Code
using Ribasim
@@ -588,41 +588,41 @@ println(p.allocation.allocation_models[1].problem)
Min F[(Basin #2, UserDemand #3)]² + F[(Basin #12, UserDemand #13)]² + F[(Basin #5, UserDemand #6)]²
+Min F[(Basin #2, UserDemand #3)]² + F[(Basin #5, UserDemand #6)]² + F[(Basin #12, UserDemand #13)]²
Subject to
- F[(UserDemand #3, Basin #2)] ≥ 0
- F[(Basin #2, UserDemand #3)] ≥ 0
- F[(LinearResistance #4, Basin #5)] ≥ 0
- F[(Basin #5, LinearResistance #4)] ≥ 0
- F[(Basin #12, UserDemand #13)] ≥ 0
F[(Basin #2, LinearResistance #4)] ≥ 0
F[(LinearResistance #4, Basin #2)] ≥ 0
- F[(UserDemand #13, Terminal #10)] ≥ 0
- F[(FlowBoundary #1, Basin #2)] ≥ 0
- F[(Basin #5, TabulatedRatingCurve #7)] ≥ 0
F[(FractionalFlow #8, Terminal #10)] ≥ 0
+ F[(TabulatedRatingCurve #7, FractionalFlow #9)] ≥ 0
+ F[(TabulatedRatingCurve #7, FractionalFlow #8)] ≥ 0
+ F[(Basin #2, UserDemand #3)] ≥ 0
+ F[(UserDemand #3, Basin #2)] ≥ 0
+ F[(FlowBoundary #1, Basin #2)] ≥ 0
F[(UserDemand #6, Basin #5)] ≥ 0
+ F[(LinearResistance #4, Basin #5)] ≥ 0
+ F[(Basin #5, LinearResistance #4)] ≥ 0
F[(FractionalFlow #9, Basin #12)] ≥ 0
F[(Basin #5, UserDemand #6)] ≥ 0
- F[(TabulatedRatingCurve #7, FractionalFlow #8)] ≥ 0
- F[(TabulatedRatingCurve #7, FractionalFlow #9)] ≥ 0
+ F[(Basin #5, TabulatedRatingCurve #7)] ≥ 0
+ F[(Basin #12, UserDemand #13)] ≥ 0
+ F[(UserDemand #13, Terminal #10)] ≥ 0
F_flow_buffer_in[TabulatedRatingCurve #7] ≥ 0
F_flow_buffer_out[TabulatedRatingCurve #7] ≥ 0
source[(FlowBoundary #1, Basin #2)] : F[(FlowBoundary #1, Basin #2)] ≤ 172800
- source_user[UserDemand #13] : F[(UserDemand #13, Terminal #10)] ≤ 0
- source_user[UserDemand #3] : F[(UserDemand #3, Basin #2)] ≤ 0
source_user[UserDemand #6] : F[(UserDemand #6, Basin #5)] ≤ 0
- fractional_flow[(TabulatedRatingCurve #7, FractionalFlow #8)] : -0.6 F[(Basin #5, TabulatedRatingCurve #7)] + F[(TabulatedRatingCurve #7, FractionalFlow #8)] ≤ 0
- fractional_flow[(TabulatedRatingCurve #7, FractionalFlow #9)] : -0.4 F[(Basin #5, TabulatedRatingCurve #7)] + F[(TabulatedRatingCurve #7, FractionalFlow #9)] ≤ 0
+ source_user[UserDemand #3] : F[(UserDemand #3, Basin #2)] ≤ 0
+ source_user[UserDemand #13] : F[(UserDemand #13, Terminal #10)] ≤ 0
+ fractional_flow[(TabulatedRatingCurve #7, FractionalFlow #8)] : F[(TabulatedRatingCurve #7, FractionalFlow #8)] - 0.6 F[(Basin #5, TabulatedRatingCurve #7)] ≤ 0
+ fractional_flow[(TabulatedRatingCurve #7, FractionalFlow #9)] : F[(TabulatedRatingCurve #7, FractionalFlow #9)] - 0.4 F[(Basin #5, TabulatedRatingCurve #7)] ≤ 0
flow_buffer_outflow[TabulatedRatingCurve #7] : F_flow_buffer_out[TabulatedRatingCurve #7] ≤ 0
- flow_conservation[FractionalFlow #9] : -F[(FractionalFlow #9, Basin #12)] + F[(TabulatedRatingCurve #7, FractionalFlow #9)] = 0
- flow_conservation[Basin #12] : -F[(Basin #12, UserDemand #13)] + F[(FractionalFlow #9, Basin #12)] = 0
- flow_conservation[TabulatedRatingCurve #7] : F[(Basin #5, TabulatedRatingCurve #7)] - F[(TabulatedRatingCurve #7, FractionalFlow #8)] - F[(TabulatedRatingCurve #7, FractionalFlow #9)] - F_flow_buffer_in[TabulatedRatingCurve #7] + F_flow_buffer_out[TabulatedRatingCurve #7] = 0
- flow_conservation[Terminal #10] : F[(UserDemand #13, Terminal #10)] + F[(FractionalFlow #8, Terminal #10)] = 0
- flow_conservation[Basin #2] : F[(UserDemand #3, Basin #2)] - F[(Basin #2, UserDemand #3)] - F[(Basin #2, LinearResistance #4)] + F[(LinearResistance #4, Basin #2)] + F[(FlowBoundary #1, Basin #2)] = 0
flow_conservation[FractionalFlow #8] : -F[(FractionalFlow #8, Terminal #10)] + F[(TabulatedRatingCurve #7, FractionalFlow #8)] = 0
- flow_conservation[LinearResistance #4] : -F[(LinearResistance #4, Basin #5)] + F[(Basin #5, LinearResistance #4)] + F[(Basin #2, LinearResistance #4)] - F[(LinearResistance #4, Basin #2)] = 0
- flow_conservation[Basin #5] : F[(LinearResistance #4, Basin #5)] - F[(Basin #5, LinearResistance #4)] - F[(Basin #5, TabulatedRatingCurve #7)] + F[(UserDemand #6, Basin #5)] - F[(Basin #5, UserDemand #6)] = 0
+ flow_conservation[Terminal #10] : F[(FractionalFlow #8, Terminal #10)] + F[(UserDemand #13, Terminal #10)] = 0
+ flow_conservation[Basin #12] : F[(FractionalFlow #9, Basin #12)] - F[(Basin #12, UserDemand #13)] = 0
+ flow_conservation[FractionalFlow #9] : F[(TabulatedRatingCurve #7, FractionalFlow #9)] - F[(FractionalFlow #9, Basin #12)] = 0
+ flow_conservation[TabulatedRatingCurve #7] : -F[(TabulatedRatingCurve #7, FractionalFlow #9)] - F[(TabulatedRatingCurve #7, FractionalFlow #8)] + F[(Basin #5, TabulatedRatingCurve #7)] - F_flow_buffer_in[TabulatedRatingCurve #7] + F_flow_buffer_out[TabulatedRatingCurve #7] = 0
+ flow_conservation[Basin #5] : F[(UserDemand #6, Basin #5)] + F[(LinearResistance #4, Basin #5)] - F[(Basin #5, LinearResistance #4)] - F[(Basin #5, UserDemand #6)] - F[(Basin #5, TabulatedRatingCurve #7)] = 0
+ flow_conservation[LinearResistance #4] : F[(Basin #2, LinearResistance #4)] - F[(LinearResistance #4, Basin #2)] - F[(LinearResistance #4, Basin #5)] + F[(Basin #5, LinearResistance #4)] = 0
+ flow_conservation[Basin #2] : -F[(Basin #2, LinearResistance #4)] + F[(LinearResistance #4, Basin #2)] - F[(Basin #2, UserDemand #3)] + F[(UserDemand #3, Basin #2)] + F[(FlowBoundary #1, Basin #2)] = 0
Here \(p > 0\) is the threshold value which determines the interval \([0,p]\) of the smooth transition between \(0\) and \(1\), see the plot below.
-
+
Code
import numpy as np
diff --git a/core/validation.html b/core/validation.html
index 022a20a49..7ac265faf 100644
--- a/core/validation.html
+++ b/core/validation.html
@@ -262,7 +262,7 @@ Validation
1 Connectivity
In the table below, each column shows which node types are allowed to be downstream (or ‘down-control’) of the node type at the top of the column.
-
+
Code
using Ribasim
@@ -612,7 +612,7 @@ 1 Connectivity
2 Neighbor amounts
The table below shows for each node type between which bounds the amount of in- and outneighbors must be, for both flow and control edges.
-
+
Code
= Vector{String}()
diff --git a/python/examples_files/figure-html/cell-71-output-1.png b/python/examples_files/figure-html/cell-71-output-1.png
index 2e273a56f..42dfff946 100644
Binary files a/python/examples_files/figure-html/cell-71-output-1.png and b/python/examples_files/figure-html/cell-71-output-1.png differ
diff --git a/python/test-models.html b/python/test-models.html
index a6746f1fe..ae0040236 100644
--- a/python/test-models.html
+++ b/python/test-models.html
@@ -227,7 +227,7 @@ flow_in_min Test models
Ribasim developers use the following models in their testbench and in order to test new features.
-
+
Code
import ribasim_testmodels
diff --git a/search.json b/search.json
index d188e2f5a..1be9a8fd3 100644
--- a/search.json
+++ b/search.json
@@ -793,7 +793,7 @@
"href": "contribute/addnode.html#parameters",
"title": "Adding node types",
"section": "1.1 Parameters",
- "text": "1.1 Parameters\nThe parameters object (defined in parameter.jl) passed to the ODE solver must be made aware of the new node type. Therefore define a struct in parameter.jl which holds the data for each node of the new node type:\nstruct NewNodeType <: AbstractParameterNode\n node_id::Vector{NodeID}\n # Other fields\nend\nThese fields do not have to correspond 1:1 with the input tables (see below). The vector with all node IDs that are of the new type in a given model is a mandatory field. Now you can:\n\nAdd new_node_type::NewNodeType to the Parameters object;\nAdd new_node_type = NewNodeType(db,config) to the function Parameters in read.jl and add new_node_type at the proper location in the Parameters constructor call.",
+ "text": "1.1 Parameters\nThe parameters object (defined in parameter.jl) passed to the ODE solver must be made aware of the new node type. Therefore define a struct in parameter.jl which holds the data for each node of the new node type:\nstruct NewNodeType <: AbstractParameterNode\n node_id::Vector{NodeID}\n # Other fields\nend\nAnother abstract type which subtypes from AbstractParameterNode is called AbstractDemandNode. For creating new node type used in allocation, define a struct:\nstruct NewNodeType <: AbstractDemandNode\n node_id::Vector{NodeID}\n # Other fields\nend\nThese fields do not have to correspond 1:1 with the input tables (see below). The vector with all node IDs that are of the new type in a given model is a mandatory field. Now you can:\n\nAdd new_node_type::NewNodeType to the Parameters object;\nAdd new_node_type = NewNodeType(db,config) to the function Parameters in read.jl and add new_node_type at the proper location in the Parameters constructor call.",
"crumbs": [
"Contributing",
"Adding node types"
@@ -1343,7 +1343,7 @@
"href": "core/allocation.html#example",
"title": "Allocation",
"section": "4.4 Example",
- "text": "4.4 Example\nThe following is an example of an optimization problem for the example shown here:\n\n\nCode\nusing Ribasim\nusing Ribasim: NodeID\nusing SQLite\nusing ComponentArrays: ComponentVector\n\ntoml_path = normpath(@__DIR__, \"../../generated_testmodels/allocation_example/ribasim.toml\")\np = Ribasim.Model(toml_path).integrator.p\nu = ComponentVector(; storage = zeros(length(p.basin.node_id)))\n\nallocation_model = p.allocation.allocation_models[1]\nt = 0.0\npriority_idx = 1\n\nRibasim.set_flow!(p.graph, NodeID(:FlowBoundary, 1), NodeID(:Basin, 2), 1.0)\nRibasim.set_objective_priority!(allocation_model, p, u, t, priority_idx)\nRibasim.set_initial_values!(allocation_model, p, u, t)\n\nprintln(p.allocation.allocation_models[1].problem)\n\n\nMin F[(Basin #2, UserDemand #3)]² + F[(Basin #12, UserDemand #13)]² + F[(Basin #5, UserDemand #6)]²\nSubject to\n F[(UserDemand #3, Basin #2)] ≥ 0\n F[(Basin #2, UserDemand #3)] ≥ 0\n F[(LinearResistance #4, Basin #5)] ≥ 0\n F[(Basin #5, LinearResistance #4)] ≥ 0\n F[(Basin #12, UserDemand #13)] ≥ 0\n F[(Basin #2, LinearResistance #4)] ≥ 0\n F[(LinearResistance #4, Basin #2)] ≥ 0\n F[(UserDemand #13, Terminal #10)] ≥ 0\n F[(FlowBoundary #1, Basin #2)] ≥ 0\n F[(Basin #5, TabulatedRatingCurve #7)] ≥ 0\n F[(FractionalFlow #8, Terminal #10)] ≥ 0\n F[(UserDemand #6, Basin #5)] ≥ 0\n F[(FractionalFlow #9, Basin #12)] ≥ 0\n F[(Basin #5, UserDemand #6)] ≥ 0\n F[(TabulatedRatingCurve #7, FractionalFlow #8)] ≥ 0\n F[(TabulatedRatingCurve #7, FractionalFlow #9)] ≥ 0\n F_flow_buffer_in[TabulatedRatingCurve #7] ≥ 0\n F_flow_buffer_out[TabulatedRatingCurve #7] ≥ 0\n source[(FlowBoundary #1, Basin #2)] : F[(FlowBoundary #1, Basin #2)] ≤ 172800\n source_user[UserDemand #13] : F[(UserDemand #13, Terminal #10)] ≤ 0\n source_user[UserDemand #3] : F[(UserDemand #3, Basin #2)] ≤ 0\n source_user[UserDemand #6] : F[(UserDemand #6, Basin #5)] ≤ 0\n fractional_flow[(TabulatedRatingCurve #7, FractionalFlow #8)] : -0.6 F[(Basin #5, TabulatedRatingCurve #7)] + F[(TabulatedRatingCurve #7, FractionalFlow #8)] ≤ 0\n fractional_flow[(TabulatedRatingCurve #7, FractionalFlow #9)] : -0.4 F[(Basin #5, TabulatedRatingCurve #7)] + F[(TabulatedRatingCurve #7, FractionalFlow #9)] ≤ 0\n flow_buffer_outflow[TabulatedRatingCurve #7] : F_flow_buffer_out[TabulatedRatingCurve #7] ≤ 0\n flow_conservation[FractionalFlow #9] : -F[(FractionalFlow #9, Basin #12)] + F[(TabulatedRatingCurve #7, FractionalFlow #9)] = 0\n flow_conservation[Basin #12] : -F[(Basin #12, UserDemand #13)] + F[(FractionalFlow #9, Basin #12)] = 0\n flow_conservation[TabulatedRatingCurve #7] : F[(Basin #5, TabulatedRatingCurve #7)] - F[(TabulatedRatingCurve #7, FractionalFlow #8)] - F[(TabulatedRatingCurve #7, FractionalFlow #9)] - F_flow_buffer_in[TabulatedRatingCurve #7] + F_flow_buffer_out[TabulatedRatingCurve #7] = 0\n flow_conservation[Terminal #10] : F[(UserDemand #13, Terminal #10)] + F[(FractionalFlow #8, Terminal #10)] = 0\n flow_conservation[Basin #2] : F[(UserDemand #3, Basin #2)] - F[(Basin #2, UserDemand #3)] - F[(Basin #2, LinearResistance #4)] + F[(LinearResistance #4, Basin #2)] + F[(FlowBoundary #1, Basin #2)] = 0\n flow_conservation[FractionalFlow #8] : -F[(FractionalFlow #8, Terminal #10)] + F[(TabulatedRatingCurve #7, FractionalFlow #8)] = 0\n flow_conservation[LinearResistance #4] : -F[(LinearResistance #4, Basin #5)] + F[(Basin #5, LinearResistance #4)] + F[(Basin #2, LinearResistance #4)] - F[(LinearResistance #4, Basin #2)] = 0\n flow_conservation[Basin #5] : F[(LinearResistance #4, Basin #5)] - F[(Basin #5, LinearResistance #4)] - F[(Basin #5, TabulatedRatingCurve #7)] + F[(UserDemand #6, Basin #5)] - F[(Basin #5, UserDemand #6)] = 0",
+ "text": "4.4 Example\nThe following is an example of an optimization problem for the example shown here:\n\n\nCode\nusing Ribasim\nusing Ribasim: NodeID\nusing SQLite\nusing ComponentArrays: ComponentVector\n\ntoml_path = normpath(@__DIR__, \"../../generated_testmodels/allocation_example/ribasim.toml\")\np = Ribasim.Model(toml_path).integrator.p\nu = ComponentVector(; storage = zeros(length(p.basin.node_id)))\n\nallocation_model = p.allocation.allocation_models[1]\nt = 0.0\npriority_idx = 1\n\nRibasim.set_flow!(p.graph, NodeID(:FlowBoundary, 1), NodeID(:Basin, 2), 1.0)\nRibasim.set_objective_priority!(allocation_model, p, u, t, priority_idx)\nRibasim.set_initial_values!(allocation_model, p, u, t)\n\nprintln(p.allocation.allocation_models[1].problem)\n\n\nMin F[(Basin #2, UserDemand #3)]² + F[(Basin #5, UserDemand #6)]² + F[(Basin #12, UserDemand #13)]²\nSubject to\n F[(Basin #2, LinearResistance #4)] ≥ 0\n F[(LinearResistance #4, Basin #2)] ≥ 0\n F[(FractionalFlow #8, Terminal #10)] ≥ 0\n F[(TabulatedRatingCurve #7, FractionalFlow #9)] ≥ 0\n F[(TabulatedRatingCurve #7, FractionalFlow #8)] ≥ 0\n F[(Basin #2, UserDemand #3)] ≥ 0\n F[(UserDemand #3, Basin #2)] ≥ 0\n F[(FlowBoundary #1, Basin #2)] ≥ 0\n F[(UserDemand #6, Basin #5)] ≥ 0\n F[(LinearResistance #4, Basin #5)] ≥ 0\n F[(Basin #5, LinearResistance #4)] ≥ 0\n F[(FractionalFlow #9, Basin #12)] ≥ 0\n F[(Basin #5, UserDemand #6)] ≥ 0\n F[(Basin #5, TabulatedRatingCurve #7)] ≥ 0\n F[(Basin #12, UserDemand #13)] ≥ 0\n F[(UserDemand #13, Terminal #10)] ≥ 0\n F_flow_buffer_in[TabulatedRatingCurve #7] ≥ 0\n F_flow_buffer_out[TabulatedRatingCurve #7] ≥ 0\n source[(FlowBoundary #1, Basin #2)] : F[(FlowBoundary #1, Basin #2)] ≤ 172800\n source_user[UserDemand #6] : F[(UserDemand #6, Basin #5)] ≤ 0\n source_user[UserDemand #3] : F[(UserDemand #3, Basin #2)] ≤ 0\n source_user[UserDemand #13] : F[(UserDemand #13, Terminal #10)] ≤ 0\n fractional_flow[(TabulatedRatingCurve #7, FractionalFlow #8)] : F[(TabulatedRatingCurve #7, FractionalFlow #8)] - 0.6 F[(Basin #5, TabulatedRatingCurve #7)] ≤ 0\n fractional_flow[(TabulatedRatingCurve #7, FractionalFlow #9)] : F[(TabulatedRatingCurve #7, FractionalFlow #9)] - 0.4 F[(Basin #5, TabulatedRatingCurve #7)] ≤ 0\n flow_buffer_outflow[TabulatedRatingCurve #7] : F_flow_buffer_out[TabulatedRatingCurve #7] ≤ 0\n flow_conservation[FractionalFlow #8] : -F[(FractionalFlow #8, Terminal #10)] + F[(TabulatedRatingCurve #7, FractionalFlow #8)] = 0\n flow_conservation[Terminal #10] : F[(FractionalFlow #8, Terminal #10)] + F[(UserDemand #13, Terminal #10)] = 0\n flow_conservation[Basin #12] : F[(FractionalFlow #9, Basin #12)] - F[(Basin #12, UserDemand #13)] = 0\n flow_conservation[FractionalFlow #9] : F[(TabulatedRatingCurve #7, FractionalFlow #9)] - F[(FractionalFlow #9, Basin #12)] = 0\n flow_conservation[TabulatedRatingCurve #7] : -F[(TabulatedRatingCurve #7, FractionalFlow #9)] - F[(TabulatedRatingCurve #7, FractionalFlow #8)] + F[(Basin #5, TabulatedRatingCurve #7)] - F_flow_buffer_in[TabulatedRatingCurve #7] + F_flow_buffer_out[TabulatedRatingCurve #7] = 0\n flow_conservation[Basin #5] : F[(UserDemand #6, Basin #5)] + F[(LinearResistance #4, Basin #5)] - F[(Basin #5, LinearResistance #4)] - F[(Basin #5, UserDemand #6)] - F[(Basin #5, TabulatedRatingCurve #7)] = 0\n flow_conservation[LinearResistance #4] : F[(Basin #2, LinearResistance #4)] - F[(LinearResistance #4, Basin #2)] - F[(LinearResistance #4, Basin #5)] + F[(Basin #5, LinearResistance #4)] = 0\n flow_conservation[Basin #2] : -F[(Basin #2, LinearResistance #4)] + F[(LinearResistance #4, Basin #2)] - F[(Basin #2, UserDemand #3)] + F[(UserDemand #3, Basin #2)] + F[(FlowBoundary #1, Basin #2)] = 0",
"crumbs": [
"Julia core",
"Allocation"
Here \(p > 0\) is the threshold value which determines the interval \([0,p]\) of the smooth transition between \(0\) and \(1\), see the plot below.
-Code
import numpy as np
diff --git a/core/validation.html b/core/validation.html
index 022a20a49..7ac265faf 100644
--- a/core/validation.html
+++ b/core/validation.html
@@ -262,7 +262,7 @@ Validation
1 Connectivity
In the table below, each column shows which node types are allowed to be downstream (or ‘down-control’) of the node type at the top of the column.
-
+
Code
using Ribasim
@@ -612,7 +612,7 @@ 1 Connectivity
2 Neighbor amounts
The table below shows for each node type between which bounds the amount of in- and outneighbors must be, for both flow and control edges.
-
+
Code
= Vector{String}()
diff --git a/python/examples_files/figure-html/cell-71-output-1.png b/python/examples_files/figure-html/cell-71-output-1.png
index 2e273a56f..42dfff946 100644
Binary files a/python/examples_files/figure-html/cell-71-output-1.png and b/python/examples_files/figure-html/cell-71-output-1.png differ
diff --git a/python/test-models.html b/python/test-models.html
index a6746f1fe..ae0040236 100644
--- a/python/test-models.html
+++ b/python/test-models.html
@@ -227,7 +227,7 @@ flow_in_min Test models
Ribasim developers use the following models in their testbench and in order to test new features.
-
+
Code
import ribasim_testmodels
diff --git a/search.json b/search.json
index d188e2f5a..1be9a8fd3 100644
--- a/search.json
+++ b/search.json
@@ -793,7 +793,7 @@
"href": "contribute/addnode.html#parameters",
"title": "Adding node types",
"section": "1.1 Parameters",
- "text": "1.1 Parameters\nThe parameters object (defined in parameter.jl) passed to the ODE solver must be made aware of the new node type. Therefore define a struct in parameter.jl which holds the data for each node of the new node type:\nstruct NewNodeType <: AbstractParameterNode\n node_id::Vector{NodeID}\n # Other fields\nend\nThese fields do not have to correspond 1:1 with the input tables (see below). The vector with all node IDs that are of the new type in a given model is a mandatory field. Now you can:\n\nAdd new_node_type::NewNodeType to the Parameters object;\nAdd new_node_type = NewNodeType(db,config) to the function Parameters in read.jl and add new_node_type at the proper location in the Parameters constructor call.",
+ "text": "1.1 Parameters\nThe parameters object (defined in parameter.jl) passed to the ODE solver must be made aware of the new node type. Therefore define a struct in parameter.jl which holds the data for each node of the new node type:\nstruct NewNodeType <: AbstractParameterNode\n node_id::Vector{NodeID}\n # Other fields\nend\nAnother abstract type which subtypes from AbstractParameterNode is called AbstractDemandNode. For creating new node type used in allocation, define a struct:\nstruct NewNodeType <: AbstractDemandNode\n node_id::Vector{NodeID}\n # Other fields\nend\nThese fields do not have to correspond 1:1 with the input tables (see below). The vector with all node IDs that are of the new type in a given model is a mandatory field. Now you can:\n\nAdd new_node_type::NewNodeType to the Parameters object;\nAdd new_node_type = NewNodeType(db,config) to the function Parameters in read.jl and add new_node_type at the proper location in the Parameters constructor call.",
"crumbs": [
"Contributing",
"Adding node types"
@@ -1343,7 +1343,7 @@
"href": "core/allocation.html#example",
"title": "Allocation",
"section": "4.4 Example",
- "text": "4.4 Example\nThe following is an example of an optimization problem for the example shown here:\n\n\nCode\nusing Ribasim\nusing Ribasim: NodeID\nusing SQLite\nusing ComponentArrays: ComponentVector\n\ntoml_path = normpath(@__DIR__, \"../../generated_testmodels/allocation_example/ribasim.toml\")\np = Ribasim.Model(toml_path).integrator.p\nu = ComponentVector(; storage = zeros(length(p.basin.node_id)))\n\nallocation_model = p.allocation.allocation_models[1]\nt = 0.0\npriority_idx = 1\n\nRibasim.set_flow!(p.graph, NodeID(:FlowBoundary, 1), NodeID(:Basin, 2), 1.0)\nRibasim.set_objective_priority!(allocation_model, p, u, t, priority_idx)\nRibasim.set_initial_values!(allocation_model, p, u, t)\n\nprintln(p.allocation.allocation_models[1].problem)\n\n\nMin F[(Basin #2, UserDemand #3)]² + F[(Basin #12, UserDemand #13)]² + F[(Basin #5, UserDemand #6)]²\nSubject to\n F[(UserDemand #3, Basin #2)] ≥ 0\n F[(Basin #2, UserDemand #3)] ≥ 0\n F[(LinearResistance #4, Basin #5)] ≥ 0\n F[(Basin #5, LinearResistance #4)] ≥ 0\n F[(Basin #12, UserDemand #13)] ≥ 0\n F[(Basin #2, LinearResistance #4)] ≥ 0\n F[(LinearResistance #4, Basin #2)] ≥ 0\n F[(UserDemand #13, Terminal #10)] ≥ 0\n F[(FlowBoundary #1, Basin #2)] ≥ 0\n F[(Basin #5, TabulatedRatingCurve #7)] ≥ 0\n F[(FractionalFlow #8, Terminal #10)] ≥ 0\n F[(UserDemand #6, Basin #5)] ≥ 0\n F[(FractionalFlow #9, Basin #12)] ≥ 0\n F[(Basin #5, UserDemand #6)] ≥ 0\n F[(TabulatedRatingCurve #7, FractionalFlow #8)] ≥ 0\n F[(TabulatedRatingCurve #7, FractionalFlow #9)] ≥ 0\n F_flow_buffer_in[TabulatedRatingCurve #7] ≥ 0\n F_flow_buffer_out[TabulatedRatingCurve #7] ≥ 0\n source[(FlowBoundary #1, Basin #2)] : F[(FlowBoundary #1, Basin #2)] ≤ 172800\n source_user[UserDemand #13] : F[(UserDemand #13, Terminal #10)] ≤ 0\n source_user[UserDemand #3] : F[(UserDemand #3, Basin #2)] ≤ 0\n source_user[UserDemand #6] : F[(UserDemand #6, Basin #5)] ≤ 0\n fractional_flow[(TabulatedRatingCurve #7, FractionalFlow #8)] : -0.6 F[(Basin #5, TabulatedRatingCurve #7)] + F[(TabulatedRatingCurve #7, FractionalFlow #8)] ≤ 0\n fractional_flow[(TabulatedRatingCurve #7, FractionalFlow #9)] : -0.4 F[(Basin #5, TabulatedRatingCurve #7)] + F[(TabulatedRatingCurve #7, FractionalFlow #9)] ≤ 0\n flow_buffer_outflow[TabulatedRatingCurve #7] : F_flow_buffer_out[TabulatedRatingCurve #7] ≤ 0\n flow_conservation[FractionalFlow #9] : -F[(FractionalFlow #9, Basin #12)] + F[(TabulatedRatingCurve #7, FractionalFlow #9)] = 0\n flow_conservation[Basin #12] : -F[(Basin #12, UserDemand #13)] + F[(FractionalFlow #9, Basin #12)] = 0\n flow_conservation[TabulatedRatingCurve #7] : F[(Basin #5, TabulatedRatingCurve #7)] - F[(TabulatedRatingCurve #7, FractionalFlow #8)] - F[(TabulatedRatingCurve #7, FractionalFlow #9)] - F_flow_buffer_in[TabulatedRatingCurve #7] + F_flow_buffer_out[TabulatedRatingCurve #7] = 0\n flow_conservation[Terminal #10] : F[(UserDemand #13, Terminal #10)] + F[(FractionalFlow #8, Terminal #10)] = 0\n flow_conservation[Basin #2] : F[(UserDemand #3, Basin #2)] - F[(Basin #2, UserDemand #3)] - F[(Basin #2, LinearResistance #4)] + F[(LinearResistance #4, Basin #2)] + F[(FlowBoundary #1, Basin #2)] = 0\n flow_conservation[FractionalFlow #8] : -F[(FractionalFlow #8, Terminal #10)] + F[(TabulatedRatingCurve #7, FractionalFlow #8)] = 0\n flow_conservation[LinearResistance #4] : -F[(LinearResistance #4, Basin #5)] + F[(Basin #5, LinearResistance #4)] + F[(Basin #2, LinearResistance #4)] - F[(LinearResistance #4, Basin #2)] = 0\n flow_conservation[Basin #5] : F[(LinearResistance #4, Basin #5)] - F[(Basin #5, LinearResistance #4)] - F[(Basin #5, TabulatedRatingCurve #7)] + F[(UserDemand #6, Basin #5)] - F[(Basin #5, UserDemand #6)] = 0",
+ "text": "4.4 Example\nThe following is an example of an optimization problem for the example shown here:\n\n\nCode\nusing Ribasim\nusing Ribasim: NodeID\nusing SQLite\nusing ComponentArrays: ComponentVector\n\ntoml_path = normpath(@__DIR__, \"../../generated_testmodels/allocation_example/ribasim.toml\")\np = Ribasim.Model(toml_path).integrator.p\nu = ComponentVector(; storage = zeros(length(p.basin.node_id)))\n\nallocation_model = p.allocation.allocation_models[1]\nt = 0.0\npriority_idx = 1\n\nRibasim.set_flow!(p.graph, NodeID(:FlowBoundary, 1), NodeID(:Basin, 2), 1.0)\nRibasim.set_objective_priority!(allocation_model, p, u, t, priority_idx)\nRibasim.set_initial_values!(allocation_model, p, u, t)\n\nprintln(p.allocation.allocation_models[1].problem)\n\n\nMin F[(Basin #2, UserDemand #3)]² + F[(Basin #5, UserDemand #6)]² + F[(Basin #12, UserDemand #13)]²\nSubject to\n F[(Basin #2, LinearResistance #4)] ≥ 0\n F[(LinearResistance #4, Basin #2)] ≥ 0\n F[(FractionalFlow #8, Terminal #10)] ≥ 0\n F[(TabulatedRatingCurve #7, FractionalFlow #9)] ≥ 0\n F[(TabulatedRatingCurve #7, FractionalFlow #8)] ≥ 0\n F[(Basin #2, UserDemand #3)] ≥ 0\n F[(UserDemand #3, Basin #2)] ≥ 0\n F[(FlowBoundary #1, Basin #2)] ≥ 0\n F[(UserDemand #6, Basin #5)] ≥ 0\n F[(LinearResistance #4, Basin #5)] ≥ 0\n F[(Basin #5, LinearResistance #4)] ≥ 0\n F[(FractionalFlow #9, Basin #12)] ≥ 0\n F[(Basin #5, UserDemand #6)] ≥ 0\n F[(Basin #5, TabulatedRatingCurve #7)] ≥ 0\n F[(Basin #12, UserDemand #13)] ≥ 0\n F[(UserDemand #13, Terminal #10)] ≥ 0\n F_flow_buffer_in[TabulatedRatingCurve #7] ≥ 0\n F_flow_buffer_out[TabulatedRatingCurve #7] ≥ 0\n source[(FlowBoundary #1, Basin #2)] : F[(FlowBoundary #1, Basin #2)] ≤ 172800\n source_user[UserDemand #6] : F[(UserDemand #6, Basin #5)] ≤ 0\n source_user[UserDemand #3] : F[(UserDemand #3, Basin #2)] ≤ 0\n source_user[UserDemand #13] : F[(UserDemand #13, Terminal #10)] ≤ 0\n fractional_flow[(TabulatedRatingCurve #7, FractionalFlow #8)] : F[(TabulatedRatingCurve #7, FractionalFlow #8)] - 0.6 F[(Basin #5, TabulatedRatingCurve #7)] ≤ 0\n fractional_flow[(TabulatedRatingCurve #7, FractionalFlow #9)] : F[(TabulatedRatingCurve #7, FractionalFlow #9)] - 0.4 F[(Basin #5, TabulatedRatingCurve #7)] ≤ 0\n flow_buffer_outflow[TabulatedRatingCurve #7] : F_flow_buffer_out[TabulatedRatingCurve #7] ≤ 0\n flow_conservation[FractionalFlow #8] : -F[(FractionalFlow #8, Terminal #10)] + F[(TabulatedRatingCurve #7, FractionalFlow #8)] = 0\n flow_conservation[Terminal #10] : F[(FractionalFlow #8, Terminal #10)] + F[(UserDemand #13, Terminal #10)] = 0\n flow_conservation[Basin #12] : F[(FractionalFlow #9, Basin #12)] - F[(Basin #12, UserDemand #13)] = 0\n flow_conservation[FractionalFlow #9] : F[(TabulatedRatingCurve #7, FractionalFlow #9)] - F[(FractionalFlow #9, Basin #12)] = 0\n flow_conservation[TabulatedRatingCurve #7] : -F[(TabulatedRatingCurve #7, FractionalFlow #9)] - F[(TabulatedRatingCurve #7, FractionalFlow #8)] + F[(Basin #5, TabulatedRatingCurve #7)] - F_flow_buffer_in[TabulatedRatingCurve #7] + F_flow_buffer_out[TabulatedRatingCurve #7] = 0\n flow_conservation[Basin #5] : F[(UserDemand #6, Basin #5)] + F[(LinearResistance #4, Basin #5)] - F[(Basin #5, LinearResistance #4)] - F[(Basin #5, UserDemand #6)] - F[(Basin #5, TabulatedRatingCurve #7)] = 0\n flow_conservation[LinearResistance #4] : F[(Basin #2, LinearResistance #4)] - F[(LinearResistance #4, Basin #2)] - F[(LinearResistance #4, Basin #5)] + F[(Basin #5, LinearResistance #4)] = 0\n flow_conservation[Basin #2] : -F[(Basin #2, LinearResistance #4)] + F[(LinearResistance #4, Basin #2)] - F[(Basin #2, UserDemand #3)] + F[(UserDemand #3, Basin #2)] + F[(FlowBoundary #1, Basin #2)] = 0",
"crumbs": [
"Julia core",
"Allocation"