Code
using Ribasim
@@ -589,44 +589,44 @@ println(p.allocation.allocation_models[1].problem)
Min F_abs_user_demand[UserDemand #3] + F_abs_user_demand[UserDemand #6] + F_abs_user_demand[UserDemand #13] + F_abs_basin[Basin #2] + F_abs_basin[Basin #5] + F_abs_basin[Basin #12]
+Min F_abs_user_demand[UserDemand #13] + F_abs_user_demand[UserDemand #3] + F_abs_user_demand[UserDemand #6] + F_abs_basin[Basin #5] + F_abs_basin[Basin #2] + F_abs_basin[Basin #12]
Subject to
- flow_conservation[Basin #2] : -F[(Basin #5, Basin #2)] + F[(Basin #2, Basin #5)] - F[(FlowBoundary #1, Basin #2)] + F[(Basin #2, UserDemand #3)] + F_basin_in[Basin #2] - F_basin_out[Basin #2] = 0
- flow_conservation[Basin #5] : F[(Basin #5, Basin #2)] - F[(Basin #2, Basin #5)] + F[(Basin #5, UserDemand #6)] + F[(Basin #5, TabulatedRatingCurve #7)] + F_basin_in[Basin #5] - F_basin_out[Basin #5] = 0
+ flow_conservation[Basin #5] : F[(Basin #5, Basin #2)] + F[(Basin #5, TabulatedRatingCurve #7)] + F[(Basin #5, UserDemand #6)] - F[(Basin #2, Basin #5)] + F_basin_in[Basin #5] - F_basin_out[Basin #5] = 0
+ flow_conservation[Basin #2] : -F[(Basin #5, Basin #2)] + F[(Basin #2, UserDemand #3)] + F[(Basin #2, Basin #5)] - F[(FlowBoundary #1, Basin #2)] + F_basin_in[Basin #2] - F_basin_out[Basin #2] = 0
flow_conservation[Basin #12] : F[(Basin #12, UserDemand #13)] - F[(TabulatedRatingCurve #7, Basin #12)] + F_basin_in[Basin #12] - F_basin_out[Basin #12] = 0
+ abs_positive_user_demand[UserDemand #13] : -F[(Basin #12, UserDemand #13)] + F_abs_user_demand[UserDemand #13] ≥ 0
abs_positive_user_demand[UserDemand #3] : -F[(Basin #2, UserDemand #3)] + F_abs_user_demand[UserDemand #3] ≥ -1.5
abs_positive_user_demand[UserDemand #6] : -F[(Basin #5, UserDemand #6)] + F_abs_user_demand[UserDemand #6] ≥ 0
- abs_positive_user_demand[UserDemand #13] : -F[(Basin #12, UserDemand #13)] + F_abs_user_demand[UserDemand #13] ≥ 0
+ abs_negative_user_demand[UserDemand #13] : F[(Basin #12, UserDemand #13)] + F_abs_user_demand[UserDemand #13] ≥ 0
abs_negative_user_demand[UserDemand #3] : F[(Basin #2, UserDemand #3)] + F_abs_user_demand[UserDemand #3] ≥ 1.5
abs_negative_user_demand[UserDemand #6] : F[(Basin #5, UserDemand #6)] + F_abs_user_demand[UserDemand #6] ≥ 0
- abs_negative_user_demand[UserDemand #13] : F[(Basin #12, UserDemand #13)] + F_abs_user_demand[UserDemand #13] ≥ 0
- abs_positive_basin[Basin #2] : -F_basin_in[Basin #2] + F_abs_basin[Basin #2] ≥ 0
abs_positive_basin[Basin #5] : -F_basin_in[Basin #5] + F_abs_basin[Basin #5] ≥ 0
+ abs_positive_basin[Basin #2] : -F_basin_in[Basin #2] + F_abs_basin[Basin #2] ≥ 0
abs_positive_basin[Basin #12] : -F_basin_in[Basin #12] + F_abs_basin[Basin #12] ≥ 0
- abs_negative_basin[Basin #2] : F_basin_in[Basin #2] + F_abs_basin[Basin #2] ≥ 0
abs_negative_basin[Basin #5] : F_basin_in[Basin #5] + F_abs_basin[Basin #5] ≥ 0
+ abs_negative_basin[Basin #2] : F_basin_in[Basin #2] + F_abs_basin[Basin #2] ≥ 0
abs_negative_basin[Basin #12] : F_basin_in[Basin #12] + F_abs_basin[Basin #12] ≥ 0
source[(FlowBoundary #1, Basin #2)] : F[(FlowBoundary #1, Basin #2)] ≤ 1
return_flow[UserDemand #13] : F[(UserDemand #13, Terminal #10)] ≤ 0
fractional_flow[(TabulatedRatingCurve #7, Basin #12)] : F[(TabulatedRatingCurve #7, Basin #12)] - 0.4 F[(Basin #5, TabulatedRatingCurve #7)] ≤ 0
- basin_outflow[Basin #2] : F_basin_out[Basin #2] ≤ 0
basin_outflow[Basin #5] : F_basin_out[Basin #5] ≤ 0
+ basin_outflow[Basin #2] : F_basin_out[Basin #2] ≤ 0
basin_outflow[Basin #12] : F_basin_out[Basin #12] ≤ 0
- F[(Basin #12, UserDemand #13)] ≥ 0
- F[(UserDemand #13, Terminal #10)] ≥ 0
F[(Basin #5, Basin #2)] ≥ 0
- F[(TabulatedRatingCurve #7, Terminal #10)] ≥ 0
+ F[(Basin #2, UserDemand #3)] ≥ 0
+ F[(UserDemand #13, Terminal #10)] ≥ 0
+ F[(Basin #12, UserDemand #13)] ≥ 0
F[(TabulatedRatingCurve #7, Basin #12)] ≥ 0
+ F[(Basin #5, TabulatedRatingCurve #7)] ≥ 0
+ F[(Basin #5, UserDemand #6)] ≥ 0
F[(Basin #2, Basin #5)] ≥ 0
+ F[(TabulatedRatingCurve #7, Terminal #10)] ≥ 0
F[(FlowBoundary #1, Basin #2)] ≥ 0
- F[(Basin #2, UserDemand #3)] ≥ 0
- F[(Basin #5, UserDemand #6)] ≥ 0
- F[(Basin #5, TabulatedRatingCurve #7)] ≥ 0
- F_basin_in[Basin #2] ≥ 0
F_basin_in[Basin #5] ≥ 0
+ F_basin_in[Basin #2] ≥ 0
F_basin_in[Basin #12] ≥ 0
- F_basin_out[Basin #2] ≥ 0
F_basin_out[Basin #5] ≥ 0
+ F_basin_out[Basin #2] ≥ 0
F_basin_out[Basin #12] ≥ 0
Here \(p > 0\) is the threshold value which determines the interval \([0,p]\) of the smooth transition between \(0\) and \(1\), see the plot below.
-
+
Code
import numpy as np
@@ -696,7 +696,7 @@
3 UserDemand allocation
UserDemands have an allocated flow rate \(F^p\) per priority \(p=1,2,\ldots, p_{\max}\), which is either determined by allocation optimization or simply equal to the demand at time \(t\); \(F^p = d^p(t)\). The actual abstraction rate of a UserDemand is given by \[
- Q_\text{user_demand, in} = \phi(u, 10.0)\phi(h-l_{\min}, 0.1)\sum_{p=1}^{p_{\max}} \min\left(F^p, d^p(t)\right).
+ Q_\text{userdemand, in} = \phi(u, 10.0)\phi(h-l_{\min}, 0.1)\sum_{p=1}^{p_{\max}} \min\left(F^p, d^p(t)\right).
\]
From left to right:
@@ -706,9 +706,9 @@ 3 UserDemand allo
UserDemands also have a return factor \(0 \le r \le 1\), which determines the return flow (outflow) of the UserDemand:
\[
-Q_\text{user_demand, out} = r \cdot Q_\text{user_demand, in}.
+Q_\text{user_demand, out} = r \cdot Q_\text{userdemand, in}.
\]
-Note that this means that the user_demand has a consumption rate of \((1-r)Q_\text{user_demand, in}\).
+Note that this means that the user_demand has a consumption rate of \((1-r)Q_\text{userdemand, in}\).
4 PID controller
diff --git a/core/validation.html b/core/validation.html
index 633e06d71..530cf8cda 100644
--- a/core/validation.html
+++ b/core/validation.html
@@ -262,7 +262,7 @@ Validation
1 Connectivity
In the table below, each column shows which node types are allowed to be downstream (or ‘down-control’) of the node type at the top of the column.
-
+
Code
using Ribasim
@@ -546,7 +546,7 @@ 1 Connectivity
2 Neighbor amounts
The table below shows for each node type between which bounds the amount of in- and outneighbors must be, for both flow and control edges.
-
+
Code
= Vector{String}()
diff --git a/python/test-models.html b/python/test-models.html
index 3c2d7aa36..745364522 100644
--- a/python/test-models.html
+++ b/python/test-models.html
@@ -227,7 +227,7 @@ flow_in_min Test models
Ribasim developers use the following models in their testbench and in order to test new features.
-
+
Code
import ribasim_testmodels
diff --git a/search.json b/search.json
index 49c54eb85..42b5f9069 100644
--- a/search.json
+++ b/search.json
@@ -970,7 +970,7 @@
"href": "core/allocation.html#example",
"title": "Allocation",
"section": "5.1 Example",
- "text": "5.1 Example\nThe following is an example of an optimization problem for the example shown here:\n\n\nCode\nusing Ribasim\nusing Ribasim: NodeID\nusing SQLite\nusing ComponentArrays: ComponentVector\n\ntoml_path = normpath(@__DIR__, \"../../generated_testmodels/allocation_example/ribasim.toml\")\np = Ribasim.Model(toml_path).integrator.p\nu = ComponentVector(; storage = zeros(length(p.basin.node_id)))\n\nallocation_model = p.allocation.allocation_models[1]\nt = 0.0\npriority_idx = 1\n\nRibasim.set_flow!(p.graph, NodeID(:FlowBoundary, 1), NodeID(:Basin, 2), 1.0)\n\nRibasim.adjust_source_capacities!(allocation_model, p, priority_idx)\nRibasim.adjust_edge_capacities!(allocation_model, p, priority_idx)\nRibasim.set_objective_priority!(allocation_model, p, u, t, priority_idx)\n\nprintln(p.allocation.allocation_models[1].problem)\n\n\nMin F_abs_user_demand[UserDemand #3] + F_abs_user_demand[UserDemand #6] + F_abs_user_demand[UserDemand #13] + F_abs_basin[Basin #2] + F_abs_basin[Basin #5] + F_abs_basin[Basin #12]\nSubject to\n flow_conservation[Basin #2] : -F[(Basin #5, Basin #2)] + F[(Basin #2, Basin #5)] - F[(FlowBoundary #1, Basin #2)] + F[(Basin #2, UserDemand #3)] + F_basin_in[Basin #2] - F_basin_out[Basin #2] = 0\n flow_conservation[Basin #5] : F[(Basin #5, Basin #2)] - F[(Basin #2, Basin #5)] + F[(Basin #5, UserDemand #6)] + F[(Basin #5, TabulatedRatingCurve #7)] + F_basin_in[Basin #5] - F_basin_out[Basin #5] = 0\n flow_conservation[Basin #12] : F[(Basin #12, UserDemand #13)] - F[(TabulatedRatingCurve #7, Basin #12)] + F_basin_in[Basin #12] - F_basin_out[Basin #12] = 0\n abs_positive_user_demand[UserDemand #3] : -F[(Basin #2, UserDemand #3)] + F_abs_user_demand[UserDemand #3] ≥ -1.5\n abs_positive_user_demand[UserDemand #6] : -F[(Basin #5, UserDemand #6)] + F_abs_user_demand[UserDemand #6] ≥ 0\n abs_positive_user_demand[UserDemand #13] : -F[(Basin #12, UserDemand #13)] + F_abs_user_demand[UserDemand #13] ≥ 0\n abs_negative_user_demand[UserDemand #3] : F[(Basin #2, UserDemand #3)] + F_abs_user_demand[UserDemand #3] ≥ 1.5\n abs_negative_user_demand[UserDemand #6] : F[(Basin #5, UserDemand #6)] + F_abs_user_demand[UserDemand #6] ≥ 0\n abs_negative_user_demand[UserDemand #13] : F[(Basin #12, UserDemand #13)] + F_abs_user_demand[UserDemand #13] ≥ 0\n abs_positive_basin[Basin #2] : -F_basin_in[Basin #2] + F_abs_basin[Basin #2] ≥ 0\n abs_positive_basin[Basin #5] : -F_basin_in[Basin #5] + F_abs_basin[Basin #5] ≥ 0\n abs_positive_basin[Basin #12] : -F_basin_in[Basin #12] + F_abs_basin[Basin #12] ≥ 0\n abs_negative_basin[Basin #2] : F_basin_in[Basin #2] + F_abs_basin[Basin #2] ≥ 0\n abs_negative_basin[Basin #5] : F_basin_in[Basin #5] + F_abs_basin[Basin #5] ≥ 0\n abs_negative_basin[Basin #12] : F_basin_in[Basin #12] + F_abs_basin[Basin #12] ≥ 0\n source[(FlowBoundary #1, Basin #2)] : F[(FlowBoundary #1, Basin #2)] ≤ 1\n return_flow[UserDemand #13] : F[(UserDemand #13, Terminal #10)] ≤ 0\n fractional_flow[(TabulatedRatingCurve #7, Basin #12)] : F[(TabulatedRatingCurve #7, Basin #12)] - 0.4 F[(Basin #5, TabulatedRatingCurve #7)] ≤ 0\n basin_outflow[Basin #2] : F_basin_out[Basin #2] ≤ 0\n basin_outflow[Basin #5] : F_basin_out[Basin #5] ≤ 0\n basin_outflow[Basin #12] : F_basin_out[Basin #12] ≤ 0\n F[(Basin #12, UserDemand #13)] ≥ 0\n F[(UserDemand #13, Terminal #10)] ≥ 0\n F[(Basin #5, Basin #2)] ≥ 0\n F[(TabulatedRatingCurve #7, Terminal #10)] ≥ 0\n F[(TabulatedRatingCurve #7, Basin #12)] ≥ 0\n F[(Basin #2, Basin #5)] ≥ 0\n F[(FlowBoundary #1, Basin #2)] ≥ 0\n F[(Basin #2, UserDemand #3)] ≥ 0\n F[(Basin #5, UserDemand #6)] ≥ 0\n F[(Basin #5, TabulatedRatingCurve #7)] ≥ 0\n F_basin_in[Basin #2] ≥ 0\n F_basin_in[Basin #5] ≥ 0\n F_basin_in[Basin #12] ≥ 0\n F_basin_out[Basin #2] ≥ 0\n F_basin_out[Basin #5] ≥ 0\n F_basin_out[Basin #12] ≥ 0",
+ "text": "5.1 Example\nThe following is an example of an optimization problem for the example shown here:\n\n\nCode\nusing Ribasim\nusing Ribasim: NodeID\nusing SQLite\nusing ComponentArrays: ComponentVector\n\ntoml_path = normpath(@__DIR__, \"../../generated_testmodels/allocation_example/ribasim.toml\")\np = Ribasim.Model(toml_path).integrator.p\nu = ComponentVector(; storage = zeros(length(p.basin.node_id)))\n\nallocation_model = p.allocation.allocation_models[1]\nt = 0.0\npriority_idx = 1\n\nRibasim.set_flow!(p.graph, NodeID(:FlowBoundary, 1), NodeID(:Basin, 2), 1.0)\n\nRibasim.adjust_source_capacities!(allocation_model, p, priority_idx)\nRibasim.adjust_edge_capacities!(allocation_model, p, priority_idx)\nRibasim.set_objective_priority!(allocation_model, p, u, t, priority_idx)\n\nprintln(p.allocation.allocation_models[1].problem)\n\n\nMin F_abs_user_demand[UserDemand #13] + F_abs_user_demand[UserDemand #3] + F_abs_user_demand[UserDemand #6] + F_abs_basin[Basin #5] + F_abs_basin[Basin #2] + F_abs_basin[Basin #12]\nSubject to\n flow_conservation[Basin #5] : F[(Basin #5, Basin #2)] + F[(Basin #5, TabulatedRatingCurve #7)] + F[(Basin #5, UserDemand #6)] - F[(Basin #2, Basin #5)] + F_basin_in[Basin #5] - F_basin_out[Basin #5] = 0\n flow_conservation[Basin #2] : -F[(Basin #5, Basin #2)] + F[(Basin #2, UserDemand #3)] + F[(Basin #2, Basin #5)] - F[(FlowBoundary #1, Basin #2)] + F_basin_in[Basin #2] - F_basin_out[Basin #2] = 0\n flow_conservation[Basin #12] : F[(Basin #12, UserDemand #13)] - F[(TabulatedRatingCurve #7, Basin #12)] + F_basin_in[Basin #12] - F_basin_out[Basin #12] = 0\n abs_positive_user_demand[UserDemand #13] : -F[(Basin #12, UserDemand #13)] + F_abs_user_demand[UserDemand #13] ≥ 0\n abs_positive_user_demand[UserDemand #3] : -F[(Basin #2, UserDemand #3)] + F_abs_user_demand[UserDemand #3] ≥ -1.5\n abs_positive_user_demand[UserDemand #6] : -F[(Basin #5, UserDemand #6)] + F_abs_user_demand[UserDemand #6] ≥ 0\n abs_negative_user_demand[UserDemand #13] : F[(Basin #12, UserDemand #13)] + F_abs_user_demand[UserDemand #13] ≥ 0\n abs_negative_user_demand[UserDemand #3] : F[(Basin #2, UserDemand #3)] + F_abs_user_demand[UserDemand #3] ≥ 1.5\n abs_negative_user_demand[UserDemand #6] : F[(Basin #5, UserDemand #6)] + F_abs_user_demand[UserDemand #6] ≥ 0\n abs_positive_basin[Basin #5] : -F_basin_in[Basin #5] + F_abs_basin[Basin #5] ≥ 0\n abs_positive_basin[Basin #2] : -F_basin_in[Basin #2] + F_abs_basin[Basin #2] ≥ 0\n abs_positive_basin[Basin #12] : -F_basin_in[Basin #12] + F_abs_basin[Basin #12] ≥ 0\n abs_negative_basin[Basin #5] : F_basin_in[Basin #5] + F_abs_basin[Basin #5] ≥ 0\n abs_negative_basin[Basin #2] : F_basin_in[Basin #2] + F_abs_basin[Basin #2] ≥ 0\n abs_negative_basin[Basin #12] : F_basin_in[Basin #12] + F_abs_basin[Basin #12] ≥ 0\n source[(FlowBoundary #1, Basin #2)] : F[(FlowBoundary #1, Basin #2)] ≤ 1\n return_flow[UserDemand #13] : F[(UserDemand #13, Terminal #10)] ≤ 0\n fractional_flow[(TabulatedRatingCurve #7, Basin #12)] : F[(TabulatedRatingCurve #7, Basin #12)] - 0.4 F[(Basin #5, TabulatedRatingCurve #7)] ≤ 0\n basin_outflow[Basin #5] : F_basin_out[Basin #5] ≤ 0\n basin_outflow[Basin #2] : F_basin_out[Basin #2] ≤ 0\n basin_outflow[Basin #12] : F_basin_out[Basin #12] ≤ 0\n F[(Basin #5, Basin #2)] ≥ 0\n F[(Basin #2, UserDemand #3)] ≥ 0\n F[(UserDemand #13, Terminal #10)] ≥ 0\n F[(Basin #12, UserDemand #13)] ≥ 0\n F[(TabulatedRatingCurve #7, Basin #12)] ≥ 0\n F[(Basin #5, TabulatedRatingCurve #7)] ≥ 0\n F[(Basin #5, UserDemand #6)] ≥ 0\n F[(Basin #2, Basin #5)] ≥ 0\n F[(TabulatedRatingCurve #7, Terminal #10)] ≥ 0\n F[(FlowBoundary #1, Basin #2)] ≥ 0\n F_basin_in[Basin #5] ≥ 0\n F_basin_in[Basin #2] ≥ 0\n F_basin_in[Basin #12] ≥ 0\n F_basin_out[Basin #5] ≥ 0\n F_basin_out[Basin #2] ≥ 0\n F_basin_out[Basin #12] ≥ 0",
"crumbs": [
"Julia core",
"Allocation"
Here \(p > 0\) is the threshold value which determines the interval \([0,p]\) of the smooth transition between \(0\) and \(1\), see the plot below.
-Code
import numpy as np
@@ -696,7 +696,7 @@
3 UserDemand allocation
UserDemands have an allocated flow rate \(F^p\) per priority \(p=1,2,\ldots, p_{\max}\), which is either determined by allocation optimization or simply equal to the demand at time \(t\); \(F^p = d^p(t)\). The actual abstraction rate of a UserDemand is given by \[
- Q_\text{user_demand, in} = \phi(u, 10.0)\phi(h-l_{\min}, 0.1)\sum_{p=1}^{p_{\max}} \min\left(F^p, d^p(t)\right).
+ Q_\text{userdemand, in} = \phi(u, 10.0)\phi(h-l_{\min}, 0.1)\sum_{p=1}^{p_{\max}} \min\left(F^p, d^p(t)\right).
\]
From left to right:
@@ -706,9 +706,9 @@ 3 UserDemand allo
UserDemands also have a return factor \(0 \le r \le 1\), which determines the return flow (outflow) of the UserDemand:
\[
-Q_\text{user_demand, out} = r \cdot Q_\text{user_demand, in}.
+Q_\text{user_demand, out} = r \cdot Q_\text{userdemand, in}.
\]
-Note that this means that the user_demand has a consumption rate of \((1-r)Q_\text{user_demand, in}\).
+Note that this means that the user_demand has a consumption rate of \((1-r)Q_\text{userdemand, in}\).
4 PID controller
diff --git a/core/validation.html b/core/validation.html
index 633e06d71..530cf8cda 100644
--- a/core/validation.html
+++ b/core/validation.html
@@ -262,7 +262,7 @@ Validation
1 Connectivity
In the table below, each column shows which node types are allowed to be downstream (or ‘down-control’) of the node type at the top of the column.
-
+
Code
using Ribasim
@@ -546,7 +546,7 @@ 1 Connectivity
2 Neighbor amounts
The table below shows for each node type between which bounds the amount of in- and outneighbors must be, for both flow and control edges.
-
+
Code
= Vector{String}()
diff --git a/python/test-models.html b/python/test-models.html
index 3c2d7aa36..745364522 100644
--- a/python/test-models.html
+++ b/python/test-models.html
@@ -227,7 +227,7 @@ flow_in_min Test models
Ribasim developers use the following models in their testbench and in order to test new features.
-
+
Code
import ribasim_testmodels
diff --git a/search.json b/search.json
index 49c54eb85..42b5f9069 100644
--- a/search.json
+++ b/search.json
@@ -970,7 +970,7 @@
"href": "core/allocation.html#example",
"title": "Allocation",
"section": "5.1 Example",
- "text": "5.1 Example\nThe following is an example of an optimization problem for the example shown here:\n\n\nCode\nusing Ribasim\nusing Ribasim: NodeID\nusing SQLite\nusing ComponentArrays: ComponentVector\n\ntoml_path = normpath(@__DIR__, \"../../generated_testmodels/allocation_example/ribasim.toml\")\np = Ribasim.Model(toml_path).integrator.p\nu = ComponentVector(; storage = zeros(length(p.basin.node_id)))\n\nallocation_model = p.allocation.allocation_models[1]\nt = 0.0\npriority_idx = 1\n\nRibasim.set_flow!(p.graph, NodeID(:FlowBoundary, 1), NodeID(:Basin, 2), 1.0)\n\nRibasim.adjust_source_capacities!(allocation_model, p, priority_idx)\nRibasim.adjust_edge_capacities!(allocation_model, p, priority_idx)\nRibasim.set_objective_priority!(allocation_model, p, u, t, priority_idx)\n\nprintln(p.allocation.allocation_models[1].problem)\n\n\nMin F_abs_user_demand[UserDemand #3] + F_abs_user_demand[UserDemand #6] + F_abs_user_demand[UserDemand #13] + F_abs_basin[Basin #2] + F_abs_basin[Basin #5] + F_abs_basin[Basin #12]\nSubject to\n flow_conservation[Basin #2] : -F[(Basin #5, Basin #2)] + F[(Basin #2, Basin #5)] - F[(FlowBoundary #1, Basin #2)] + F[(Basin #2, UserDemand #3)] + F_basin_in[Basin #2] - F_basin_out[Basin #2] = 0\n flow_conservation[Basin #5] : F[(Basin #5, Basin #2)] - F[(Basin #2, Basin #5)] + F[(Basin #5, UserDemand #6)] + F[(Basin #5, TabulatedRatingCurve #7)] + F_basin_in[Basin #5] - F_basin_out[Basin #5] = 0\n flow_conservation[Basin #12] : F[(Basin #12, UserDemand #13)] - F[(TabulatedRatingCurve #7, Basin #12)] + F_basin_in[Basin #12] - F_basin_out[Basin #12] = 0\n abs_positive_user_demand[UserDemand #3] : -F[(Basin #2, UserDemand #3)] + F_abs_user_demand[UserDemand #3] ≥ -1.5\n abs_positive_user_demand[UserDemand #6] : -F[(Basin #5, UserDemand #6)] + F_abs_user_demand[UserDemand #6] ≥ 0\n abs_positive_user_demand[UserDemand #13] : -F[(Basin #12, UserDemand #13)] + F_abs_user_demand[UserDemand #13] ≥ 0\n abs_negative_user_demand[UserDemand #3] : F[(Basin #2, UserDemand #3)] + F_abs_user_demand[UserDemand #3] ≥ 1.5\n abs_negative_user_demand[UserDemand #6] : F[(Basin #5, UserDemand #6)] + F_abs_user_demand[UserDemand #6] ≥ 0\n abs_negative_user_demand[UserDemand #13] : F[(Basin #12, UserDemand #13)] + F_abs_user_demand[UserDemand #13] ≥ 0\n abs_positive_basin[Basin #2] : -F_basin_in[Basin #2] + F_abs_basin[Basin #2] ≥ 0\n abs_positive_basin[Basin #5] : -F_basin_in[Basin #5] + F_abs_basin[Basin #5] ≥ 0\n abs_positive_basin[Basin #12] : -F_basin_in[Basin #12] + F_abs_basin[Basin #12] ≥ 0\n abs_negative_basin[Basin #2] : F_basin_in[Basin #2] + F_abs_basin[Basin #2] ≥ 0\n abs_negative_basin[Basin #5] : F_basin_in[Basin #5] + F_abs_basin[Basin #5] ≥ 0\n abs_negative_basin[Basin #12] : F_basin_in[Basin #12] + F_abs_basin[Basin #12] ≥ 0\n source[(FlowBoundary #1, Basin #2)] : F[(FlowBoundary #1, Basin #2)] ≤ 1\n return_flow[UserDemand #13] : F[(UserDemand #13, Terminal #10)] ≤ 0\n fractional_flow[(TabulatedRatingCurve #7, Basin #12)] : F[(TabulatedRatingCurve #7, Basin #12)] - 0.4 F[(Basin #5, TabulatedRatingCurve #7)] ≤ 0\n basin_outflow[Basin #2] : F_basin_out[Basin #2] ≤ 0\n basin_outflow[Basin #5] : F_basin_out[Basin #5] ≤ 0\n basin_outflow[Basin #12] : F_basin_out[Basin #12] ≤ 0\n F[(Basin #12, UserDemand #13)] ≥ 0\n F[(UserDemand #13, Terminal #10)] ≥ 0\n F[(Basin #5, Basin #2)] ≥ 0\n F[(TabulatedRatingCurve #7, Terminal #10)] ≥ 0\n F[(TabulatedRatingCurve #7, Basin #12)] ≥ 0\n F[(Basin #2, Basin #5)] ≥ 0\n F[(FlowBoundary #1, Basin #2)] ≥ 0\n F[(Basin #2, UserDemand #3)] ≥ 0\n F[(Basin #5, UserDemand #6)] ≥ 0\n F[(Basin #5, TabulatedRatingCurve #7)] ≥ 0\n F_basin_in[Basin #2] ≥ 0\n F_basin_in[Basin #5] ≥ 0\n F_basin_in[Basin #12] ≥ 0\n F_basin_out[Basin #2] ≥ 0\n F_basin_out[Basin #5] ≥ 0\n F_basin_out[Basin #12] ≥ 0",
+ "text": "5.1 Example\nThe following is an example of an optimization problem for the example shown here:\n\n\nCode\nusing Ribasim\nusing Ribasim: NodeID\nusing SQLite\nusing ComponentArrays: ComponentVector\n\ntoml_path = normpath(@__DIR__, \"../../generated_testmodels/allocation_example/ribasim.toml\")\np = Ribasim.Model(toml_path).integrator.p\nu = ComponentVector(; storage = zeros(length(p.basin.node_id)))\n\nallocation_model = p.allocation.allocation_models[1]\nt = 0.0\npriority_idx = 1\n\nRibasim.set_flow!(p.graph, NodeID(:FlowBoundary, 1), NodeID(:Basin, 2), 1.0)\n\nRibasim.adjust_source_capacities!(allocation_model, p, priority_idx)\nRibasim.adjust_edge_capacities!(allocation_model, p, priority_idx)\nRibasim.set_objective_priority!(allocation_model, p, u, t, priority_idx)\n\nprintln(p.allocation.allocation_models[1].problem)\n\n\nMin F_abs_user_demand[UserDemand #13] + F_abs_user_demand[UserDemand #3] + F_abs_user_demand[UserDemand #6] + F_abs_basin[Basin #5] + F_abs_basin[Basin #2] + F_abs_basin[Basin #12]\nSubject to\n flow_conservation[Basin #5] : F[(Basin #5, Basin #2)] + F[(Basin #5, TabulatedRatingCurve #7)] + F[(Basin #5, UserDemand #6)] - F[(Basin #2, Basin #5)] + F_basin_in[Basin #5] - F_basin_out[Basin #5] = 0\n flow_conservation[Basin #2] : -F[(Basin #5, Basin #2)] + F[(Basin #2, UserDemand #3)] + F[(Basin #2, Basin #5)] - F[(FlowBoundary #1, Basin #2)] + F_basin_in[Basin #2] - F_basin_out[Basin #2] = 0\n flow_conservation[Basin #12] : F[(Basin #12, UserDemand #13)] - F[(TabulatedRatingCurve #7, Basin #12)] + F_basin_in[Basin #12] - F_basin_out[Basin #12] = 0\n abs_positive_user_demand[UserDemand #13] : -F[(Basin #12, UserDemand #13)] + F_abs_user_demand[UserDemand #13] ≥ 0\n abs_positive_user_demand[UserDemand #3] : -F[(Basin #2, UserDemand #3)] + F_abs_user_demand[UserDemand #3] ≥ -1.5\n abs_positive_user_demand[UserDemand #6] : -F[(Basin #5, UserDemand #6)] + F_abs_user_demand[UserDemand #6] ≥ 0\n abs_negative_user_demand[UserDemand #13] : F[(Basin #12, UserDemand #13)] + F_abs_user_demand[UserDemand #13] ≥ 0\n abs_negative_user_demand[UserDemand #3] : F[(Basin #2, UserDemand #3)] + F_abs_user_demand[UserDemand #3] ≥ 1.5\n abs_negative_user_demand[UserDemand #6] : F[(Basin #5, UserDemand #6)] + F_abs_user_demand[UserDemand #6] ≥ 0\n abs_positive_basin[Basin #5] : -F_basin_in[Basin #5] + F_abs_basin[Basin #5] ≥ 0\n abs_positive_basin[Basin #2] : -F_basin_in[Basin #2] + F_abs_basin[Basin #2] ≥ 0\n abs_positive_basin[Basin #12] : -F_basin_in[Basin #12] + F_abs_basin[Basin #12] ≥ 0\n abs_negative_basin[Basin #5] : F_basin_in[Basin #5] + F_abs_basin[Basin #5] ≥ 0\n abs_negative_basin[Basin #2] : F_basin_in[Basin #2] + F_abs_basin[Basin #2] ≥ 0\n abs_negative_basin[Basin #12] : F_basin_in[Basin #12] + F_abs_basin[Basin #12] ≥ 0\n source[(FlowBoundary #1, Basin #2)] : F[(FlowBoundary #1, Basin #2)] ≤ 1\n return_flow[UserDemand #13] : F[(UserDemand #13, Terminal #10)] ≤ 0\n fractional_flow[(TabulatedRatingCurve #7, Basin #12)] : F[(TabulatedRatingCurve #7, Basin #12)] - 0.4 F[(Basin #5, TabulatedRatingCurve #7)] ≤ 0\n basin_outflow[Basin #5] : F_basin_out[Basin #5] ≤ 0\n basin_outflow[Basin #2] : F_basin_out[Basin #2] ≤ 0\n basin_outflow[Basin #12] : F_basin_out[Basin #12] ≤ 0\n F[(Basin #5, Basin #2)] ≥ 0\n F[(Basin #2, UserDemand #3)] ≥ 0\n F[(UserDemand #13, Terminal #10)] ≥ 0\n F[(Basin #12, UserDemand #13)] ≥ 0\n F[(TabulatedRatingCurve #7, Basin #12)] ≥ 0\n F[(Basin #5, TabulatedRatingCurve #7)] ≥ 0\n F[(Basin #5, UserDemand #6)] ≥ 0\n F[(Basin #2, Basin #5)] ≥ 0\n F[(TabulatedRatingCurve #7, Terminal #10)] ≥ 0\n F[(FlowBoundary #1, Basin #2)] ≥ 0\n F_basin_in[Basin #5] ≥ 0\n F_basin_in[Basin #2] ≥ 0\n F_basin_in[Basin #12] ≥ 0\n F_basin_out[Basin #5] ≥ 0\n F_basin_out[Basin #2] ≥ 0\n F_basin_out[Basin #12] ≥ 0",
"crumbs": [
"Julia core",
"Allocation"