diff --git a/search.json b/search.json
index 8cf761561..f7ae4d4e9 100644
--- a/search.json
+++ b/search.json
@@ -11,7 +11,7 @@
"href": "build/index.html#types",
"title": "1 API Reference",
"section": "1.2 Types",
- "text": "1.2 Types\n# Ribasim.Basin — Type.\nRequirements:\n\nMust be positive: precipitation, evaporation, infiltration, drainage\nIndex points to a Basin\nvolume, area, level must all be positive and monotonic increasing.\n\nType parameter C indicates the content backing the StructVector, which can be a NamedTuple of vectors or Arrow Tables, and is added to avoid type instabilities. The nodeid are Indices to support fast lookup of e.g. currentlevel using ID.\nif autodiff T = DiffCache{Vector{Float64}} else T = Vector{Float64} end\nsource\n# Ribasim.Connectivity — Type.\nStore the connectivity information\ngraphflow, graphcontrol: directed graph with vertices equal to ids flow: store the flow on every flow edge edgeidsflow, edgeidscontrol: get the external edge id from (src, dst) edgeconnectiontypeflow, edgeconnectiontypescontrol: get (srcnodetype, dstnodetype) from edge id\nif autodiff T = DiffCache{SparseArrays.SparseMatrixCSC{Float64, Int64}, Vector{Float64}} else T = SparseMatrixCSC{Float64, Int} end\nsource\n# Ribasim.DiscreteControl — Type.\nnodeid: node ID of the DiscreteControl node; these are not unique but repeated by the amount of conditions of this DiscreteControl node listenfeatureid: the ID of the node/edge being condition on variable: the name of the variable in the condition greaterthan: The threshold value in the condition conditionvalue: The current value of each condition controlstate: Dictionary: node ID => (control state, control state start) logic_mapping: Dictionary: (control node ID, truth state) => control state record: Namedtuple with discrete control information for output\nsource\n# Ribasim.FlatVector — Type.\nstruct FlatVector{T} <: AbstractVector{T}\nA FlatVector is an AbstractVector that iterates the T of a Vector{Vector{T}}.\nEach inner vector is assumed to be of equal length.\nIt is similar to Iterators.flatten, though that doesn’t work with the Tables.Column interface, which needs length and getindex support.\nsource\n# Ribasim.FlowBoundary — Type.\nnodeid: node ID of the FlowBoundary node active: whether this node is active and thus contributes flow flowrate: target flow rate\nsource\n# Ribasim.FractionalFlow — Type.\nRequirements:\n\nfrom: must be (TabulatedRatingCurve,) node\nto: must be (Basin,) node\nfraction must be positive.\n\nnodeid: node ID of the TabulatedRatingCurve node fraction: The fraction in [0,1] of flow the node lets through controlmapping: dictionary from (nodeid, controlstate) to fraction\nsource\n# Ribasim.LevelBoundary — Type.\nnode_id: node ID of the LevelBoundary node active: whether this node is active level: the fixed level of this ‘infinitely big basin’\nsource\n# Ribasim.LinearResistance — Type.\nRequirements:\n\nfrom: must be (Basin,) node\nto: must be (Basin,) node\n\nnodeid: node ID of the LinearResistance node active: whether this node is active and thus contributes flows resistance: the resistance to flow; Q = Δh/resistance controlmapping: dictionary from (nodeid, controlstate) to resistance and/or active state\nsource\n# Ribasim.ManningResistance — Type.\nThis is a simple Manning-Gauckler reach connection.\n\nLength describes the reach length.\nroughness describes Manning’s n in (SI units).\n\nThe profile is described by a trapezoid:\n \\ / ^\n \\ / |\n \\ / | dz\nbottom \\______/ |\n^ <--->\n| dy\n| <------>\n| width\n|\n|\n+ datum (e.g. MSL)\nWith profile_slope = dy / dz. A rectangular profile requires a slope of 0.0.\nRequirements:\n\nfrom: must be (Basin,) node\nto: must be (Basin,) node\nlength > 0\nroughess > 0\nprofile_width >= 0\nprofile_slope >= 0\n(profilewidth == 0) xor (profileslope == 0)\n\nsource\n# Ribasim.Model — Type.\nModel(config_path::AbstractString)\nModel(config::Config)\nInitialize a Model.\nThe Model struct is an initialized model, combined with the Config used to create it and saved outputs. The Basic Model Interface (BMI) is implemented on the Model. A Model can be created from the path to a TOML configuration file, or a Config object.\nsource\n# Ribasim.Outlet — Type.\nnodeid: node ID of the Outlet node active: whether this node is active and thus contributes flow flowrate: target flow rate minflowrate: The minimal flow rate of the outlet maxflowrate: The maximum flow rate of the outlet controlmapping: dictionary from (nodeid, controlstate) to target flow rate ispid_controlled: whether the flow rate of this outlet is governed by PID control\nsource\n# Ribasim.PidControl — Type.\nPID control currently only supports regulating basin levels.\nnodeid: node ID of the PidControl node active: whether this node is active and thus sets flow rates listennodeid: the id of the basin being controlled pidparams: a vector interpolation for parameters changing over time. The parameters are respectively target, proportional, integral, derivative, where the last three are the coefficients for the PID equation. error: the current error; basintarget - currentlevel\nsource\n# Ribasim.Pump — Type.\nnodeid: node ID of the Pump node active: whether this node is active and thus contributes flow flowrate: target flow rate minflowrate: The minimal flow rate of the pump maxflowrate: The maximum flow rate of the pump controlmapping: dictionary from (nodeid, controlstate) to target flow rate ispid_controlled: whether the flow rate of this pump is governed by PID control\nsource\n# Ribasim.TabulatedRatingCurve — Type.\nstruct TabulatedRatingCurve{C}\nRating curve from level to discharge. The rating curve is a lookup table with linear interpolation in between. Relation can be updated in time, which is done by moving data from the time field into the tables, which is done in the update_tabulated_rating_curve callback.\nType parameter C indicates the content backing the StructVector, which can be a NamedTuple of Vectors or Arrow Primitives, and is added to avoid type instabilities.\nnodeid: node ID of the TabulatedRatingCurve node active: whether this node is active and thus contributes flows tables: The current Q(h) relationships time: The time table used for updating the tables controlmapping: dictionary from (nodeid, controlstate) to Q(h) and/or active state\nsource\n# Ribasim.Terminal — Type.\nnode_id: node ID of the Terminal node\nsource\n# Ribasim.User — Type.\ndemand: water flux demand of user over time active: whether this node is active and thus demands water allocated: water flux currently allocated to user returnfactor: the factor in [0,1] of how much of the abstracted water is given back to the system minlevel: The level of the source basin below which the user does not abstract priority: integer > 0, the lower the number the higher the priority of the users demand\nsource\n# Ribasim.config.Config — Method.\nConfig(config_path::AbstractString; kwargs...)\nParse a TOML file to a Config. Keys can be overruled using keyword arguments. To overrule keys from a subsection, e.g. dt from the solver section, use underscores: solver_dt.\nsource"
+ "text": "1.2 Types\n# Ribasim.Basin — Type.\nRequirements:\n\nMust be positive: precipitation, evaporation, infiltration, drainage\nIndex points to a Basin\nvolume, area, level must all be positive and monotonic increasing.\n\nType parameter C indicates the content backing the StructVector, which can be a NamedTuple of vectors or Arrow Tables, and is added to avoid type instabilities. The nodeid are Indices to support fast lookup of e.g. currentlevel using ID.\nif autodiff T = DiffCache{Vector{Float64}} else T = Vector{Float64} end\nsource\n# Ribasim.Connectivity — Type.\nStore the connectivity information\ngraphflow, graphcontrol: directed graph with vertices equal to ids flow: store the flow on every flow edge edgeidsflow, edgeidscontrol: get the external edge id from (src, dst) edgeconnectiontypeflow, edgeconnectiontypescontrol: get (srcnodetype, dstnodetype) from edge id\nif autodiff T = DiffCache{SparseArrays.SparseMatrixCSC{Float64, Int64}, Vector{Float64}} else T = SparseMatrixCSC{Float64, Int} end\nsource\n# Ribasim.DiscreteControl — Type.\nnodeid: node ID of the DiscreteControl node; these are not unique but repeated by the amount of conditions of this DiscreteControl node listenfeatureid: the ID of the node/edge being condition on variable: the name of the variable in the condition greaterthan: The threshold value in the condition conditionvalue: The current value of each condition controlstate: Dictionary: node ID => (control state, control state start) logic_mapping: Dictionary: (control node ID, truth state) => control state record: Namedtuple with discrete control information for output\nsource\n# Ribasim.FlatVector — Type.\nstruct FlatVector{T} <: AbstractVector{T}\nA FlatVector is an AbstractVector that iterates the T of a Vector{Vector{T}}.\nEach inner vector is assumed to be of equal length.\nIt is similar to Iterators.flatten, though that doesn’t work with the Tables.Column interface, which needs length and getindex support.\nsource\n# Ribasim.FlowBoundary — Type.\nnodeid: node ID of the FlowBoundary node active: whether this node is active and thus contributes flow flowrate: target flow rate\nsource\n# Ribasim.FractionalFlow — Type.\nRequirements:\n\nfrom: must be (TabulatedRatingCurve,) node\nto: must be (Basin,) node\nfraction must be positive.\n\nnodeid: node ID of the TabulatedRatingCurve node fraction: The fraction in [0,1] of flow the node lets through controlmapping: dictionary from (nodeid, controlstate) to fraction\nsource\n# Ribasim.LevelBoundary — Type.\nnode_id: node ID of the LevelBoundary node active: whether this node is active level: the fixed level of this ‘infinitely big basin’\nsource\n# Ribasim.LinearResistance — Type.\nRequirements:\n\nfrom: must be (Basin,) node\nto: must be (Basin,) node\n\nnodeid: node ID of the LinearResistance node active: whether this node is active and thus contributes flows resistance: the resistance to flow; Q = Δh/resistance controlmapping: dictionary from (nodeid, controlstate) to resistance and/or active state\nsource\n# Ribasim.ManningResistance — Type.\nThis is a simple Manning-Gauckler reach connection.\n\nLength describes the reach length.\nroughness describes Manning’s n in (SI units).\n\nThe profile is described by a trapezoid:\n \\ / ^\n \\ / |\n \\ / | dz\nbottom \\______/ |\n^ <--->\n| dy\n| <------>\n| width\n|\n|\n+ datum (e.g. MSL)\nWith profile_slope = dy / dz. A rectangular profile requires a slope of 0.0.\nRequirements:\n\nfrom: must be (Basin,) node\nto: must be (Basin,) node\nlength > 0\nroughess > 0\nprofile_width >= 0\nprofile_slope >= 0\n(profilewidth == 0) xor (profileslope == 0)\n\nsource\n# Ribasim.Model — Type.\nModel(config_path::AbstractString)\nModel(config::Config)\nInitialize a Model.\nThe Model struct is an initialized model, combined with the Config used to create it and saved outputs. The Basic Model Interface (BMI) is implemented on the Model. A Model can be created from the path to a TOML configuration file, or a Config object.\nsource\n# Ribasim.Outlet — Type.\nnodeid: node ID of the Outlet node active: whether this node is active and thus contributes flow flowrate: target flow rate minflowrate: The minimal flow rate of the outlet maxflowrate: The maximum flow rate of the outlet controlmapping: dictionary from (nodeid, controlstate) to target flow rate ispid_controlled: whether the flow rate of this outlet is governed by PID control\nsource\n# Ribasim.PidControl — Type.\nPID control currently only supports regulating basin levels.\nnodeid: node ID of the PidControl node active: whether this node is active and thus sets flow rates listennodeid: the id of the basin being controlled pidparams: a vector interpolation for parameters changing over time. The parameters are respectively target, proportional, integral, derivative, where the last three are the coefficients for the PID equation. error: the current error; basintarget - currentlevel\nsource\n# Ribasim.Pump — Type.\nnodeid: node ID of the Pump node active: whether this node is active and thus contributes flow flowrate: target flow rate minflowrate: The minimal flow rate of the pump maxflowrate: The maximum flow rate of the pump controlmapping: dictionary from (nodeid, controlstate) to target flow rate ispid_controlled: whether the flow rate of this pump is governed by PID control\nsource\n# Ribasim.TabulatedRatingCurve — Type.\nstruct TabulatedRatingCurve{C}\nRating curve from level to discharge. The rating curve is a lookup table with linear interpolation in between. Relation can be updated in time, which is done by moving data from the time field into the tables, which is done in the update_tabulated_rating_curve callback.\nType parameter C indicates the content backing the StructVector, which can be a NamedTuple of Vectors or Arrow Primitives, and is added to avoid type instabilities.\nnodeid: node ID of the TabulatedRatingCurve node active: whether this node is active and thus contributes flows tables: The current Q(h) relationships time: The time table used for updating the tables controlmapping: dictionary from (nodeid, controlstate) to Q(h) and/or active state\nsource\n# Ribasim.Terminal — Type.\nnode_id: node ID of the Terminal node\nsource\n# Ribasim.User — Type.\ndemand: water flux demand of user per priority over time active: whether this node is active and thus demands water allocated: water flux currently allocated to user per priority returnfactor: the factor in [0,1] of how much of the abstracted water is given back to the system minlevel: The level of the source basin below which the user does not abstract priorities: All used priority values. Each user has a demand for all these priorities, which is always 0.0 if it is not provided explicitly.\nsource\n# Ribasim.config.Config — Method.\nConfig(config_path::AbstractString; kwargs...)\nParse a TOML file to a Config. Keys can be overruled using keyword arguments. To overrule keys from a subsection, e.g. dt from the solver section, use underscores: solver_dt.\nsource"
},
{
"objectID": "build/index.html#functions",
@@ -284,7 +284,7 @@
"href": "python/examples.html",
"title": "Examples",
"section": "",
- "text": "1 Basic model with static forcing\n\nimport geopandas as gpd\nimport numpy as np\nimport pandas as pd\nimport matplotlib.pyplot as plt\nfrom pathlib import Path\n\nimport ribasim\n\nSetup the basins:\n\nprofile = pd.DataFrame(\n data={\n \"node_id\": [1, 1, 3, 3, 6, 6, 9, 9],\n \"area\": [0.01, 1000.0] * 4,\n \"level\": [0.0, 1.0] * 4,\n }\n)\n\n# Convert steady forcing to m/s\n# 2 mm/d precipitation, 1 mm/d evaporation\nseconds_in_day = 24 * 3600\nprecipitation = 0.002 / seconds_in_day\nevaporation = 0.001 / seconds_in_day\n\nstatic = pd.DataFrame(\n data={\n \"node_id\": [0],\n \"drainage\": [0.0],\n \"potential_evaporation\": [evaporation],\n \"infiltration\": [0.0],\n \"precipitation\": [precipitation],\n \"urban_runoff\": [0.0],\n }\n)\nstatic = static.iloc[[0, 0, 0, 0]]\nstatic[\"node_id\"] = [1, 3, 6, 9]\n\nbasin = ribasim.Basin(profile=profile, static=static)\n\nSetup linear resistance:\n\nlinear_resistance = ribasim.LinearResistance(\n static=pd.DataFrame(\n data={\"node_id\": [10, 12], \"resistance\": [5e3, (3600.0 * 24) / 100.0]}\n )\n)\n\nSetup Manning resistance:\n\nmanning_resistance = ribasim.ManningResistance(\n static=pd.DataFrame(\n data={\n \"node_id\": [2],\n \"length\": [900.0],\n \"manning_n\": [0.04],\n \"profile_width\": [6.0],\n \"profile_slope\": [3.0],\n }\n )\n)\n\nSet up a rating curve node:\n\n# Discharge: lose 1% of storage volume per day at storage = 1000.0.\nq1000 = 1000.0 * 0.01 / seconds_in_day\n\nrating_curve = ribasim.TabulatedRatingCurve(\n static=pd.DataFrame(\n data={\n \"node_id\": [4, 4],\n \"level\": [0.0, 1.0],\n \"discharge\": [0.0, q1000],\n }\n )\n)\n\nSetup fractional flows:\n\nfractional_flow = ribasim.FractionalFlow(\n static=pd.DataFrame(\n data={\n \"node_id\": [5, 8, 13],\n \"fraction\": [0.3, 0.6, 0.1],\n }\n )\n)\n\nSetup pump:\n\npump = ribasim.Pump(\n static=pd.DataFrame(\n data={\n \"node_id\": [7],\n \"flow_rate\": [0.5 / 3600],\n }\n )\n)\n\nSetup level boundary:\n\nlevel_boundary = ribasim.LevelBoundary(\n static=pd.DataFrame(\n data={\n \"node_id\": [11, 17],\n \"level\": [0.5, 1.5],\n }\n )\n)\n\nSetup flow boundary:\n\nflow_boundary = ribasim.FlowBoundary(\n static=pd.DataFrame(\n data={\n \"node_id\": [15, 16],\n \"flow_rate\": [1e-4, 1e-4],\n }\n )\n)\n\nSetup terminal:\n\nterminal = ribasim.Terminal(\n static=pd.DataFrame(\n data={\n \"node_id\": [14],\n }\n )\n)\n\nSet up the nodes:\n\nxy = np.array(\n [\n (0.0, 0.0), # 1: Basin,\n (1.0, 0.0), # 2: ManningResistance\n (2.0, 0.0), # 3: Basin\n (3.0, 0.0), # 4: TabulatedRatingCurve\n (3.0, 1.0), # 5: FractionalFlow\n (3.0, 2.0), # 6: Basin\n (4.0, 1.0), # 7: Pump\n (4.0, 0.0), # 8: FractionalFlow\n (5.0, 0.0), # 9: Basin\n (6.0, 0.0), # 10: LinearResistance\n (2.0, 2.0), # 11: LevelBoundary\n (2.0, 1.0), # 12: LinearResistance\n (3.0, -1.0), # 13: FractionalFlow\n (3.0, -2.0), # 14: Terminal\n (3.0, 3.0), # 15: FlowBoundary\n (0.0, 1.0), # 16: FlowBoundary\n (6.0, 1.0), # 17: LevelBoundary\n ]\n)\nnode_xy = gpd.points_from_xy(x=xy[:, 0], y=xy[:, 1])\n\nnode_id, node_type = ribasim.Node.get_node_ids_and_types(\n basin,\n manning_resistance,\n rating_curve,\n pump,\n fractional_flow,\n linear_resistance,\n level_boundary,\n flow_boundary,\n terminal,\n)\n\n# Make sure the feature id starts at 1: explicitly give an index.\nnode = ribasim.Node(\n static=gpd.GeoDataFrame(\n data={\"type\": node_type},\n index=pd.Index(node_id, name=\"fid\"),\n geometry=node_xy,\n crs=\"EPSG:28992\",\n )\n)\n\nSetup the edges:\n\nfrom_id = np.array(\n [1, 2, 3, 4, 4, 5, 6, 8, 7, 9, 11, 12, 4, 13, 15, 16, 10], dtype=np.int64\n)\nto_id = np.array(\n [2, 3, 4, 5, 8, 6, 7, 9, 9, 10, 12, 3, 13, 14, 6, 1, 17], dtype=np.int64\n)\nlines = ribasim.utils.geometry_from_connectivity(node, from_id, to_id)\nedge = ribasim.Edge(\n static=gpd.GeoDataFrame(\n data={\n \"from_node_id\": from_id,\n \"to_node_id\": to_id,\n \"edge_type\": len(from_id) * [\"flow\"],\n },\n geometry=lines,\n crs=\"EPSG:28992\",\n )\n)\n\nSetup a model:\n\nmodel = ribasim.Model(\n modelname=\"basic\",\n node=node,\n edge=edge,\n basin=basin,\n level_boundary=level_boundary,\n flow_boundary=flow_boundary,\n pump=pump,\n linear_resistance=linear_resistance,\n manning_resistance=manning_resistance,\n tabulated_rating_curve=rating_curve,\n fractional_flow=fractional_flow,\n terminal=terminal,\n starttime=\"2020-01-01 00:00:00\",\n endtime=\"2021-01-01 00:00:00\",\n)\n\nLet’s take a look at the model:\n\nmodel.plot()\n\n<Axes: >\n\n\n\n\n\nWrite the model to a TOML and GeoPackage:\n\ndatadir = Path(\"data\")\nmodel.write(datadir / \"basic\")\n\n\n\n2 Update the basic model with transient forcing\nThis assumes you have already created the basic model with static forcing.\n\nimport numpy as np\nimport pandas as pd\nimport xarray as xr\n\nimport ribasim\n\n\nmodel = ribasim.Model.from_toml(datadir / \"basic/basic.toml\")\n\n\ntime = pd.date_range(model.starttime, model.endtime)\nday_of_year = time.day_of_year.to_numpy()\nseconds_per_day = 24 * 60 * 60\nevaporation = (\n (-1.0 * np.cos(day_of_year / 365.0 * 2 * np.pi) + 1.0) * 0.0025 / seconds_per_day\n)\nrng = np.random.default_rng(seed=0)\nprecipitation = (\n rng.lognormal(mean=-1.0, sigma=1.7, size=time.size) * 0.001 / seconds_per_day\n)\n\nWe’ll use xarray to easily broadcast the values.\n\ntimeseries = (\n pd.DataFrame(\n data={\n \"node_id\": 1,\n \"time\": time,\n \"drainage\": 0.0,\n \"potential_evaporation\": evaporation,\n \"infiltration\": 0.0,\n \"precipitation\": precipitation,\n \"urban_runoff\": 0.0,\n }\n )\n .set_index(\"time\")\n .to_xarray()\n)\n\nbasin_ids = model.basin.static[\"node_id\"].to_numpy()\nbasin_nodes = xr.DataArray(\n np.ones(len(basin_ids)), coords={\"node_id\": basin_ids}, dims=[\"node_id\"]\n)\nforcing = (timeseries * basin_nodes).to_dataframe().reset_index()\n\n\nstate = pd.DataFrame(\n data={\n \"node_id\": basin_ids,\n \"level\": 1.4,\n \"concentration\": 0.0,\n }\n)\n\n\nmodel.basin.time = forcing\nmodel.basin.state = state\n\n\nmodel.modelname = \"basic_transient\"\nmodel.write(datadir / \"basic_transient\")\n\nNow run the model with ribasim basic-transient/basic.toml. After running the model, read back the output:\n\ndf_basin = pd.read_feather(datadir / \"basic_transient/output/basin.arrow\")\ndf_basin_wide = df_basin.pivot_table(\n index=\"time\", columns=\"node_id\", values=[\"storage\", \"level\"]\n)\ndf_basin_wide[\"level\"].plot()\n\n<Axes: xlabel='time'>\n\n\n\n\n\n\ndf_flow = pd.read_feather(datadir / \"basic_transient/output/flow.arrow\")\ndf_flow[\"edge\"] = list(zip(df_flow.from_node_id, df_flow.to_node_id))\ndf_flow[\"flow_m3d\"] = df_flow.flow * 86400\nax = df_flow.pivot_table(index=\"time\", columns=\"edge\", values=\"flow_m3d\").plot()\nax.legend(bbox_to_anchor=(1.3, 1), title=\"Edge\")\n\n<matplotlib.legend.Legend at 0x7f4fd2103510>\n\n\n\n\n\n\ntype(df_flow)\n\npandas.core.frame.DataFrame\n\n\n\n\n3 Model with discrete control\nThe model constructed below consists of a single basin which slowly drains trough a TabulatedRatingCurve, but is held within a range around a target level (setpoint) by two connected pumps. These two pumps behave like a reversible pump. When pumping can be done in only one direction, and the other direction is only possible under gravity, use an Outlet for that direction.\nSet up the nodes:\n\nxy = np.array(\n [\n (0.0, 0.0), # 1: Basin\n (1.0, 1.0), # 2: Pump\n (1.0, -1.0), # 3: Pump\n (2.0, 0.0), # 4: LevelBoundary\n (-1.0, 0.0), # 5: TabulatedRatingCurve\n (-2.0, 0.0), # 6: Terminal\n (1.0, 0.0), # 7: DiscreteControl\n ]\n)\n\nnode_xy = gpd.points_from_xy(x=xy[:, 0], y=xy[:, 1])\n\nnode_type = [\n \"Basin\",\n \"Pump\",\n \"Pump\",\n \"LevelBoundary\",\n \"TabulatedRatingCurve\",\n \"Terminal\",\n \"DiscreteControl\",\n]\n\n# Make sure the feature id starts at 1: explicitly give an index.\nnode = ribasim.Node(\n static=gpd.GeoDataFrame(\n data={\"type\": node_type},\n index=pd.Index(np.arange(len(xy)) + 1, name=\"fid\"),\n geometry=node_xy,\n crs=\"EPSG:28992\",\n )\n)\n\nSetup the edges:\n\nfrom_id = np.array([1, 3, 4, 2, 1, 5, 7, 7], dtype=np.int64)\nto_id = np.array([3, 4, 2, 1, 5, 6, 2, 3], dtype=np.int64)\n\nedge_type = 6 * [\"flow\"] + 2 * [\"control\"]\n\nlines = ribasim.utils.geometry_from_connectivity(node, from_id, to_id)\nedge = ribasim.Edge(\n static=gpd.GeoDataFrame(\n data={\"from_node_id\": from_id, \"to_node_id\": to_id, \"edge_type\": edge_type},\n geometry=lines,\n crs=\"EPSG:28992\",\n )\n)\n\nSetup the basins:\n\nprofile = pd.DataFrame(\n data={\n \"node_id\": [1, 1],\n \"area\": [1000.0, 1000.0],\n \"level\": [0.0, 1.0],\n }\n)\n\nstatic = pd.DataFrame(\n data={\n \"node_id\": [1],\n \"drainage\": [0.0],\n \"potential_evaporation\": [0.0],\n \"infiltration\": [0.0],\n \"precipitation\": [0.0],\n \"urban_runoff\": [0.0],\n }\n)\n\nstate = pd.DataFrame(data={\"node_id\": [1], \"level\": [20.0]})\n\nbasin = ribasim.Basin(profile=profile, static=static, state=state)\n\nSetup the discrete control:\n\ncondition = pd.DataFrame(\n data={\n \"node_id\": 3 * [7],\n \"listen_feature_id\": 3 * [1],\n \"variable\": 3 * [\"level\"],\n \"greater_than\": [5.0, 10.0, 15.0], # min, setpoint, max\n }\n)\n\nlogic = pd.DataFrame(\n data={\n \"node_id\": 5 * [7],\n \"truth_state\": [\"FFF\", \"U**\", \"T*F\", \"**D\", \"TTT\"],\n \"control_state\": [\"in\", \"in\", \"none\", \"out\", \"out\"],\n }\n)\n\ndiscrete_control = ribasim.DiscreteControl(condition=condition, logic=logic)\n\nThe above control logic can be summarized as follows: - If the level gets above the maximum, activate the control state “out” until the setpoint is reached; - If the level gets below the minimum, active the control state “in” until the setpoint is reached; - Otherwise activate the control state “none”.\nSetup the pump:\n\npump = ribasim.Pump(\n static=pd.DataFrame(\n data={\n \"node_id\": 3 * [2] + 3 * [3],\n \"control_state\": 2 * [\"none\", \"in\", \"out\"],\n \"flow_rate\": [0.0, 2e-3, 0.0, 0.0, 0.0, 2e-3],\n }\n )\n)\n\nThe pump data defines the following:\n\n\n\nControl state\nPump #2 flow rate (m/s)\nPump #3 flow rate (m/s)\n\n\n\n\n“none”\n0.0\n0.0\n\n\n“in”\n2e-3\n0.0\n\n\n“out”\n0.0\n2e-3\n\n\n\nSetup the level boundary:\n\nlevel_boundary = ribasim.LevelBoundary(\n static=pd.DataFrame(data={\"node_id\": [4], \"level\": [10.0]})\n)\n\nSetup the rating curve:\n\nrating_curve = ribasim.TabulatedRatingCurve(\n static=pd.DataFrame(\n data={\"node_id\": 2 * [5], \"level\": [2.0, 15.0], \"discharge\": [0.0, 1e-3]}\n )\n)\n\nSetup the terminal:\n\nterminal = ribasim.Terminal(static=pd.DataFrame(data={\"node_id\": [6]}))\n\nSetup a model:\n\nmodel = ribasim.Model(\n modelname=\"level_setpoint_with_minmax\",\n node=node,\n edge=edge,\n basin=basin,\n pump=pump,\n level_boundary=level_boundary,\n tabulated_rating_curve=rating_curve,\n terminal=terminal,\n discrete_control=discrete_control,\n starttime=\"2020-01-01 00:00:00\",\n endtime=\"2021-01-01 00:00:00\",\n)\n\nLet’s take a look at the model:\n\nmodel.plot()\n\n<Axes: >\n\n\n\n\n\nListen edges are plotted with a dashed line since they are not present in the “Edge / static” schema but only in the “Control / condition” schema.\n\ndatadir = Path(\"data\")\nmodel.write(datadir / \"level_setpoint_with_minmax\")\n\nNow run the model with level_setpoint_with_minmax/level_setpoint_with_minmax.toml. After running the model, read back the output:\n\nfrom matplotlib.dates import date2num\n\ndf_basin = pd.read_feather(datadir / \"level_setpoint_with_minmax/output/basin.arrow\")\ndf_basin_wide = df_basin.pivot_table(\n index=\"time\", columns=\"node_id\", values=[\"storage\", \"level\"]\n)\n\nax = df_basin_wide[\"level\"].plot()\n\ngreater_than = model.discrete_control.condition.greater_than\n\nax.hlines(\n greater_than,\n df_basin.time[0],\n df_basin.time.max(),\n lw=1,\n ls=\"--\",\n color=\"k\",\n)\n\ndf_control = pd.read_feather(\n datadir / \"level_setpoint_with_minmax/output/control.arrow\"\n)\n\ny_min, y_max = ax.get_ybound()\nax.fill_between(df_control.time[:2], 2 * [y_min], 2 * [y_max], alpha=0.2, color=\"C0\")\nax.fill_between(df_control.time[2:4], 2 * [y_min], 2 * [y_max], alpha=0.2, color=\"C0\")\n\nax.set_xticks(\n date2num(df_control.time).tolist(),\n df_control.control_state.tolist(),\n rotation=50,\n)\n\nax.set_yticks(greater_than, [\"min\", \"setpoint\", \"max\"])\nax.set_ylabel(\"level\")\nplt.show()\n\n\n\n\nThe highlighted regions show where a pump is active.\nLet’s print an overview of what happened with control:\n\nmodel.print_discrete_control_record(\n datadir / \"level_setpoint_with_minmax/output/control.arrow\"\n)\n\n0. At 2020-01-01 00:00:00 the control node with ID 7 reached truth state TTT:\n For node ID 1 (Basin): level > 5.0\n For node ID 1 (Basin): level > 10.0\n For node ID 1 (Basin): level > 15.0\n\n This yielded control state \"out\":\n For node ID 2 (Pump): flow_rate = 0.0\n For node ID 3 (Pump): flow_rate = 0.002\n\n1. At 2020-02-09 01:17:29.324000 the control node with ID 7 reached truth state TFF:\n For node ID 1 (Basin): level > 5.0\n For node ID 1 (Basin): level < 10.0\n For node ID 1 (Basin): level < 15.0\n\n This yielded control state \"none\":\n For node ID 2 (Pump): flow_rate = 0.0\n For node ID 3 (Pump): flow_rate = 0.0\n\n2. At 2020-07-05 13:24:51.165000 the control node with ID 7 reached truth state FFF:\n For node ID 1 (Basin): level < 5.0\n For node ID 1 (Basin): level < 10.0\n For node ID 1 (Basin): level < 15.0\n\n This yielded control state \"in\":\n For node ID 2 (Pump): flow_rate = 0.002\n For node ID 3 (Pump): flow_rate = 0.0\n\n3. At 2020-08-11 11:49:59.015000 the control node with ID 7 reached truth state TTF:\n For node ID 1 (Basin): level > 5.0\n For node ID 1 (Basin): level > 10.0\n For node ID 1 (Basin): level < 15.0\n\n This yielded control state \"none\":\n For node ID 2 (Pump): flow_rate = 0.0\n For node ID 3 (Pump): flow_rate = 0.0\n\n\n\nNote that crossing direction specific truth states (containing “U”, “D”) are not present in this overview even though they are part of the control logic. This is because in the control logic for this model these truth states are only used to sustain control states, while the overview only shows changes in control states.\n\n\n4 Model with PID control\nSet up the nodes:\n\nxy = np.array(\n [\n (0.0, 0.0), # 1: FlowBoundary\n (1.0, 0.0), # 2: Basin\n (2.0, 0.5), # 3: Pump\n (3.0, 0.0), # 4: LevelBoundary\n (1.5, 1.0), # 5: PidControl\n (2.0, -0.5), # 6: outlet\n (1.5, -1.0), # 7: PidControl\n ]\n)\n\nnode_xy = gpd.points_from_xy(x=xy[:, 0], y=xy[:, 1])\n\nnode_type = [\n \"FlowBoundary\",\n \"Basin\",\n \"Pump\",\n \"LevelBoundary\",\n \"PidControl\",\n \"Outlet\",\n \"PidControl\",\n]\n\n# Make sure the feature id starts at 1: explicitly give an index.\nnode = ribasim.Node(\n static=gpd.GeoDataFrame(\n data={\"type\": node_type},\n index=pd.Index(np.arange(len(xy)) + 1, name=\"fid\"),\n geometry=node_xy,\n crs=\"EPSG:28992\",\n )\n)\n\nSetup the edges:\n\nfrom_id = np.array([1, 2, 3, 4, 6, 5, 7], dtype=np.int64)\nto_id = np.array([2, 3, 4, 6, 2, 3, 6], dtype=np.int64)\n\nlines = ribasim.utils.geometry_from_connectivity(node, from_id, to_id)\nedge = ribasim.Edge(\n static=gpd.GeoDataFrame(\n data={\n \"from_node_id\": from_id,\n \"to_node_id\": to_id,\n \"edge_type\": 5 * [\"flow\"] + 2 * [\"control\"],\n },\n geometry=lines,\n crs=\"EPSG:28992\",\n )\n)\n\nSetup the basins:\n\nprofile = pd.DataFrame(\n data={\"node_id\": [2, 2], \"level\": [0.0, 1.0], \"area\": [1000.0, 1000.0]}\n)\n\nstatic = pd.DataFrame(\n data={\n \"node_id\": [2],\n \"drainage\": [0.0],\n \"potential_evaporation\": [0.0],\n \"infiltration\": [0.0],\n \"precipitation\": [0.0],\n \"urban_runoff\": [0.0],\n }\n)\n\nstate = pd.DataFrame(\n data={\n \"node_id\": [2],\n \"level\": [6.0],\n }\n)\n\nbasin = ribasim.Basin(profile=profile, static=static, state=state)\n\nSetup the pump:\n\npump = ribasim.Pump(\n static=pd.DataFrame(\n data={\n \"node_id\": [3],\n \"flow_rate\": [0.0], # Will be overwritten by PID controller\n }\n )\n)\n\nSetup the outlet:\n\noutlet = ribasim.Outlet(\n static=pd.DataFrame(\n data={\n \"node_id\": [6],\n \"flow_rate\": [0.0], # Will be overwritten by PID controller\n }\n )\n)\n\nSetup flow boundary:\n\nflow_boundary = ribasim.FlowBoundary(\n static=pd.DataFrame(data={\"node_id\": [1], \"flow_rate\": [1e-3]})\n)\n\nSetup flow boundary:\n\nlevel_boundary = ribasim.LevelBoundary(\n static=pd.DataFrame(\n data={\n \"node_id\": [4],\n \"level\": [1.0], # Not relevant\n }\n )\n)\n\nSetup PID control:\n\npid_control = ribasim.PidControl(\n time=pd.DataFrame(\n data={\n \"node_id\": 4 * [5, 7],\n \"time\": [\n \"2020-01-01 00:00:00\",\n \"2020-01-01 00:00:00\",\n \"2020-05-01 00:00:00\",\n \"2020-05-01 00:00:00\",\n \"2020-07-01 00:00:00\",\n \"2020-07-01 00:00:00\",\n \"2020-12-01 00:00:00\",\n \"2020-12-01 00:00:00\",\n ],\n \"listen_node_id\": 4 * [2, 2],\n \"target\": [5.0, 5.0, 5.0, 5.0, 7.5, 7.5, 7.5, 7.5],\n \"proportional\": 4 * [-1e-3, 1e-3],\n \"integral\": 4 * [-1e-7, 1e-7],\n \"derivative\": 4 * [0.0, 0.0],\n }\n )\n)\n\nNote that the coefficients for the pump and the outlet are equal in magnitude but opposite in sign. This way the pump and the outlet equally work towards the same goal, while having opposite effects on the controlled basin due to their connectivity to this basin.\nSetup a model:\n\nmodel = ribasim.Model(\n modelname=\"pid_control\",\n node=node,\n edge=edge,\n basin=basin,\n flow_boundary=flow_boundary,\n level_boundary=level_boundary,\n pump=pump,\n outlet=outlet,\n pid_control=pid_control,\n starttime=\"2020-01-01 00:00:00\",\n endtime=\"2020-12-01 00:00:00\",\n)\n\nLet’s take a look at the model:\n\nmodel.plot()\n\n<Axes: >\n\n\n\n\n\nWrite the model to a TOML and GeoPackage:\n\ndatadir = Path(\"data\")\nmodel.write(datadir / \"pid_control\")\n\nNow run the model with ribasim pid_control/pid_control.toml. After running the model, read back the output:\n\nfrom matplotlib.dates import date2num\n\ndf_basin = pd.read_feather(datadir / \"pid_control/output/basin.arrow\")\ndf_basin_wide = df_basin.pivot_table(\n index=\"time\", columns=\"node_id\", values=[\"storage\", \"level\"]\n)\nax = df_basin_wide[\"level\"].plot()\nax.set_ylabel(\"level [m]\")\n\n# Plot target level\ntarget_levels = model.pid_control.time.target.to_numpy()[::2]\ntimes = date2num(model.pid_control.time.time)[::2]\nax.plot(times, target_levels, color=\"k\", ls=\":\", label=\"target level\");"
+ "text": "1 Basic model with static forcing\n\nimport geopandas as gpd\nimport numpy as np\nimport pandas as pd\nimport matplotlib.pyplot as plt\nfrom pathlib import Path\n\nimport ribasim\n\nSetup the basins:\n\nprofile = pd.DataFrame(\n data={\n \"node_id\": [1, 1, 3, 3, 6, 6, 9, 9],\n \"area\": [0.01, 1000.0] * 4,\n \"level\": [0.0, 1.0] * 4,\n }\n)\n\n# Convert steady forcing to m/s\n# 2 mm/d precipitation, 1 mm/d evaporation\nseconds_in_day = 24 * 3600\nprecipitation = 0.002 / seconds_in_day\nevaporation = 0.001 / seconds_in_day\n\nstatic = pd.DataFrame(\n data={\n \"node_id\": [0],\n \"drainage\": [0.0],\n \"potential_evaporation\": [evaporation],\n \"infiltration\": [0.0],\n \"precipitation\": [precipitation],\n \"urban_runoff\": [0.0],\n }\n)\nstatic = static.iloc[[0, 0, 0, 0]]\nstatic[\"node_id\"] = [1, 3, 6, 9]\n\nbasin = ribasim.Basin(profile=profile, static=static)\n\nSetup linear resistance:\n\nlinear_resistance = ribasim.LinearResistance(\n static=pd.DataFrame(\n data={\"node_id\": [10, 12], \"resistance\": [5e3, (3600.0 * 24) / 100.0]}\n )\n)\n\nSetup Manning resistance:\n\nmanning_resistance = ribasim.ManningResistance(\n static=pd.DataFrame(\n data={\n \"node_id\": [2],\n \"length\": [900.0],\n \"manning_n\": [0.04],\n \"profile_width\": [6.0],\n \"profile_slope\": [3.0],\n }\n )\n)\n\nSet up a rating curve node:\n\n# Discharge: lose 1% of storage volume per day at storage = 1000.0.\nq1000 = 1000.0 * 0.01 / seconds_in_day\n\nrating_curve = ribasim.TabulatedRatingCurve(\n static=pd.DataFrame(\n data={\n \"node_id\": [4, 4],\n \"level\": [0.0, 1.0],\n \"discharge\": [0.0, q1000],\n }\n )\n)\n\nSetup fractional flows:\n\nfractional_flow = ribasim.FractionalFlow(\n static=pd.DataFrame(\n data={\n \"node_id\": [5, 8, 13],\n \"fraction\": [0.3, 0.6, 0.1],\n }\n )\n)\n\nSetup pump:\n\npump = ribasim.Pump(\n static=pd.DataFrame(\n data={\n \"node_id\": [7],\n \"flow_rate\": [0.5 / 3600],\n }\n )\n)\n\nSetup level boundary:\n\nlevel_boundary = ribasim.LevelBoundary(\n static=pd.DataFrame(\n data={\n \"node_id\": [11, 17],\n \"level\": [0.5, 1.5],\n }\n )\n)\n\nSetup flow boundary:\n\nflow_boundary = ribasim.FlowBoundary(\n static=pd.DataFrame(\n data={\n \"node_id\": [15, 16],\n \"flow_rate\": [1e-4, 1e-4],\n }\n )\n)\n\nSetup terminal:\n\nterminal = ribasim.Terminal(\n static=pd.DataFrame(\n data={\n \"node_id\": [14],\n }\n )\n)\n\nSet up the nodes:\n\nxy = np.array(\n [\n (0.0, 0.0), # 1: Basin,\n (1.0, 0.0), # 2: ManningResistance\n (2.0, 0.0), # 3: Basin\n (3.0, 0.0), # 4: TabulatedRatingCurve\n (3.0, 1.0), # 5: FractionalFlow\n (3.0, 2.0), # 6: Basin\n (4.0, 1.0), # 7: Pump\n (4.0, 0.0), # 8: FractionalFlow\n (5.0, 0.0), # 9: Basin\n (6.0, 0.0), # 10: LinearResistance\n (2.0, 2.0), # 11: LevelBoundary\n (2.0, 1.0), # 12: LinearResistance\n (3.0, -1.0), # 13: FractionalFlow\n (3.0, -2.0), # 14: Terminal\n (3.0, 3.0), # 15: FlowBoundary\n (0.0, 1.0), # 16: FlowBoundary\n (6.0, 1.0), # 17: LevelBoundary\n ]\n)\nnode_xy = gpd.points_from_xy(x=xy[:, 0], y=xy[:, 1])\n\nnode_id, node_type = ribasim.Node.get_node_ids_and_types(\n basin,\n manning_resistance,\n rating_curve,\n pump,\n fractional_flow,\n linear_resistance,\n level_boundary,\n flow_boundary,\n terminal,\n)\n\n# Make sure the feature id starts at 1: explicitly give an index.\nnode = ribasim.Node(\n static=gpd.GeoDataFrame(\n data={\"type\": node_type},\n index=pd.Index(node_id, name=\"fid\"),\n geometry=node_xy,\n crs=\"EPSG:28992\",\n )\n)\n\nSetup the edges:\n\nfrom_id = np.array(\n [1, 2, 3, 4, 4, 5, 6, 8, 7, 9, 11, 12, 4, 13, 15, 16, 10], dtype=np.int64\n)\nto_id = np.array(\n [2, 3, 4, 5, 8, 6, 7, 9, 9, 10, 12, 3, 13, 14, 6, 1, 17], dtype=np.int64\n)\nlines = ribasim.utils.geometry_from_connectivity(node, from_id, to_id)\nedge = ribasim.Edge(\n static=gpd.GeoDataFrame(\n data={\n \"from_node_id\": from_id,\n \"to_node_id\": to_id,\n \"edge_type\": len(from_id) * [\"flow\"],\n },\n geometry=lines,\n crs=\"EPSG:28992\",\n )\n)\n\nSetup a model:\n\nmodel = ribasim.Model(\n modelname=\"basic\",\n node=node,\n edge=edge,\n basin=basin,\n level_boundary=level_boundary,\n flow_boundary=flow_boundary,\n pump=pump,\n linear_resistance=linear_resistance,\n manning_resistance=manning_resistance,\n tabulated_rating_curve=rating_curve,\n fractional_flow=fractional_flow,\n terminal=terminal,\n starttime=\"2020-01-01 00:00:00\",\n endtime=\"2021-01-01 00:00:00\",\n)\n\nLet’s take a look at the model:\n\nmodel.plot()\n\n<Axes: >\n\n\n\n\n\nWrite the model to a TOML and GeoPackage:\n\ndatadir = Path(\"data\")\nmodel.write(datadir / \"basic\")\n\n\n\n2 Update the basic model with transient forcing\nThis assumes you have already created the basic model with static forcing.\n\nimport numpy as np\nimport pandas as pd\nimport xarray as xr\n\nimport ribasim\n\n\nmodel = ribasim.Model.from_toml(datadir / \"basic/basic.toml\")\n\n\ntime = pd.date_range(model.starttime, model.endtime)\nday_of_year = time.day_of_year.to_numpy()\nseconds_per_day = 24 * 60 * 60\nevaporation = (\n (-1.0 * np.cos(day_of_year / 365.0 * 2 * np.pi) + 1.0) * 0.0025 / seconds_per_day\n)\nrng = np.random.default_rng(seed=0)\nprecipitation = (\n rng.lognormal(mean=-1.0, sigma=1.7, size=time.size) * 0.001 / seconds_per_day\n)\n\nWe’ll use xarray to easily broadcast the values.\n\ntimeseries = (\n pd.DataFrame(\n data={\n \"node_id\": 1,\n \"time\": time,\n \"drainage\": 0.0,\n \"potential_evaporation\": evaporation,\n \"infiltration\": 0.0,\n \"precipitation\": precipitation,\n \"urban_runoff\": 0.0,\n }\n )\n .set_index(\"time\")\n .to_xarray()\n)\n\nbasin_ids = model.basin.static[\"node_id\"].to_numpy()\nbasin_nodes = xr.DataArray(\n np.ones(len(basin_ids)), coords={\"node_id\": basin_ids}, dims=[\"node_id\"]\n)\nforcing = (timeseries * basin_nodes).to_dataframe().reset_index()\n\n\nstate = pd.DataFrame(\n data={\n \"node_id\": basin_ids,\n \"level\": 1.4,\n \"concentration\": 0.0,\n }\n)\n\n\nmodel.basin.time = forcing\nmodel.basin.state = state\n\n\nmodel.modelname = \"basic_transient\"\nmodel.write(datadir / \"basic_transient\")\n\nNow run the model with ribasim basic-transient/basic.toml. After running the model, read back the output:\n\ndf_basin = pd.read_feather(datadir / \"basic_transient/output/basin.arrow\")\ndf_basin_wide = df_basin.pivot_table(\n index=\"time\", columns=\"node_id\", values=[\"storage\", \"level\"]\n)\ndf_basin_wide[\"level\"].plot()\n\n<Axes: xlabel='time'>\n\n\n\n\n\n\ndf_flow = pd.read_feather(datadir / \"basic_transient/output/flow.arrow\")\ndf_flow[\"edge\"] = list(zip(df_flow.from_node_id, df_flow.to_node_id))\ndf_flow[\"flow_m3d\"] = df_flow.flow * 86400\nax = df_flow.pivot_table(index=\"time\", columns=\"edge\", values=\"flow_m3d\").plot()\nax.legend(bbox_to_anchor=(1.3, 1), title=\"Edge\")\n\n<matplotlib.legend.Legend at 0x7f8b758bc150>\n\n\n\n\n\n\ntype(df_flow)\n\npandas.core.frame.DataFrame\n\n\n\n\n3 Model with discrete control\nThe model constructed below consists of a single basin which slowly drains trough a TabulatedRatingCurve, but is held within a range around a target level (setpoint) by two connected pumps. These two pumps behave like a reversible pump. When pumping can be done in only one direction, and the other direction is only possible under gravity, use an Outlet for that direction.\nSet up the nodes:\n\nxy = np.array(\n [\n (0.0, 0.0), # 1: Basin\n (1.0, 1.0), # 2: Pump\n (1.0, -1.0), # 3: Pump\n (2.0, 0.0), # 4: LevelBoundary\n (-1.0, 0.0), # 5: TabulatedRatingCurve\n (-2.0, 0.0), # 6: Terminal\n (1.0, 0.0), # 7: DiscreteControl\n ]\n)\n\nnode_xy = gpd.points_from_xy(x=xy[:, 0], y=xy[:, 1])\n\nnode_type = [\n \"Basin\",\n \"Pump\",\n \"Pump\",\n \"LevelBoundary\",\n \"TabulatedRatingCurve\",\n \"Terminal\",\n \"DiscreteControl\",\n]\n\n# Make sure the feature id starts at 1: explicitly give an index.\nnode = ribasim.Node(\n static=gpd.GeoDataFrame(\n data={\"type\": node_type},\n index=pd.Index(np.arange(len(xy)) + 1, name=\"fid\"),\n geometry=node_xy,\n crs=\"EPSG:28992\",\n )\n)\n\nSetup the edges:\n\nfrom_id = np.array([1, 3, 4, 2, 1, 5, 7, 7], dtype=np.int64)\nto_id = np.array([3, 4, 2, 1, 5, 6, 2, 3], dtype=np.int64)\n\nedge_type = 6 * [\"flow\"] + 2 * [\"control\"]\n\nlines = ribasim.utils.geometry_from_connectivity(node, from_id, to_id)\nedge = ribasim.Edge(\n static=gpd.GeoDataFrame(\n data={\"from_node_id\": from_id, \"to_node_id\": to_id, \"edge_type\": edge_type},\n geometry=lines,\n crs=\"EPSG:28992\",\n )\n)\n\nSetup the basins:\n\nprofile = pd.DataFrame(\n data={\n \"node_id\": [1, 1],\n \"area\": [1000.0, 1000.0],\n \"level\": [0.0, 1.0],\n }\n)\n\nstatic = pd.DataFrame(\n data={\n \"node_id\": [1],\n \"drainage\": [0.0],\n \"potential_evaporation\": [0.0],\n \"infiltration\": [0.0],\n \"precipitation\": [0.0],\n \"urban_runoff\": [0.0],\n }\n)\n\nstate = pd.DataFrame(data={\"node_id\": [1], \"level\": [20.0]})\n\nbasin = ribasim.Basin(profile=profile, static=static, state=state)\n\nSetup the discrete control:\n\ncondition = pd.DataFrame(\n data={\n \"node_id\": 3 * [7],\n \"listen_feature_id\": 3 * [1],\n \"variable\": 3 * [\"level\"],\n \"greater_than\": [5.0, 10.0, 15.0], # min, setpoint, max\n }\n)\n\nlogic = pd.DataFrame(\n data={\n \"node_id\": 5 * [7],\n \"truth_state\": [\"FFF\", \"U**\", \"T*F\", \"**D\", \"TTT\"],\n \"control_state\": [\"in\", \"in\", \"none\", \"out\", \"out\"],\n }\n)\n\ndiscrete_control = ribasim.DiscreteControl(condition=condition, logic=logic)\n\nThe above control logic can be summarized as follows: - If the level gets above the maximum, activate the control state “out” until the setpoint is reached; - If the level gets below the minimum, active the control state “in” until the setpoint is reached; - Otherwise activate the control state “none”.\nSetup the pump:\n\npump = ribasim.Pump(\n static=pd.DataFrame(\n data={\n \"node_id\": 3 * [2] + 3 * [3],\n \"control_state\": 2 * [\"none\", \"in\", \"out\"],\n \"flow_rate\": [0.0, 2e-3, 0.0, 0.0, 0.0, 2e-3],\n }\n )\n)\n\nThe pump data defines the following:\n\n\n\nControl state\nPump #2 flow rate (m/s)\nPump #3 flow rate (m/s)\n\n\n\n\n“none”\n0.0\n0.0\n\n\n“in”\n2e-3\n0.0\n\n\n“out”\n0.0\n2e-3\n\n\n\nSetup the level boundary:\n\nlevel_boundary = ribasim.LevelBoundary(\n static=pd.DataFrame(data={\"node_id\": [4], \"level\": [10.0]})\n)\n\nSetup the rating curve:\n\nrating_curve = ribasim.TabulatedRatingCurve(\n static=pd.DataFrame(\n data={\"node_id\": 2 * [5], \"level\": [2.0, 15.0], \"discharge\": [0.0, 1e-3]}\n )\n)\n\nSetup the terminal:\n\nterminal = ribasim.Terminal(static=pd.DataFrame(data={\"node_id\": [6]}))\n\nSetup a model:\n\nmodel = ribasim.Model(\n modelname=\"level_setpoint_with_minmax\",\n node=node,\n edge=edge,\n basin=basin,\n pump=pump,\n level_boundary=level_boundary,\n tabulated_rating_curve=rating_curve,\n terminal=terminal,\n discrete_control=discrete_control,\n starttime=\"2020-01-01 00:00:00\",\n endtime=\"2021-01-01 00:00:00\",\n)\n\nLet’s take a look at the model:\n\nmodel.plot()\n\n<Axes: >\n\n\n\n\n\nListen edges are plotted with a dashed line since they are not present in the “Edge / static” schema but only in the “Control / condition” schema.\n\ndatadir = Path(\"data\")\nmodel.write(datadir / \"level_setpoint_with_minmax\")\n\nNow run the model with level_setpoint_with_minmax/level_setpoint_with_minmax.toml. After running the model, read back the output:\n\nfrom matplotlib.dates import date2num\n\ndf_basin = pd.read_feather(datadir / \"level_setpoint_with_minmax/output/basin.arrow\")\ndf_basin_wide = df_basin.pivot_table(\n index=\"time\", columns=\"node_id\", values=[\"storage\", \"level\"]\n)\n\nax = df_basin_wide[\"level\"].plot()\n\ngreater_than = model.discrete_control.condition.greater_than\n\nax.hlines(\n greater_than,\n df_basin.time[0],\n df_basin.time.max(),\n lw=1,\n ls=\"--\",\n color=\"k\",\n)\n\ndf_control = pd.read_feather(\n datadir / \"level_setpoint_with_minmax/output/control.arrow\"\n)\n\ny_min, y_max = ax.get_ybound()\nax.fill_between(df_control.time[:2], 2 * [y_min], 2 * [y_max], alpha=0.2, color=\"C0\")\nax.fill_between(df_control.time[2:4], 2 * [y_min], 2 * [y_max], alpha=0.2, color=\"C0\")\n\nax.set_xticks(\n date2num(df_control.time).tolist(),\n df_control.control_state.tolist(),\n rotation=50,\n)\n\nax.set_yticks(greater_than, [\"min\", \"setpoint\", \"max\"])\nax.set_ylabel(\"level\")\nplt.show()\n\n\n\n\nThe highlighted regions show where a pump is active.\nLet’s print an overview of what happened with control:\n\nmodel.print_discrete_control_record(\n datadir / \"level_setpoint_with_minmax/output/control.arrow\"\n)\n\n0. At 2020-01-01 00:00:00 the control node with ID 7 reached truth state TTT:\n For node ID 1 (Basin): level > 5.0\n For node ID 1 (Basin): level > 10.0\n For node ID 1 (Basin): level > 15.0\n\n This yielded control state \"out\":\n For node ID 2 (Pump): flow_rate = 0.0\n For node ID 3 (Pump): flow_rate = 0.002\n\n1. At 2020-02-09 01:17:29.324000 the control node with ID 7 reached truth state TFF:\n For node ID 1 (Basin): level > 5.0\n For node ID 1 (Basin): level < 10.0\n For node ID 1 (Basin): level < 15.0\n\n This yielded control state \"none\":\n For node ID 2 (Pump): flow_rate = 0.0\n For node ID 3 (Pump): flow_rate = 0.0\n\n2. At 2020-07-05 13:24:51.165000 the control node with ID 7 reached truth state FFF:\n For node ID 1 (Basin): level < 5.0\n For node ID 1 (Basin): level < 10.0\n For node ID 1 (Basin): level < 15.0\n\n This yielded control state \"in\":\n For node ID 2 (Pump): flow_rate = 0.002\n For node ID 3 (Pump): flow_rate = 0.0\n\n3. At 2020-08-11 11:49:59.015000 the control node with ID 7 reached truth state TTF:\n For node ID 1 (Basin): level > 5.0\n For node ID 1 (Basin): level > 10.0\n For node ID 1 (Basin): level < 15.0\n\n This yielded control state \"none\":\n For node ID 2 (Pump): flow_rate = 0.0\n For node ID 3 (Pump): flow_rate = 0.0\n\n\n\nNote that crossing direction specific truth states (containing “U”, “D”) are not present in this overview even though they are part of the control logic. This is because in the control logic for this model these truth states are only used to sustain control states, while the overview only shows changes in control states.\n\n\n4 Model with PID control\nSet up the nodes:\n\nxy = np.array(\n [\n (0.0, 0.0), # 1: FlowBoundary\n (1.0, 0.0), # 2: Basin\n (2.0, 0.5), # 3: Pump\n (3.0, 0.0), # 4: LevelBoundary\n (1.5, 1.0), # 5: PidControl\n (2.0, -0.5), # 6: outlet\n (1.5, -1.0), # 7: PidControl\n ]\n)\n\nnode_xy = gpd.points_from_xy(x=xy[:, 0], y=xy[:, 1])\n\nnode_type = [\n \"FlowBoundary\",\n \"Basin\",\n \"Pump\",\n \"LevelBoundary\",\n \"PidControl\",\n \"Outlet\",\n \"PidControl\",\n]\n\n# Make sure the feature id starts at 1: explicitly give an index.\nnode = ribasim.Node(\n static=gpd.GeoDataFrame(\n data={\"type\": node_type},\n index=pd.Index(np.arange(len(xy)) + 1, name=\"fid\"),\n geometry=node_xy,\n crs=\"EPSG:28992\",\n )\n)\n\nSetup the edges:\n\nfrom_id = np.array([1, 2, 3, 4, 6, 5, 7], dtype=np.int64)\nto_id = np.array([2, 3, 4, 6, 2, 3, 6], dtype=np.int64)\n\nlines = ribasim.utils.geometry_from_connectivity(node, from_id, to_id)\nedge = ribasim.Edge(\n static=gpd.GeoDataFrame(\n data={\n \"from_node_id\": from_id,\n \"to_node_id\": to_id,\n \"edge_type\": 5 * [\"flow\"] + 2 * [\"control\"],\n },\n geometry=lines,\n crs=\"EPSG:28992\",\n )\n)\n\nSetup the basins:\n\nprofile = pd.DataFrame(\n data={\"node_id\": [2, 2], \"level\": [0.0, 1.0], \"area\": [1000.0, 1000.0]}\n)\n\nstatic = pd.DataFrame(\n data={\n \"node_id\": [2],\n \"drainage\": [0.0],\n \"potential_evaporation\": [0.0],\n \"infiltration\": [0.0],\n \"precipitation\": [0.0],\n \"urban_runoff\": [0.0],\n }\n)\n\nstate = pd.DataFrame(\n data={\n \"node_id\": [2],\n \"level\": [6.0],\n }\n)\n\nbasin = ribasim.Basin(profile=profile, static=static, state=state)\n\nSetup the pump:\n\npump = ribasim.Pump(\n static=pd.DataFrame(\n data={\n \"node_id\": [3],\n \"flow_rate\": [0.0], # Will be overwritten by PID controller\n }\n )\n)\n\nSetup the outlet:\n\noutlet = ribasim.Outlet(\n static=pd.DataFrame(\n data={\n \"node_id\": [6],\n \"flow_rate\": [0.0], # Will be overwritten by PID controller\n }\n )\n)\n\nSetup flow boundary:\n\nflow_boundary = ribasim.FlowBoundary(\n static=pd.DataFrame(data={\"node_id\": [1], \"flow_rate\": [1e-3]})\n)\n\nSetup flow boundary:\n\nlevel_boundary = ribasim.LevelBoundary(\n static=pd.DataFrame(\n data={\n \"node_id\": [4],\n \"level\": [1.0], # Not relevant\n }\n )\n)\n\nSetup PID control:\n\npid_control = ribasim.PidControl(\n time=pd.DataFrame(\n data={\n \"node_id\": 4 * [5, 7],\n \"time\": [\n \"2020-01-01 00:00:00\",\n \"2020-01-01 00:00:00\",\n \"2020-05-01 00:00:00\",\n \"2020-05-01 00:00:00\",\n \"2020-07-01 00:00:00\",\n \"2020-07-01 00:00:00\",\n \"2020-12-01 00:00:00\",\n \"2020-12-01 00:00:00\",\n ],\n \"listen_node_id\": 4 * [2, 2],\n \"target\": [5.0, 5.0, 5.0, 5.0, 7.5, 7.5, 7.5, 7.5],\n \"proportional\": 4 * [-1e-3, 1e-3],\n \"integral\": 4 * [-1e-7, 1e-7],\n \"derivative\": 4 * [0.0, 0.0],\n }\n )\n)\n\nNote that the coefficients for the pump and the outlet are equal in magnitude but opposite in sign. This way the pump and the outlet equally work towards the same goal, while having opposite effects on the controlled basin due to their connectivity to this basin.\nSetup a model:\n\nmodel = ribasim.Model(\n modelname=\"pid_control\",\n node=node,\n edge=edge,\n basin=basin,\n flow_boundary=flow_boundary,\n level_boundary=level_boundary,\n pump=pump,\n outlet=outlet,\n pid_control=pid_control,\n starttime=\"2020-01-01 00:00:00\",\n endtime=\"2020-12-01 00:00:00\",\n)\n\nLet’s take a look at the model:\n\nmodel.plot()\n\n<Axes: >\n\n\n\n\n\nWrite the model to a TOML and GeoPackage:\n\ndatadir = Path(\"data\")\nmodel.write(datadir / \"pid_control\")\n\nNow run the model with ribasim pid_control/pid_control.toml. After running the model, read back the output:\n\nfrom matplotlib.dates import date2num\n\ndf_basin = pd.read_feather(datadir / \"pid_control/output/basin.arrow\")\ndf_basin_wide = df_basin.pivot_table(\n index=\"time\", columns=\"node_id\", values=[\"storage\", \"level\"]\n)\nax = df_basin_wide[\"level\"].plot()\nax.set_ylabel(\"level [m]\")\n\n# Plot target level\ntarget_levels = model.pid_control.time.target.to_numpy()[::2]\ntimes = date2num(model.pid_control.time.time)[::2]\nax.plot(times, target_levels, color=\"k\", ls=\":\", label=\"target level\");"
},
{
"objectID": "python/reference/LinearResistance.html",
@@ -781,7 +781,7 @@
"href": "core/usage.html#user-time",
"title": "Usage",
"section": "10.1 User / time",
- "text": "10.1 User / time\nThis table is the transient form of the User table. The only difference is that a time column is added and activity is assumed to be true. The table must by sorted by time, and per time it must be sorted by node_id. With this the demand can be updated over time. In between the given times the demand is interpolated linearly, and outside the demand is constant given by the nearest time value. Note that a node_id can be either in this table or in the static one, but not both.\n\n\n\ncolumn\ntype\nunit\nrestriction\n\n\n\n\nnode_id\nInt\n-\nsorted per time\n\n\ntime\nDateTime\n-\nsorted\n\n\ndemand\nFloat64\n\\(m^3 s^{-1}\\)\n-\n\n\nreturn_factor\nFloat64\n-\nbetween [0 - 1]\n\n\nmin_level\nFloat64\n\\(m\\)\n(optional)\n\n\npriority\nInt\n-\n-"
+ "text": "10.1 User / time\nThis table is the transient form of the User table. The only difference is that a time column is added and activity is assumed to be true. The table must by sorted by time, and per time it must be sorted by node_id. With this the demand can be updated over time. In between the given times the demand is interpolated linearly, and outside the demand is constant given by the nearest time value. Note that a node_id can be either in this table or in the static one, but not both.\n\n\n\n\n\n\n\n\n\ncolumn\ntype\nunit\nrestriction\n\n\n\n\nnode_id\nInt\n-\nsorted\n\n\ntime\nDateTime\n-\nsorted per priority per node id\n\n\ndemand\nFloat64\n\\(m^3 s^{-1}\\)\n-\n\n\nreturn_factor\nFloat64\n-\nbetween [0 - 1]\n\n\nmin_level\nFloat64\n\\(m\\)\n(optional)\n\n\npriority\nInt\n-\nsorted per node id"
},
{
"objectID": "core/usage.html#levelboundary-time",