, 16, 10], dtype=np.int64\n)\nto_id = np.array(\n [2, 3, 4, 5, 8, 6, 7, 9, 9, 10, 12, 3, 13, 14, 6, 1, 17], dtype=np.int64\n)\nlines = ribasim.utils.geometry_from_connectivity(node, from_id, to_id)\nedge = ribasim.Edge(\n static=gpd.GeoDataFrame(\n data={\n \"from_node_id\": from_id,\n \"to_node_id\": to_id,\n \"edge_type\": len(from_id) * [\"flow\"],\n },\n geometry=lines,\n crs=\"EPSG:28992\",\n )\n)\n\nSetup a model:\n\nmodel = ribasim.Model(\n modelname=\"basic\",\n node=node,\n edge=edge,\n basin=basin,\n level_boundary=level_boundary,\n flow_boundary=flow_boundary,\n pump=pump,\n linear_resistance=linear_resistance,\n manning_resistance=manning_resistance,\n tabulated_rating_curve=rating_curve,\n fractional_flow=fractional_flow,\n terminal=terminal,\n starttime=\"2020-01-01 00:00:00\",\n endtime=\"2021-01-01 00:00:00\",\n)\n\nLet’s take a look at the model:\n\nmodel.plot()\n\n<Axes: >\n\n\n\n\n\nWrite the model to a TOML and GeoPackage:\n\ndatadir = Path(\"data\")\nmodel.write(datadir / \"basic\")\n\n\n\n2 Update the basic model with transient forcing\nThis assumes you have already created the basic model with static forcing.\n\nimport numpy as np\nimport pandas as pd\nimport xarray as xr\n\nimport ribasim\n\n\nmodel = ribasim.Model.from_toml(datadir / \"basic/basic.toml\")\n\n\ntime = pd.date_range(model.starttime, model.endtime)\nday_of_year = time.day_of_year.to_numpy()\nseconds_per_day = 24 * 60 * 60\nevaporation = (\n (-1.0 * np.cos(day_of_year / 365.0 * 2 * np.pi) + 1.0) * 0.0025 / seconds_per_day\n)\nrng = np.random.default_rng(seed=0)\nprecipitation = (\n rng.lognormal(mean=-1.0, sigma=1.7, size=time.size) * 0.001 / seconds_per_day\n)\n\nWe’ll use xarray to easily broadcast the values.\n\ntimeseries = (\n pd.DataFrame(\n data={\n \"node_id\": 1,\n \"time\": time,\n \"drainage\": 0.0,\n \"potential_evaporation\": evaporation,\n \"infiltration\": 0.0,\n \"precipitation\": precipitation,\n \"urban_runoff\": 0.0,\n }\n )\n .set_index(\"time\")\n .to_xarray()\n)\n\nbasin_ids = model.basin.static[\"node_id\"].to_numpy()\nbasin_nodes = xr.DataArray(\n np.ones(len(basin_ids)), coords={\"node_id\": basin_ids}, dims=[\"node_id\"]\n)\nforcing = (timeseries * basin_nodes).to_dataframe().reset_index()\n\n\nstate = pd.DataFrame(\n data={\n \"node_id\": basin_ids,\n \"level\": 1.4,\n \"concentration\": 0.0,\n }\n)\n\n\nmodel.basin.time = forcing\nmodel.basin.state = state\n\n\nmodel.modelname = \"basic_transient\"\nmodel.write(datadir / \"basic_transient\")\n\nNow run the model with ribasim basic-transient/basic.toml. After running the model, read back the output:\n\ndf_basin = pd.read_feather(datadir / \"basic_transient/output/basin.arrow\")\ndf_basin_wide = df_basin.pivot_table(\n index=\"time\", columns=\"node_id\", values=[\"storage\", \"level\"]\n)\ndf_basin_wide[\"level\"].plot()\n\n<Axes: xlabel='time'>\n\n\n\n\n\n\ndf_flow = pd.read_feather(datadir / \"basic_transient/output/flow.arrow\")\ndf_flow[\"edge\"] = list(zip(df_flow.from_node_id, df_flow.to_node_id))\ndf_flow[\"flow_m3d\"] = df_flow.flow * 86400\nax = df_flow.pivot_table(index=\"time\", columns=\"edge\", values=\"flow_m3d\").plot()\nax.legend(bbox_to_anchor=(1.3, 1), title=\"Edge\")\n\n<matplotlib.legend.Legend at 0x7f9f3265c150>\n\n\n\n\n\n\ntype(df_flow)\n\npandas.core.frame.DataFrame\n\n\n\n\n3 Model with discrete control\nThe model constructed below consists of a single basin which slowly drains trough a TabulatedRatingCurve, but is held within a range around a target level (setpoint) by two connected pumps. These two pumps behave like a reversible pump. When pumping can be done in only one direction, and the other direction is only possible under gravity, use an Outlet for that direction.\nSet up the nodes:\n\nxy = np.array(\n [\n (0.0, 0.0), # 1: Basin\n (1.0, 1.0), # 2: Pump\n (1.0, -1.0), # 3: Pump\n (2.0, 0.0), # 4: LevelBoundary\n (-1.0, 0.0), # 5: TabulatedRatingCurve\n (-2.0, 0.0), # 6: Terminal\n (1.0, 0.0), # 7: DiscreteControl\n ]\n)\n\nnode_xy = gpd.points_from_xy(x=xy[:, 0], y=xy[:, 1])\n\nnode_type = [\n \"Basin\",\n \"Pump\",\n \"Pump\",\n \"LevelBoundary\",\n \"TabulatedRatingCurve\",\n \"Terminal\",\n \"DiscreteControl\",\n]\n\n# Make sure the feature id starts at 1: explicitly give an index.\nnode = ribasim.Node(\n static=gpd.GeoDataFrame(\n data={\"type\": node_type},\n index=pd.Index(np.arange(len(xy)) + 1, name=\"fid\"),\n geometry=node_xy,\n crs=\"EPSG:28992\",\n )\n)\n\nSetup the edges:\n\nfrom_id = np.array([1, 3, 4, 2, 1, 5, 7, 7], dtype=np.int64)\nto_id = np.array([3, 4, 2, 1, 5, 6, 2, 3], dtype=np.int64)\n\nedge_type = 6 * [\"flow\"] + 2 * [\"control\"]\n\nlines = ribasim.utils.geometry_from_connectivity(node, from_id, to_id)\nedge = ribasim.Edge(\n static=gpd.GeoDataFrame(\n data={\"from_node_id\": from_id, \"to_node_id\": to_id, \"edge_type\": edge_type},\n geometry=lines,\n crs=\"EPSG:28992\",\n )\n)\n\nSetup the basins:\n\nprofile = pd.DataFrame(\n data={\n \"node_id\": [1, 1],\n \"area\": [1000.0, 1000.0],\n \"level\": [0.0, 1.0],\n }\n)\n\nstatic = pd.DataFrame(\n data={\n \"node_id\": [1],\n \"drainage\": [0.0],\n \"potential_evaporation\": [0.0],\n \"infiltration\": [0.0],\n \"precipitation\": [0.0],\n \"urban_runoff\": [0.0],\n }\n)\n\nstate = pd.DataFrame(data={\"node_id\": [1], \"level\": [20.0]})\n\nbasin = ribasim.Basin(profile=profile, static=static, state=state)\n\nSetup the discrete control:\n\ncondition = pd.DataFrame(\n data={\n \"node_id\": 3 * [7],\n \"listen_feature_id\": 3 * [1],\n \"variable\": 3 * [\"level\"],\n \"greater_than\": [5.0, 10.0, 15.0], # min, setpoint, max\n }\n)\n\nlogic = pd.DataFrame(\n data={\n \"node_id\": 5 * [7],\n \"truth_state\": [\"FFF\", \"U**\", \"T*F\", \"**D\", \"TTT\"],\n \"control_state\": [\"in\", \"in\", \"none\", \"out\", \"out\"],\n }\n)\n\ndiscrete_control = ribasim.DiscreteControl(condition=condition, logic=logic)\n\nThe above control logic can be summarized as follows: - If the level gets above the maximum, activate the control state “out” until the setpoint is reached; - If the level gets below the minimum, active the control state “in” until the setpoint is reached; - Otherwise activate the control state “none”.\nSetup the pump:\n\npump = ribasim.Pump(\n static=pd.DataFrame(\n data={\n \"node_id\": 3 * [2] + 3 * [3],\n \"control_state\": 2 * [\"none\", \"in\", \"out\"],\n \"flow_rate\": [0.0, 2e-3, 0.0, 0.0, 0.0, 2e-3],\n }\n )\n)\n\nThe pump data defines the following:\n\n\n\nControl state\nPump #2 flow rate (m/s)\nPump #3 flow rate (m/s)\n\n\n\n\n“none”\n0.0\n0.0\n\n\n“in”\n2e-3\n0.0\n\n\n“out”\n0.0\n2e-3\n\n\n\nSetup the level boundary:\n\nlevel_boundary = ribasim.LevelBoundary(\n static=pd.DataFrame(data={\"node_id\": [4], \"level\": [10.0]})\n)\n\nSetup the rating curve:\n\nrating_curve = ribasim.TabulatedRatingCurve(\n static=pd.DataFrame(\n data={\"node_id\": 2 * [5], \"level\": [2.0, 15.0], \"discharge\": [0.0, 1e-3]}\n )\n)\n\nSetup the terminal:\n\nterminal = ribasim.Terminal(static=pd.DataFrame(data={\"node_id\": [6]}))\n\nSetup a model:\n\nmodel = ribasim.Model(\n modelname=\"level_setpoint_with_minmax\",\n node=node,\n edge=edge,\n basin=basin,\n pump=pump,\n level_boundary=level_boundary,\n tabulated_rating_curve=rating_curve,\n terminal=terminal,\n discrete_control=discrete_control,\n starttime=\"2020-01-01 00:00:00\",\n endtime=\"2021-01-01 00:00:00\",\n)\n\nLet’s take a look at the model:\n\nmodel.plot()\n\n<Axes: >\n\n\n\n\n\nListen edges are plotted with a dashed line since they are not present in the “Edge / static” schema but only in the “Control / condition” schema.\n\ndatadir = Path(\"data\")\nmodel.write(datadir / \"level_setpoint_with_minmax\")\n\nNow run the model with level_setpoint_with_minmax/level_setpoint_with_minmax.toml. After running the model, read back the output:\n\nfrom matplotlib.dates import date2num\n\ndf_basin = pd.read_feather(datadir / \"level_setpoint_with_minmax/output/basin.arrow\")\ndf_basin_wide = df_basin.pivot_table(\n index=\"time\", columns=\"node_id\", values=[\"storage\", \"level\"]\n)\n\nax = df_basin_wide[\"level\"].plot()\n\ngreater_than = model.discrete_control.condition.greater_than\n\nax.hlines(\n greater_than,\n df_basin.time[0],\n df_basin.time.max(),\n lw=1,\n ls=\"--\",\n color=\"k\",\n)\n\ndf_control = pd.read_feather(\n datadir / \"level_setpoint_with_minmax/output/control.arrow\"\n)\n\ny_min, y_max = ax.get_ybound()\nax.fill_between(df_control.time[:2], 2 * [y_min], 2 * [y_max], alpha=0.2, color=\"C0\")\nax.fill_between(df_control.time[2:4], 2 * [y_min], 2 * [y_max], alpha=0.2, color=\"C0\")\n\nax.set_xticks(\n date2num(df_control.time).tolist(),\n df_control.control_state.tolist(),\n rotation=50,\n)\n\nax.set_yticks(greater_than, [\"min\", \"setpoint\", \"max\"])\nax.set_ylabel(\"level\")\nplt.show()\n\n\n\n\nThe highlighted regions show where a pump is active.\nLet’s print an overview of what happened with control:\n\nmodel.print_discrete_control_record(\n datadir / \"level_setpoint_with_minmax/output/control.arrow\"\n)\n\n0. At 2020-01-01 00:00:00 the control node with ID 7 reached truth state TTT:\n For node ID 1 (Basin): level > 5.0\n For node ID 1 (Basin): level > 10.0\n For node ID 1 (Basin): level > 15.0\n\n This yielded control state \"out\":\n For node ID 2 (Pump): flow_rate = 0.0\n For node ID 3 (Pump): flow_rate = 0.002\n\n1. At 2020-02-09 01:17:29.324000 the control node with ID 7 reached truth state TFF:\n For node ID 1 (Basin): level > 5.0\n For node ID 1 (Basin): level < 10.0\n For node ID 1 (Basin): level < 15.0\n\n This yielded control state \"none\":\n For node ID 2 (Pump): flow_rate = 0.0\n For node ID 3 (Pump): flow_rate = 0.0\n\n2. At 2020-07-05 13:24:51.165000 the control node with ID 7 reached truth state FFF:\n For node ID 1 (Basin): level < 5.0\n For node ID 1 (Basin): level < 10.0\n For node ID 1 (Basin): level < 15.0\n\n This yielded control state \"in\":\n For node ID 2 (Pump): flow_rate = 0.002\n For node ID 3 (Pump): flow_rate = 0.0\n\n3. At 2020-08-11 11:49:59.015000 the control node with ID 7 reached truth state TTF:\n For node ID 1 (Basin): level > 5.0\n For node ID 1 (Basin): level > 10.0\n For node ID 1 (Basin): level < 15.0\n\n This yielded control state \"none\":\n For node ID 2 (Pump): flow_rate = 0.0\n For node ID 3 (Pump): flow_rate = 0.0\n\n\n\nNote that crossing direction specific truth states (containing “U”, “D”) are not present in this overview even though they are part of the control logic. This is because in the control logic for this model these truth states are only used to sustain control states, while the overview only shows changes in control states.\n\n\n4 Model with PID control\nSet up the nodes:\n\nxy = np.array(\n [\n (0.0, 0.0), # 1: FlowBoundary\n (1.0, 0.0), # 2: Basin\n (2.0, 0.5), # 3: Pump\n (3.0, 0.0), # 4: LevelBoundary\n (1.5, 1.0), # 5: PidControl\n (2.0, -0.5), # 6: outlet\n (1.5, -1.0), # 7: PidControl\n ]\n)\n\nnode_xy = gpd.points_from_xy(x=xy[:, 0], y=xy[:, 1])\n\nnode_type = [\n \"FlowBoundary\",\n \"Basin\",\n \"Pump\",\n \"LevelBoundary\",\n \"PidControl\",\n \"Outlet\",\n \"PidControl\",\n]\n\n# Make sure the feature id starts at 1: explicitly give an index.\nnode = ribasim.Node(\n static=gpd.GeoDataFrame(\n data={\"type\": node_type},\n index=pd.Index(np.arange(len(xy)) + 1, name=\"fid\"),\n geometry=node_xy,\n crs=\"EPSG:28992\",\n )\n)\n\nSetup the edges:\n\nfrom_id = np.array([1, 2, 3, 4, 6, 5, 7], dtype=np.int64)\nto_id = np.array([2, 3, 4, 6, 2, 3, 6], dtype=np.int64)\n\nlines = ribasim.utils.geometry_from_connectivity(node, from_id, to_id)\nedge = ribasim.Edge(\n static=gpd.GeoDataFrame(\n data={\n \"from_node_id\": from_id,\n \"to_node_id\": to_id,\n \"edge_type\": 5 * [\"flow\"] + 2 * [\"control\"],\n },\n geometry=lines,\n crs=\"EPSG:28992\",\n )\n)\n\nSetup the basins:\n\nprofile = pd.DataFrame(\n data={\"node_id\": [2, 2], \"level\": [0.0, 1.0], \"area\": [1000.0, 1000.0]}\n)\n\nstatic = pd.DataFrame(\n data={\n \"node_id\": [2],\n \"drainage\": [0.0],\n \"potential_evaporation\": [0.0],\n \"infiltration\": [0.0],\n \"precipitation\": [0.0],\n \"urban_runoff\": [0.0],\n }\n)\n\nstate = pd.DataFrame(\n data={\n \"node_id\": [2],\n \"level\": [6.0],\n }\n)\n\nbasin = ribasim.Basin(profile=profile, static=static, state=state)\n\nSetup the pump:\n\npump = ribasim.Pump(\n static=pd.DataFrame(\n data={\n \"node_id\": [3],\n \"flow_rate\": [0.0], # Will be overwritten by PID controller\n }\n )\n)\n\nSetup the outlet:\n\noutlet = ribasim.Outlet(\n static=pd.DataFrame(\n data={\n \"node_id\": [6],\n \"flow_rate\": [0.0], # Will be overwritten by PID controller\n }\n )\n)\n\nSetup flow boundary:\n\nflow_boundary = ribasim.FlowBoundary(\n static=pd.DataFrame(data={\"node_id\": [1], \"flow_rate\": [1e-3]})\n)\n\nSetup flow boundary:\n\nlevel_boundary = ribasim.LevelBoundary(\n static=pd.DataFrame(\n data={\n \"node_id\": [4],\n \"level\": [1.0], # Not relevant\n }\n )\n)\n\nSetup PID control:\n\npid_control = ribasim.PidControl(\n time=pd.DataFrame(\n data={\n \"node_id\": 4 * [5, 7],\n \"time\": [\n \"2020-01-01 00:00:00\",\n \"2020-01-01 00:00:00\",\n \"2020-05-01 00:00:00\",\n \"2020-05-01 00:00:00\",\n \"2020-07-01 00:00:00\",\n \"2020-07-01 00:00:00\",\n \"2020-12-01 00:00:00\",\n \"2020-12-01 00:00:00\",\n ],\n \"listen_node_id\": 4 * [2, 2],\n \"target\": [5.0, 5.0, 5.0, 5.0, 7.5, 7.5, 7.5, 7.5],\n \"proportional\": 4 * [-1e-3, 1e-3],\n \"integral\": 4 * [-1e-7, 1e-7],\n \"derivative\": 4 * [0.0, 0.0],\n }\n )\n)\n\nNote that the coefficients for the pump and the outlet are equal in magnitude but opposite in sign. This way the pump and the outlet equally work towards the same goal, while having opposite effects on the controlled basin due to their connectivity to this basin.\nSetup a model:\n\nmodel = ribasim.Model(\n modelname=\"pid_control\",\n node=node,\n edge=edge,\n basin=basin,\n flow_boundary=flow_boundary,\n level_boundary=level_boundary,\n pump=pump,\n outlet=outlet,\n pid_control=pid_control,\n starttime=\"2020-01-01 00:00:00\",\n endtime=\"2020-12-01 00:00:00\",\n)\n\nLet’s take a look at the model:\n\nmodel.plot()\n\n<Axes: >\n\n\n\n\n\nWrite the model to a TOML and GeoPackage:\n\ndatadir = Path(\"data\")\nmodel.write(datadir / \"pid_control\")\n\nNow run the model with ribasim pid_control/pid_control.toml. After running the model, read back the output:\n\nfrom matplotlib.dates import date2num\n\ndf_basin = pd.read_feather(datadir / \"pid_control/output/basin.arrow\")\ndf_basin_wide = df_basin.pivot_table(\n index=\"time\", columns=\"node_id\", values=[\"storage\", \"level\"]\n)\nax = df_basin_wide[\"level\"].plot()\nax.set_ylabel(\"level [m]\")\n\n# Plot target level\ntarget_levels = model.pid_control.time.target.to_numpy()[::2]\ntimes = date2num(model.pid_control.time.time)[::2]\nax.plot(times, target_levels, color=\"k\", ls=\":\", label=\"target level\");"
+ "text": "1 Basic model with static forcing\n\nimport geopandas as gpd\nimport numpy as np\nimport pandas as pd\nimport matplotlib.pyplot as plt\nfrom pathlib import Path\n\nimport ribasim\n\nSetup the basins:\n\nprofile = pd.DataFrame(\n data={\n \"node_id\": [1, 1, 3, 3, 6, 6, 9, 9],\n \"area\": [0.01, 1000.0] * 4,\n \"level\": [0.0, 1.0] * 4,\n }\n)\n\n# Convert steady forcing to m/s\n# 2 mm/d precipitation, 1 mm/d evaporation\nseconds_in_day = 24 * 3600\nprecipitation = 0.002 / seconds_in_day\nevaporation = 0.001 / seconds_in_day\n\nstatic = pd.DataFrame(\n data={\n \"node_id\": [0],\n \"drainage\": [0.0],\n \"potential_evaporation\": [evaporation],\n \"infiltration\": [0.0],\n \"precipitation\": [precipitation],\n \"urban_runoff\": [0.0],\n }\n)\nstatic = static.iloc[[0, 0, 0, 0]]\nstatic[\"node_id\"] = [1, 3, 6, 9]\n\nbasin = ribasim.Basin(profile=profile, static=static)\n\nSetup linear resistance:\n\nlinear_resistance = ribasim.LinearResistance(\n static=pd.DataFrame(\n data={\"node_id\": [10, 12], \"resistance\": [5e3, (3600.0 * 24) / 100.0]}\n )\n)\n\nSetup Manning resistance:\n\nmanning_resistance = ribasim.ManningResistance(\n static=pd.DataFrame(\n data={\n \"node_id\": [2],\n \"length\": [900.0],\n \"manning_n\": [0.04],\n \"profile_width\": [6.0],\n \"profile_slope\": [3.0],\n }\n )\n)\n\nSet up a rating curve node:\n\n# Discharge: lose 1% of storage volume per day at storage = 1000.0.\nq1000 = 1000.0 * 0.01 / seconds_in_day\n\nrating_curve = ribasim.TabulatedRatingCurve(\n static=pd.DataFrame(\n data={\n \"node_id\": [4, 4],\n \"level\": [0.0, 1.0],\n \"discharge\": [0.0, q1000],\n }\n )\n)\n\nSetup fractional flows:\n\nfractional_flow = ribasim.FractionalFlow(\n static=pd.DataFrame(\n data={\n \"node_id\": [5, 8, 13],\n \"fraction\": [0.3, 0.6, 0.1],\n }\n )\n)\n\nSetup pump:\n\npump = ribasim.Pump(\n static=pd.DataFrame(\n data={\n \"node_id\": [7],\n \"flow_rate\": [0.5 / 3600],\n }\n )\n)\n\nSetup level boundary:\n\nlevel_boundary = ribasim.LevelBoundary(\n static=pd.DataFrame(\n data={\n \"node_id\": [11, 17],\n \"level\": [0.5, 1.5],\n }\n )\n)\n\nSetup flow boundary:\n\nflow_boundary = ribasim.FlowBoundary(\n static=pd.DataFrame(\n data={\n \"node_id\": [15, 16],\n \"flow_rate\": [1e-4, 1e-4],\n }\n )\n)\n\nSetup terminal:\n\nterminal = ribasim.Terminal(\n static=pd.DataFrame(\n data={\n \"node_id\": [14],\n }\n )\n)\n\nSet up the nodes:\n\nxy = np.array(\n [\n (0.0, 0.0), # 1: Basin,\n (1.0, 0.0), # 2: ManningResistance\n (2.0, 0.0), # 3: Basin\n (3.0, 0.0), # 4: TabulatedRatingCurve\n (3.0, 1.0), # 5: FractionalFlow\n (3.0, 2.0), # 6: Basin\n (4.0, 1.0), # 7: Pump\n (4.0, 0.0), # 8: FractionalFlow\n (5.0, 0.0), # 9: Basin\n (6.0, 0.0), # 10: LinearResistance\n (2.0, 2.0), # 11: LevelBoundary\n (2.0, 1.0), # 12: LinearResistance\n (3.0, -1.0), # 13: FractionalFlow\n (3.0, -2.0), # 14: Terminal\n (3.0, 3.0), # 15: FlowBoundary\n (0.0, 1.0), # 16: FlowBoundary\n (6.0, 1.0), # 17: LevelBoundary\n ]\n)\nnode_xy = gpd.points_from_xy(x=xy[:, 0], y=xy[:, 1])\n\nnode_id, node_type = ribasim.Node.get_node_ids_and_types(\n basin,\n manning_resistance,\n rating_curve,\n pump,\n fractional_flow,\n linear_resistance,\n level_boundary,\n flow_boundary,\n terminal,\n)\n\n# Make sure the feature id starts at 1: explicitly give an index.\nnode = ribasim.Node(\n static=gpd.GeoDataFrame(\n data={\"type\": node_type},\n index=pd.Index(node_id, name=\"fid\"),\n geometry=node_xy,\n crs=\"EPSG:28992\",\n )\n)\n\nSetup the edges:\n\nfrom_id = np.array(\n [1, 2, 3, 4, 4, 5, 6, 8, 7, 9, 11, 12, 4, 13, 15, 16, 10], dtype=np.int64\n)\nto_id = np.array(\n [2, 3, 4, 5, 8, 6, 7, 9, 9, 10, 12, 3, 13, 14, 6, 1, 17], dtype=np.int64\n)\nlines = ribasim.utils.geometry_from_connectivity(node, from_id, to_id)\nedge = ribasim.Edge(\n static=gpd.GeoDataFrame(\n data={\n \"from_node_id\": from_id,\n \"to_node_id\": to_id,\n \"edge_type\": len(from_id) * [\"flow\"],\n },\n geometry=lines,\n crs=\"EPSG:28992\",\n )\n)\n\nSetup a model:\n\nmodel = ribasim.Model(\n modelname=\"basic\",\n node=node,\n edge=edge,\n basin=basin,\n level_boundary=level_boundary,\n flow_boundary=flow_boundary,\n pump=pump,\n linear_resistance=linear_resistance,\n manning_resistance=manning_resistance,\n tabulated_rating_curve=rating_curve,\n fractional_flow=fractional_flow,\n terminal=terminal,\n starttime=\"2020-01-01 00:00:00\",\n endtime=\"2021-01-01 00:00:00\",\n)\n\nLet’s take a look at the model:\n\nmodel.plot()\n\n<Axes: >\n\n\n\n\n\nWrite the model to a TOML and GeoPackage:\n\ndatadir = Path(\"data\")\nmodel.write(datadir / \"basic\")\n\n\n\n2 Update the basic model with transient forcing\nThis assumes you have already created the basic model with static forcing.\n\nimport numpy as np\nimport pandas as pd\nimport xarray as xr\n\nimport ribasim\n\n\nmodel = ribasim.Model.from_toml(datadir / \"basic/basic.toml\")\n\n\ntime = pd.date_range(model.starttime, model.endtime)\nday_of_year = time.day_of_year.to_numpy()\nseconds_per_day = 24 * 60 * 60\nevaporation = (\n (-1.0 * np.cos(day_of_year / 365.0 * 2 * np.pi) + 1.0) * 0.0025 / seconds_per_day\n)\nrng = np.random.default_rng(seed=0)\nprecipitation = (\n rng.lognormal(mean=-1.0, sigma=1.7, size=time.size) * 0.001 / seconds_per_day\n)\n\nWe’ll use xarray to easily broadcast the values.\n\ntimeseries = (\n pd.DataFrame(\n data={\n \"node_id\": 1,\n \"time\": time,\n \"drainage\": 0.0,\n \"potential_evaporation\": evaporation,\n \"infiltration\": 0.0,\n \"precipitation\": precipitation,\n \"urban_runoff\": 0.0,\n }\n )\n .set_index(\"time\")\n .to_xarray()\n)\n\nbasin_ids = model.basin.static[\"node_id\"].to_numpy()\nbasin_nodes = xr.DataArray(\n np.ones(len(basin_ids)), coords={\"node_id\": basin_ids}, dims=[\"node_id\"]\n)\nforcing = (timeseries * basin_nodes).to_dataframe().reset_index()\n\n\nstate = pd.DataFrame(\n data={\n \"node_id\": basin_ids,\n \"level\": 1.4,\n \"concentration\": 0.0,\n }\n)\n\n\nmodel.basin.time = forcing\nmodel.basin.state = state\n\n\nmodel.modelname = \"basic_transient\"\nmodel.write(datadir / \"basic_transient\")\n\nNow run the model with ribasim basic-transient/basic.toml. After running the model, read back the output:\n\ndf_basin = pd.read_feather(datadir / \"basic_transient/output/basin.arrow\")\ndf_basin_wide = df_basin.pivot_table(\n index=\"time\", columns=\"node_id\", values=[\"storage\", \"level\"]\n)\ndf_basin_wide[\"level\"].plot()\n\n<Axes: xlabel='time'>\n\n\n\n\n\n\ndf_flow = pd.read_feather(datadir / \"basic_transient/output/flow.arrow\")\ndf_flow[\"edge\"] = list(zip(df_flow.from_node_id, df_flow.to_node_id))\ndf_flow[\"flow_m3d\"] = df_flow.flow * 86400\nax = df_flow.pivot_table(index=\"time\", columns=\"edge\", values=\"flow_m3d\").plot()\nax.legend(bbox_to_anchor=(1.3, 1), title=\"Edge\")\n\n<matplotlib.legend.Legend at 0x7f2ff6d72a50>\n\n\n\n\n\n\ntype(df_flow)\n\npandas.core.frame.DataFrame\n\n\n\n\n3 Model with discrete control\nThe model constructed below consists of a single basin which slowly drains trough a TabulatedRatingCurve, but is held within a range around a target level (setpoint) by two connected pumps. These two pumps behave like a reversible pump. When pumping can be done in only one direction, and the other direction is only possible under gravity, use an Outlet for that direction.\nSet up the nodes:\n\nxy = np.array(\n [\n (0.0, 0.0), # 1: Basin\n (1.0, 1.0), # 2: Pump\n (1.0, -1.0), # 3: Pump\n (2.0, 0.0), # 4: LevelBoundary\n (-1.0, 0.0), # 5: TabulatedRatingCurve\n (-2.0, 0.0), # 6: Terminal\n (1.0, 0.0), # 7: DiscreteControl\n ]\n)\n\nnode_xy = gpd.points_from_xy(x=xy[:, 0], y=xy[:, 1])\n\nnode_type = [\n \"Basin\",\n \"Pump\",\n \"Pump\",\n \"LevelBoundary\",\n \"TabulatedRatingCurve\",\n \"Terminal\",\n \"DiscreteControl\",\n]\n\n# Make sure the feature id starts at 1: explicitly give an index.\nnode = ribasim.Node(\n static=gpd.GeoDataFrame(\n data={\"type\": node_type},\n index=pd.Index(np.arange(len(xy)) + 1, name=\"fid\"),\n geometry=node_xy,\n crs=\"EPSG:28992\",\n )\n)\n\nSetup the edges:\n\nfrom_id = np.array([1, 3, 4, 2, 1, 5, 7, 7], dtype=np.int64)\nto_id = np.array([3, 4, 2, 1, 5, 6, 2, 3], dtype=np.int64)\n\nedge_type = 6 * [\"flow\"] + 2 * [\"control\"]\n\nlines = ribasim.utils.geometry_from_connectivity(node, from_id, to_id)\nedge = ribasim.Edge(\n static=gpd.GeoDataFrame(\n data={\"from_node_id\": from_id, \"to_node_id\": to_id, \"edge_type\": edge_type},\n geometry=lines,\n crs=\"EPSG:28992\",\n )\n)\n\nSetup the basins:\n\nprofile = pd.DataFrame(\n data={\n \"node_id\": [1, 1],\n \"area\": [1000.0, 1000.0],\n \"level\": [0.0, 1.0],\n }\n)\n\nstatic = pd.DataFrame(\n data={\n \"node_id\": [1],\n \"drainage\": [0.0],\n \"potential_evaporation\": [0.0],\n \"infiltration\": [0.0],\n \"precipitation\": [0.0],\n \"urban_runoff\": [0.0],\n }\n)\n\nstate = pd.DataFrame(data={\"node_id\": [1], \"level\": [20.0]})\n\nbasin = ribasim.Basin(profile=profile, static=static, state=state)\n\nSetup the discrete control:\n\ncondition = pd.DataFrame(\n data={\n \"node_id\": 3 * [7],\n \"listen_feature_id\": 3 * [1],\n \"variable\": 3 * [\"level\"],\n \"greater_than\": [5.0, 10.0, 15.0], # min, setpoint, max\n }\n)\n\nlogic = pd.DataFrame(\n data={\n \"node_id\": 5 * [7],\n \"truth_state\": [\"FFF\", \"U**\", \"T*F\", \"**D\", \"TTT\"],\n \"control_state\": [\"in\", \"in\", \"none\", \"out\", \"out\"],\n }\n)\n\ndiscrete_control = ribasim.DiscreteControl(condition=condition, logic=logic)\n\nThe above control logic can be summarized as follows: - If the level gets above the maximum, activate the control state “out” until the setpoint is reached; - If the level gets below the minimum, active the control state “in” until the setpoint is reached; - Otherwise activate the control state “none”.\nSetup the pump:\n\npump = ribasim.Pump(\n static=pd.DataFrame(\n data={\n \"node_id\": 3 * [2] + 3 * [3],\n \"control_state\": 2 * [\"none\", \"in\", \"out\"],\n \"flow_rate\": [0.0, 2e-3, 0.0, 0.0, 0.0, 2e-3],\n }\n )\n)\n\nThe pump data defines the following:\n\n\n\nControl state\nPump #2 flow rate (m/s)\nPump #3 flow rate (m/s)\n\n\n\n\n“none”\n0.0\n0.0\n\n\n“in”\n2e-3\n0.0\n\n\n“out”\n0.0\n2e-3\n\n\n\nSetup the level boundary:\n\nlevel_boundary = ribasim.LevelBoundary(\n static=pd.DataFrame(data={\"node_id\": [4], \"level\": [10.0]})\n)\n\nSetup the rating curve:\n\nrating_curve = ribasim.TabulatedRatingCurve(\n static=pd.DataFrame(\n data={\"node_id\": 2 * [5], \"level\": [2.0, 15.0], \"discharge\": [0.0, 1e-3]}\n )\n)\n\nSetup the terminal:\n\nterminal = ribasim.Terminal(static=pd.DataFrame(data={\"node_id\": [6]}))\n\nSetup a model:\n\nmodel = ribasim.Model(\n modelname=\"level_setpoint_with_minmax\",\n node=node,\n edge=edge,\n basin=basin,\n pump=pump,\n level_boundary=level_boundary,\n tabulated_rating_curve=rating_curve,\n terminal=terminal,\n discrete_control=discrete_control,\n starttime=\"2020-01-01 00:00:00\",\n endtime=\"2021-01-01 00:00:00\",\n)\n\nLet’s take a look at the model:\n\nmodel.plot()\n\n<Axes: >\n\n\n\n\n\nListen edges are plotted with a dashed line since they are not present in the “Edge / static” schema but only in the “Control / condition” schema.\n\ndatadir = Path(\"data\")\nmodel.write(datadir / \"level_setpoint_with_minmax\")\n\nNow run the model with level_setpoint_with_minmax/level_setpoint_with_minmax.toml. After running the model, read back the output:\n\nfrom matplotlib.dates import date2num\n\ndf_basin = pd.read_feather(datadir / \"level_setpoint_with_minmax/output/basin.arrow\")\ndf_basin_wide = df_basin.pivot_table(\n index=\"time\", columns=\"node_id\", values=[\"storage\", \"level\"]\n)\n\nax = df_basin_wide[\"level\"].plot()\n\ngreater_than = model.discrete_control.condition.greater_than\n\nax.hlines(\n greater_than,\n df_basin.time[0],\n df_basin.time.max(),\n lw=1,\n ls=\"--\",\n color=\"k\",\n)\n\ndf_control = pd.read_feather(\n datadir / \"level_setpoint_with_minmax/output/control.arrow\"\n)\n\ny_min, y_max = ax.get_ybound()\nax.fill_between(df_control.time[:2], 2 * [y_min], 2 * [y_max], alpha=0.2, color=\"C0\")\nax.fill_between(df_control.time[2:4], 2 * [y_min], 2 * [y_max], alpha=0.2, color=\"C0\")\n\nax.set_xticks(\n date2num(df_control.time).tolist(),\n df_control.control_state.tolist(),\n rotation=50,\n)\n\nax.set_yticks(greater_than, [\"min\", \"setpoint\", \"max\"])\nax.set_ylabel(\"level\")\nplt.show()\n\n\n\n\nThe highlighted regions show where a pump is active.\nLet’s print an overview of what happened with control:\n\nmodel.print_discrete_control_record(\n datadir / \"level_setpoint_with_minmax/output/control.arrow\"\n)\n\n0. At 2020-01-01 00:00:00 the control node with ID 7 reached truth state TTT:\n For node ID 1 (Basin): level > 5.0\n For node ID 1 (Basin): level > 10.0\n For node ID 1 (Basin): level > 15.0\n\n This yielded control state \"out\":\n For node ID 2 (Pump): flow_rate = 0.0\n For node ID 3 (Pump): flow_rate = 0.002\n\n1. At 2020-02-09 01:17:29.324000 the control node with ID 7 reached truth state TFF:\n For node ID 1 (Basin): level > 5.0\n For node ID 1 (Basin): level < 10.0\n For node ID 1 (Basin): level < 15.0\n\n This yielded control state \"none\":\n For node ID 2 (Pump): flow_rate = 0.0\n For node ID 3 (Pump): flow_rate = 0.0\n\n2. At 2020-07-05 13:24:51.165000 the control node with ID 7 reached truth state FFF:\n For node ID 1 (Basin): level < 5.0\n For node ID 1 (Basin): level < 10.0\n For node ID 1 (Basin): level < 15.0\n\n This yielded control state \"in\":\n For node ID 2 (Pump): flow_rate = 0.002\n For node ID 3 (Pump): flow_rate = 0.0\n\n3. At 2020-08-11 11:49:59.015000 the control node with ID 7 reached truth state TTF:\n For node ID 1 (Basin): level > 5.0\n For node ID 1 (Basin): level > 10.0\n For node ID 1 (Basin): level < 15.0\n\n This yielded control state \"none\":\n For node ID 2 (Pump): flow_rate = 0.0\n For node ID 3 (Pump): flow_rate = 0.0\n\n\n\nNote that crossing direction specific truth states (containing “U”, “D”) are not present in this overview even though they are part of the control logic. This is because in the control logic for this model these truth states are only used to sustain control states, while the overview only shows changes in control states.\n\n\n4 Model with PID control\nSet up the nodes:\n\nxy = np.array(\n [\n (0.0, 0.0), # 1: FlowBoundary\n (1.0, 0.0), # 2: Basin\n (2.0, 0.5), # 3: Pump\n (3.0, 0.0), # 4: LevelBoundary\n (1.5, 1.0), # 5: PidControl\n (2.0, -0.5), # 6: outlet\n (1.5, -1.0), # 7: PidControl\n ]\n)\n\nnode_xy = gpd.points_from_xy(x=xy[:, 0], y=xy[:, 1])\n\nnode_type = [\n \"FlowBoundary\",\n \"Basin\",\n \"Pump\",\n \"LevelBoundary\",\n \"PidControl\",\n \"Outlet\",\n \"PidControl\",\n]\n\n# Make sure the feature id starts at 1: explicitly give an index.\nnode = ribasim.Node(\n static=gpd.GeoDataFrame(\n data={\"type\": node_type},\n index=pd.Index(np.arange(len(xy)) + 1, name=\"fid\"),\n geometry=node_xy,\n crs=\"EPSG:28992\",\n )\n)\n\nSetup the edges:\n\nfrom_id = np.array([1, 2, 3, 4, 6, 5, 7], dtype=np.int64)\nto_id = np.array([2, 3, 4, 6, 2, 3, 6], dtype=np.int64)\n\nlines = ribasim.utils.geometry_from_connectivity(node, from_id, to_id)\nedge = ribasim.Edge(\n static=gpd.GeoDataFrame(\n data={\n \"from_node_id\": from_id,\n \"to_node_id\": to_id,\n \"edge_type\": 5 * [\"flow\"] + 2 * [\"control\"],\n },\n geometry=lines,\n crs=\"EPSG:28992\",\n )\n)\n\nSetup the basins:\n\nprofile = pd.DataFrame(\n data={\"node_id\": [2, 2], \"level\": [0.0, 1.0], \"area\": [1000.0, 1000.0]}\n)\n\nstatic = pd.DataFrame(\n data={\n \"node_id\": [2],\n \"drainage\": [0.0],\n \"potential_evaporation\": [0.0],\n \"infiltration\": [0.0],\n \"precipitation\": [0.0],\n \"urban_runoff\": [0.0],\n }\n)\n\nstate = pd.DataFrame(\n data={\n \"node_id\": [2],\n \"level\": [6.0],\n }\n)\n\nbasin = ribasim.Basin(profile=profile, static=static, state=state)\n\nSetup the pump:\n\npump = ribasim.Pump(\n static=pd.DataFrame(\n data={\n \"node_id\": [3],\n \"flow_rate\": [0.0], # Will be overwritten by PID controller\n }\n )\n)\n\nSetup the outlet:\n\noutlet = ribasim.Outlet(\n static=pd.DataFrame(\n data={\n \"node_id\": [6],\n \"flow_rate\": [0.0], # Will be overwritten by PID controller\n }\n )\n)\n\nSetup flow boundary:\n\nflow_boundary = ribasim.FlowBoundary(\n static=pd.DataFrame(data={\"node_id\": [1], \"flow_rate\": [1e-3]})\n)\n\nSetup flow boundary:\n\nlevel_boundary = ribasim.LevelBoundary(\n static=pd.DataFrame(\n data={\n \"node_id\": [4],\n \"level\": [1.0], # Not relevant\n }\n )\n)\n\nSetup PID control:\n\npid_control = ribasim.PidControl(\n time=pd.DataFrame(\n data={\n \"node_id\": 4 * [5, 7],\n \"time\": [\n \"2020-01-01 00:00:00\",\n \"2020-01-01 00:00:00\",\n \"2020-05-01 00:00:00\",\n \"2020-05-01 00:00:00\",\n \"2020-07-01 00:00:00\",\n \"2020-07-01 00:00:00\",\n \"2020-12-01 00:00:00\",\n \"2020-12-01 00:00:00\",\n ],\n \"listen_node_id\": 4 * [2, 2],\n \"target\": [5.0, 5.0, 5.0, 5.0, 7.5, 7.5, 7.5, 7.5],\n \"proportional\": 4 * [-1e-3, 1e-3],\n \"integral\": 4 * [-1e-7, 1e-7],\n \"derivative\": 4 * [0.0, 0.0],\n }\n )\n)\n\nNote that the coefficients for the pump and the outlet are equal in magnitude but opposite in sign. This way the pump and the outlet equally work towards the same goal, while having opposite effects on the controlled basin due to their connectivity to this basin.\nSetup a model:\n\nmodel = ribasim.Model(\n modelname=\"pid_control\",\n node=node,\n edge=edge,\n basin=basin,\n flow_boundary=flow_boundary,\n level_boundary=level_boundary,\n pump=pump,\n outlet=outlet,\n pid_control=pid_control,\n starttime=\"2020-01-01 00:00:00\",\n endtime=\"2020-12-01 00:00:00\",\n)\n\nLet’s take a look at the model:\n\nmodel.plot()\n\n<Axes: >\n\n\n\n\n\nWrite the model to a TOML and GeoPackage:\n\ndatadir = Path(\"data\")\nmodel.write(datadir / \"pid_control\")\n\nNow run the model with ribasim pid_control/pid_control.toml. After running the model, read back the output:\n\nfrom matplotlib.dates import date2num\n\ndf_basin = pd.read_feather(datadir / \"pid_control/output/basin.arrow\")\ndf_basin_wide = df_basin.pivot_table(\n index=\"time\", columns=\"node_id\", values=[\"storage\", \"level\"]\n)\nax = df_basin_wide[\"level\"].plot()\nax.set_ylabel(\"level [m]\")\n\n# Plot target level\ntarget_levels = model.pid_control.time.target.to_numpy()[::2]\ntimes = date2num(model.pid_control.time.time)[::2]\nax.plot(times, target_levels, color=\"k\", ls=\":\", label=\"target level\");"
},
{
"objectID": "contribute/core.html",