diff --git a/concept/allocation.html b/concept/allocation.html index 5f7c1438d..88401a040 100644 --- a/concept/allocation.html +++ b/concept/allocation.html @@ -574,7 +574,7 @@

4.4 Example

The following is an example of an optimization problem for the example shown here:

-
+
Code
using Ribasim
@@ -597,24 +597,24 @@ 

println(p.allocation.allocation_models[1].problem)

-
Min F[(Basin #2, UserDemand #3)]² + F[(Basin #5, UserDemand #6)]²
+
Min F[(Basin #5, UserDemand #6)]² + F[(Basin #2, UserDemand #3)]²
 Subject to
- flow_conservation[TabulatedRatingCurve #7] : F[(Basin #5, TabulatedRatingCurve #7)] - F[(TabulatedRatingCurve #7, Terminal #8)] = 0
+ flow_conservation[Basin #5] : F[(UserDemand #6, Basin #5)] - F[(Basin #5, UserDemand #6)] + F[(LinearResistance #4, Basin #5)] - F[(Basin #5, LinearResistance #4)] - F[(Basin #5, TabulatedRatingCurve #7)] = 0
+ flow_conservation[Basin #2] : F[(FlowBoundary #1, Basin #2)] - F[(Basin #2, LinearResistance #4)] + F[(LinearResistance #4, Basin #2)] + F[(UserDemand #3, Basin #2)] - F[(Basin #2, UserDemand #3)] = 0
  flow_conservation[LinearResistance #4] : F[(Basin #2, LinearResistance #4)] - F[(LinearResistance #4, Basin #2)] - F[(LinearResistance #4, Basin #5)] + F[(Basin #5, LinearResistance #4)] = 0
- flow_conservation[Basin #2] : F[(UserDemand #3, Basin #2)] + F[(FlowBoundary #1, Basin #2)] - F[(Basin #2, LinearResistance #4)] + F[(LinearResistance #4, Basin #2)] - F[(Basin #2, UserDemand #3)] = 0
- flow_conservation[Basin #5] : -F[(Basin #5, TabulatedRatingCurve #7)] + F[(UserDemand #6, Basin #5)] - F[(Basin #5, UserDemand #6)] + F[(LinearResistance #4, Basin #5)] - F[(Basin #5, LinearResistance #4)] = 0
+ flow_conservation[TabulatedRatingCurve #7] : -F[(TabulatedRatingCurve #7, Terminal #8)] + F[(Basin #5, TabulatedRatingCurve #7)] = 0
  flow_conservation[Terminal #8] : F[(TabulatedRatingCurve #7, Terminal #8)] = 0
- F[(Basin #5, TabulatedRatingCurve #7)] ≥ 0
- F[(UserDemand #3, Basin #2)] ≥ 0
+ F[(UserDemand #6, Basin #5)] ≥ 0
  F[(FlowBoundary #1, Basin #2)] ≥ 0
  F[(TabulatedRatingCurve #7, Terminal #8)] ≥ 0
- F[(UserDemand #6, Basin #5)] ≥ 0
  F[(Basin #2, LinearResistance #4)] ≥ 0
  F[(LinearResistance #4, Basin #2)] ≥ 0
- F[(Basin #2, UserDemand #3)] ≥ 0
+ F[(UserDemand #3, Basin #2)] ≥ 0
  F[(Basin #5, UserDemand #6)] ≥ 0
  F[(LinearResistance #4, Basin #5)] ≥ 0
  F[(Basin #5, LinearResistance #4)] ≥ 0
+ F[(Basin #5, TabulatedRatingCurve #7)] ≥ 0
+ F[(Basin #2, UserDemand #3)] ≥ 0
  source[(FlowBoundary #1, Basin #2)] : F[(FlowBoundary #1, Basin #2)] ≤ 172800
  source_user[UserDemand #3] : F[(UserDemand #3, Basin #2)] ≤ 0
  source_user[UserDemand #6] : F[(UserDemand #6, Basin #5)] ≤ 0
diff --git a/guide/examples.html b/guide/examples.html
index e05e1da2e..9c88a86b1 100644
--- a/guide/examples.html
+++ b/guide/examples.html
@@ -1294,23 +1294,23 @@ 

6 Guidance of mod
# Set up outlet
 model.outlet.add(
     Node(2, Point(0.0, -1.0)),
-    [outlet.Static(flow_rate=[2 * 0.5 / 3600], min_crest_level=[0.0])],
+    [outlet.Static(flow_rate=[2 * 0.5 / 3600], min_upstream_level=[0.0])],
 )
 model.outlet.add(
     Node(5, Point(0.0, -3.0)),
-    [outlet.Static(flow_rate=[0.5 / 3600], min_crest_level=[1.95])],
+    [outlet.Static(flow_rate=[0.5 / 3600], min_upstream_level=[1.95])],
 )
 model.outlet.add(
     Node(7, Point(1.0, -4.0)),
-    [outlet.Static(flow_rate=[0.5 / 3600], min_crest_level=[1.45])],
+    [outlet.Static(flow_rate=[0.5 / 3600], min_upstream_level=[1.45])],
 )
 model.outlet.add(
     Node(9, Point(3.0, -4.0)),
-    [outlet.Static(flow_rate=[0.5 / 3600], min_crest_level=[0.95])],
+    [outlet.Static(flow_rate=[0.5 / 3600], min_upstream_level=[0.95])],
 )
 model.outlet.add(
     Node(11, Point(4.0, -3.0)),
-    [outlet.Static(flow_rate=[0.5 / 3600], min_crest_level=[0.45])],
+    [outlet.Static(flow_rate=[0.5 / 3600], min_upstream_level=[0.45])],
 )
NodeData(node_id=11, node_type='Outlet', geometry=<POINT (4 -3)>)
diff --git a/guide/examples_files/figure-html/cell-18-output-1.png b/guide/examples_files/figure-html/cell-18-output-1.png index a08f4620f..974e3b0af 100644 Binary files a/guide/examples_files/figure-html/cell-18-output-1.png and b/guide/examples_files/figure-html/cell-18-output-1.png differ diff --git a/guide/examples_files/figure-html/cell-19-output-1.png b/guide/examples_files/figure-html/cell-19-output-1.png index f859971d5..72fbc3599 100644 Binary files a/guide/examples_files/figure-html/cell-19-output-1.png and b/guide/examples_files/figure-html/cell-19-output-1.png differ diff --git a/reference/node/basin.html b/reference/node/basin.html index 2a95403e2..2e81278be 100644 --- a/reference/node/basin.html +++ b/reference/node/basin.html @@ -472,7 +472,7 @@

1.2.1 Interpolation

At the given timestamps the values are set in the simulation, such that the timeseries can be seen as forward filled.

-
+
Code
import numpy as np
@@ -671,7 +671,7 @@ 

1.4.1.1 Level to area

The level to area relationship is defined with the Basin / profile data using linear interpolation. An example of such a relationship is shown below.

-
+
Code
fig, ax = plt.subplots()
@@ -754,7 +754,7 @@ 

\[ S(h) = \int_{h_0}^h A(h')\text{d}h'. \]

-
+
Code
storage = np.diff(level) * area[:-1] + 0.5 * np.diff(area) * np.diff(level)
@@ -799,7 +799,7 @@ 

1.4.1.3 Interactive basin example

The profile data is not detailed enough to create a full 3D picture of the basin. However, if we assume the profile data is for a stretch of canal of given length, the following plot shows a cross section of the basin.

-
+
Code
import plotly.graph_objects as go
@@ -914,9 +914,9 @@ 

fig.show()

-