From d5e41e3bb4f44116be14f0e01fd08ce857216b64 Mon Sep 17 00:00:00 2001 From: vers-w Date: Mon, 2 Dec 2024 16:18:14 +0000 Subject: [PATCH] deploy: 4d1cfab299154ee0869f3cfe79d364f4e2228fdd --- previews/PR496/home/publications.html | 1 + previews/PR496/search.json | 2 +- 2 files changed, 2 insertions(+), 1 deletion(-) diff --git a/previews/PR496/home/publications.html b/previews/PR496/home/publications.html index 5227c7024..5d9cd86b7 100644 --- a/previews/PR496/home/publications.html +++ b/previews/PR496/home/publications.html @@ -279,6 +279,7 @@

Peer reviewed

Rusli, S.R., A.H. Weerts, A. Taufiq, V. Bense, 2021. Estimating water balance components and their uncertainty bounds in highly groundwater-dependent and data-scarce area: An example for the Upper Citarum basin, J. Hydrol. Regional Studies, https://doi.org/10.1016/j.ejrh.2021.100911.

Rusli, S.R., V.F. Bense, A. Taufiq, A.H. Weerts,2023. Quantifying basin-scale changes in groundwater storage using GRACE and one-way coupled hydrological and groundwater flow model in the data-scarce Bandung groundwater Basin, Indonesia, Groundwater for Sustainable Development,22, 100953, https://doi.org/10.1016/j.gsd.2023.100953.

Rusli, S.R., A.H. Weerts, S.M.T. Mustafa, D.E. Irawan, A. Taufiq, V.F. Bense, 2023. Quantifying aquifer interaction using numerical groundwater flow model evaluated by environmental water tracer data: Application to the data-scarce area of the Bandung groundwater basin, West Java, Indonesia, Journal of Hydrology: Regional Studies, 50, https://doi.org/10.1016/j.ejrh.2023.101585.

+

Rusli, S. R., Bense, V. F., Mustafa, S. M. T., and Weerts, A. H.,2024. The impact of future changes in climate variables and groundwater abstraction on basin-scale groundwater availability, Hydrol. Earth Syst. Sci., 28, 5107–5131, https://doi.org/10.5194/hess-28-5107-2024, https://doi.org/10.5194/hess-28-5107-2024.

Schaller, N., Sillmann, J., Müller, M., Haarsma, R., Hazeleger, W., Hegdahl, T.J., Kelder, T., van den Oord, G., Weerts, A., Whan, K., 2020. The role of spatial and temporal model resolution in a flood event storyline approach in western Norway. Weather and Climate Extremes, doi: https://doi.org/10.1016/j.wace.2020.100259.

Seizarwati, W. and M. Syahidah, 2021. Rainfall-Runoff Simulation for Water Availability Estimation in Small Island Using Distributed Hydrological Model wflow. IOP Conf. Ser.: Earth Environ. Sci., 930,012050, doi:10.1088/1755-1315/930/1/012050. https://iopscience.iop.org/article/10.1088/1755-1315/930/1/012050/pdf

Sperna Weiland, F.C., R.D. Visser, P. Greve, B. Bisselink, L. Brunner and A.H. Weerts, 2021. Estimating Regionalized Hydrological Impacts of Climate Change Over Europe by Performance-Based Weighting of CORDEX Projections, Frontiers of Water, https://doi.org/10.3389/frwa.2021.713537.

diff --git a/previews/PR496/search.json b/previews/PR496/search.json index 8ec691a54..8ead0fac7 100644 --- a/previews/PR496/search.json +++ b/previews/PR496/search.json @@ -621,7 +621,7 @@ "href": "home/publications.html#publications-using-wflow", "title": "Publications", "section": "Publications using wflow", - "text": "Publications using wflow\n\nPeer reviewed journal papers\nAerts, J. P. M., Hut, R. W., van de Giesen, N. C., Drost, N., van Verseveld, W. J., Weerts, A. H., and Hazenberg, P., 2022. Large-sample assessment of varying spatial resolution on the streamflow estimates of the wflow_sbm hydrological model. Hydrol. Earth Syst. Sci., 26, 4407–4430. https://doi.org/10.5194/hess-26-4407-2022.\nde Boer-Euser, T., Bouaziz, L., De Niel, J., Brauer, C., Dewals, B., Drogue, G., Fenicia, F., Grelier, B., Nossent, J., Pereira, F., Savenije, H., Thirel, G., Willems, P., 2017. Looking beyond general metrics for model comparison – lessons from an international model intercomparison study. Hydrol. Earth Syst. Sci. 21, 423–440. https://doi:10.5194/hess-21-423-2017.\nBouaziz, L.J.E., Fenicia, F., Thirel, G., de Boer-Euser, T., Buitink, J., Brauer, C.C., De Niel, J., Dewals, B.J., Drogue, G., Grelier, B., Melsen, L. A., Moustakas, S., Nossent, J., Pereira, F., Sprokkereef, E., Stam, J., Weerts, A.H., Willems, P., Savenije, H.H.G., Hrachowitz, M., 2021. Behind the scenes of streamflow model performance. Hydrol. Earth Syst. Sci., 25, 1069–1095. https://doi.org/10.5194/hess-25-1069-2021.\nBouaziz, L. J. E., Aalbers, E. E., Weerts, A. H., Hegnauer, M., Buiteveld, H., Lammersen, R., Stam, J., Sprokkereef, E., Savenije, H. H. G., and Hrachowitz, M., 2022. Ecosystem adaptation to climate change: the sensitivity of hydrological predictions to time-dynamic model parameters, Hydrol. Earth Syst. Sci., 26, 1295–1318. https://doi.org/10.5194/hess-26-1295-2022.\nCasson, D. R., Werner, M., Weerts, A., and Solomatine, D., 2018. Global re-analysis datasets to improve hydrological assessment and snow water equivalent estimation in a sub-Arctic watershed. Hydrol. Earth Syst. Sci., 22, 4685–4697. https://doi.org/10.5194/hess-22-4685-2018.\nDroppers, B., Rakovec, O., Avila, L., Azimi, S., Cortés-Torres N., De León Pérez, D., Imhoff, R., Francés, F., Kollet, S., Rigon, R., Weerts, A. & Samaniego, L, 2024. Multi-model hydrological reference dataset over continental Europe and an African basin. Sci Data, 11, 1009. https://doi.org/10.1038/s41597-024-03825-9.\nDroppers, B., Rakovec, O., Avila, L., Azimi, S., Cortés-Torres N., De León Pérez, D., Imhoff, R., Francés, F., Kollet, S., Rigon, R., Weerts, A. & Samaniego, L, 2024. Multi-model hydrological reference dataset over continental Europe and an African basin. Sci Data, 11, 1009. https://doi.org/10.1038/s41597-024-03825-9.\nEmerton, R.E., Stephens, E.M., Pappenberger, F., Pagano, T.C., Weerts, A.H., Wood, A.W., Salamon, P., Brown, J.D., Hjerdt, N., Donnelly, C., Baugh, C.A., Cloke, H.L., 2016. Continental and global scale flood forecasting systems. WIREs Water 3, 391–418. https://doi.org/10.1002/wat2.1137.\nGebremicael, T.G., Mohamed, Y.A., Van der Zaag, P., 2019. Attributing the hydrological impact of different land use types and their long-term dynamics through combining parsimonious hydrological modelling, alteration analysis and PLSR analysis. Science of The Total Environment, 660, 1155-1167, https://doi.org/10.1016/jscitotenv.2019.01.085.\nGiardino, A., Schrijvershof, R., Nederhoff, C.M., de Vroeg, H., Brière, C., Tonnon, P.-K., Caires, S., Walstra, D.J., Sosa, J., van Verseveld, W., Schellekens, J., Sloff, C.J., 2018. A quantitative assessment of human interventions and climate change on the West African sediment budget, Ocean & Coastal Management, 156, 249-265. https://doi.org/10.1016/j.ocecoaman.2017.11.008.\nHally, A., Caumont, O., Garrote, L., Richard, E., Weerts, A., Delogu, F., Fiori, E., Rebora, N., Parodi, A., Mihalović, A., Ivković, M., Dekić, L., van Verseveld, W., Nuissier, O., Ducrocq, V., D’Agostino, D., Galizia, A., Danovaro, E., Clematis, A., 2015. Hydrometeorological multi-model ensemble simulations of the 4 November 2011 flash flood event in Genoa, Italy, in the framework of the DRIHM project. Nat. Hazards Earth Syst. Sci. 15, 537–555. https://doi:10.5194/nhess-15-537-2015.\nHassaballah, K., Mohamed, Y., Uhlenbrook, S., and Biro, K., 2017. Analysis of streamflow response to land use and land cover changes using satellite data and hydrological modelling: case study of Dinder and Rahad tributaries of the Blue Nile (Ethiopia–Sudan), Hydrol. Earth Syst. Sci., 21, 5217–5242. https://doi.org/10.5194/hess-21-5217-2017.\nImhoff, R.O., Buitink, J., van Verseveld, W.J., Weerts, A.H., 2024. A fast high resolution distributed hydrological model for forecasting, climate scenarios and digital twin applications using wflow_sbm. Environmental Modelling & Software, 179, 106099. https://doi.org/10.1016/j.envsoft.2024.106099\nImhoff, R.O, van Verseveld, W.J., van Osnabrugge, B., Weerts, A.H., 2020. Scaling Point-Scale (Pedo)transfer Functions to Seamless Large-Domain Parameter Estimates for High-Resolution Distributed Hydrologic Modeling: An Example for the Rhine River. Water Resources Research, 56, e2019WR026807. https://doi.org/10.1029/2019WR026807.\nImhoff, R.O., van Verseveld, W., van Osnabrugge, B., Weerts, A.H., 2020. Ruimtelijk schaalbare hydrologische modelparameters uit open-source omgevingsdata: een voorbeeld voor de Rijn. Stromingen: vakblad voor hydrologen, 26(3), 19-36 https://edepot.wur.nl/540682.\nJeuken, A., Bouaziz, L., Corzo, G., Alfonso, L., 2016. Analyzing Needs for Climate Change Adaptation in the Magdalena River Basin in Colombia, in: Filho, W.L., Musa, H., Cavan, G., O’Hare, P., Seixas, J. (Eds.), Climate Change Adaptation, Resilience and Hazards, Climate Change Management. Springer International Publishing, pp. 329–344 https://doi.org/10.1007/978-3-319-39880-8.\nLópez López, P., Wanders, N., Schellekens, J., Renzullo, L.J., Sutanudjaja, E.H., Bierkens, M.F.P., 2016. Improved large-scale hydrological modelling through the assimilation of streamflow and downscaled satellite soil moisture observations. Hydrol. Earth Syst. Sci., 20, 3059–3076. https://doi.org/10.5194/hess-20-3059-2016.\nPranoto, B., Soekarno, H., Hartulistiyoso, E., Nur Aidi, M., Sutrisno, D., Pohan, D., Radhika, Sutejo, B., Heru Kuncoro, A., Nahib, I., 2024. Integrating Flood Early Warning System (FEWS) for Optimizing Small Hydropower Sites: A West Java Case Study. EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 11, 3, 2691-2699. https://www.tj.kyushu-u.ac.jp/evergreen/contents/EG2024-11_3_content/pdf/p2691-2699.pdf\nRakovec, O., Weerts, A.H., Sumihar, J., Uijlenhoet, R., 2015. Operational aspects of asynchronous filtering for flood forecasting. Hydrol. Earth Syst. Sci., 19, 2911–2924, https://doi.org/10.5194/hess-19-2911-2015.\nRatri, D.N., A.H. Weerts, R. Muharsyah, K. Whan, A. Klein Tank, E. Aldrian, M. H. Hariadi, Calibration of ECMWF SEAS5 based streamflow forecast in Seasonal hydrological forecasting for Citarum river basin, West Java, Indonesia, Journal of Hydrology: Regional Studies,45,101305, https://doi.org/10.1016/j.ejrh.2022.101305.\nRusli, S.R., A.H. Weerts, A. Taufiq, V. Bense, 2021. Estimating water balance components and their uncertainty bounds in highly groundwater-dependent and data-scarce area: An example for the Upper Citarum basin, J. Hydrol. Regional Studies, https://doi.org/10.1016/j.ejrh.2021.100911.\nRusli, S.R., V.F. Bense, A. Taufiq, A.H. Weerts,2023. Quantifying basin-scale changes in groundwater storage using GRACE and one-way coupled hydrological and groundwater flow model in the data-scarce Bandung groundwater Basin, Indonesia, Groundwater for Sustainable Development,22, 100953, https://doi.org/10.1016/j.gsd.2023.100953.\nRusli, S.R., A.H. Weerts, S.M.T. Mustafa, D.E. Irawan, A. Taufiq, V.F. Bense, 2023. Quantifying aquifer interaction using numerical groundwater flow model evaluated by environmental water tracer data: Application to the data-scarce area of the Bandung groundwater basin, West Java, Indonesia, Journal of Hydrology: Regional Studies, 50, https://doi.org/10.1016/j.ejrh.2023.101585.\nSchaller, N., Sillmann, J., Müller, M., Haarsma, R., Hazeleger, W., Hegdahl, T.J., Kelder, T., van den Oord, G., Weerts, A., Whan, K., 2020. The role of spatial and temporal model resolution in a flood event storyline approach in western Norway. Weather and Climate Extremes, doi: https://doi.org/10.1016/j.wace.2020.100259.\nSeizarwati, W. and M. Syahidah, 2021. Rainfall-Runoff Simulation for Water Availability Estimation in Small Island Using Distributed Hydrological Model wflow. IOP Conf. Ser.: Earth Environ. Sci., 930,012050, doi:10.1088/1755-1315/930/1/012050. https://iopscience.iop.org/article/10.1088/1755-1315/930/1/012050/pdf\nSperna Weiland, F.C., R.D. Visser, P. Greve, B. Bisselink, L. Brunner and A.H. Weerts, 2021. Estimating Regionalized Hydrological Impacts of Climate Change Over Europe by Performance-Based Weighting of CORDEX Projections, Frontiers of Water, https://doi.org/10.3389/frwa.2021.713537.\nTangdamrongsub, N., Steele-Dunne, S.C., Gunter, B.C., Ditmar, P.G., Weerts, A.H., 2015. Data assimilation of GRACE terrestrial water storage estimates into a regional hydrological model of the Rhine River basin. Hydrol. Earth Syst. Sci. 19, 2079–2100. https://doi:10.5194/hess-19-2079-2015.\nvan der Laan, E., P. Hazenberg, A.H. Weerts, 2024. Simulation of long-term storage dynamics of headwater reservoirs across the globe using public cloud computing infrastructure. Science of The Total Environment, 172678, https://doi.org/10.1016/j.scitotenv.2024.172678.\nPranoto, B., Soekarno, H., Hartulistiyoso, E., Nur Aidi, M., Sutrisno, D., Pohan, D., Radhika, Sutejo, B., Heru Kuncoro, A., Nahib, I., 2024. Integrating Flood Early Warning System (FEWS) for Optimizing Small Hydropower Sites: A West Java Case Study. EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 11, 3, 2691-2699. https://www.tj.kyushu-u.ac.jp/evergreen/contents/EG2024-11_3_content/pdf/p2691-2699.pdf\nvan Osnabrugge, B., Weerts, A.H., Uijlenhoet, R., 2017. genRE: A method to extend gridded precipitation climatology data sets in near real-time for hydrological forecasting purposes. Water Resources Research, 53. https://doi.org/10.1002/2017WR021201.\nvan Osnabrugge, B., Uijlenhoet, R., Weerts, A., 2019. Contribution of potential evaporation forecasts to 10-day streamflow forecast skill for the Rhine River, Hydrol. Earth Syst. Sci., 23, 1453–1467, https://doi.org/10.5194/hess-23-1453-2019.\nvan der Vat, M., Boderie, P., Bons, K.A., Hegnauer, M., Hendriksen, G., van Oorschot, M., Ottow, B., Roelofsen, F., Sankhua, R.N., Sinha, S.K., Warren, A., Young, W., 2019. Participatory Modelling of Surface and Groundwater to Support Strategic Planning in the Ganga Basin in India. Water, 11, 2443. https://doi.org/10.3390/w11122443.\nWannasin, C., Brauer, C. C., Uijlenhoet, R., van Verseveld, W. J., Weerts, A. H., 2021. Daily flow simulation in Thailand Part I: Testing a distributed hydrological model with seamless parameter maps based on global data. Journal of Hydrology: Regional Studies, 34, 1-19. https://doi.org/10.1016/j.ejrh.2021.100794.\nWannasin, C., Brauer, C. C., Uijlenhoet, R., van Verseveld, W. J., Weerts, A. H., 2021. Daily flow simulation in Thailand Part II: Unraveling effects of reservoir operation. Journal of Hydrology: RegionalStudies, 34, 1-17. https://doi.org/10.1016/j.ejrh.2021.100792.\nWang, X., Zhang, J., Babovic, V., 2016. Improving real-time forecasting of water quality indicators with combination of process-based models and data assimilation technique. Ecological Indicators 66, 428–439. https://doi:10.1016/j.ecolind.2016.02.016.\n\n\nPhD, MSc, BSc Theses & Internship reports\nAbdelnour, A., 2022. Bias Correction of Climate Simulations to Assess Climate Change Impacts on Low Flows in the Rhine River, MSc thesis, Delft Universitry of technology, https://repository.tudelft.nl/islandora/object/uuid:50489399-cbd2-467f-9b82-98e5f3e371e9.\nAli, M.A., 2023. Machine learning for predicting spatially variable lateral hydraulic conductivity: a step towards efficient hydrological model calibration and global applicability, Intersnhip report, Deltares.\nArnal, L., 2014. An intercomparison of flood forecasting models for the Meuse River basin, MSc Thesis, Vrije Universiteit, Amsterdam, https://hal.inrae.fr/hal-02600749.\nAlkemade, G., 2019. Routing and calibration of distributed hydrological models, MSc Thesis, Vrije Universiteit, Amsterdam, Faculty of Science, Hydrology.\nAzadeh Karami Fard, 2015. Modeling runoff of an Ethiopian catchment with WFLOW, MSc. Thesis, Vrije Universiteit, Amsterdam.\nBenschop, J., 2023. The application of hybrid lateral routing in hydrological simulations of the Rhine catchment, MSc Thesis, Hydrology and Environmental Hydraulics Group, Wageningen University.\nBeusen, B., 2021. The effect of rooting depth on discharge and evapotranspiration in (semi-)arid areas, MSc Thesis, Hydrology and Quantitative Water Management Group, Wageningen University.\nBeusen, B., 2021. Plastic transport and the effect of climate change in the Rhine, Internship report, Deltares.\nBouaziz, L. J. E., 2021. Internal processes in hydrological models: A glance at the Meuse basin from space. Delft University of Technology, Delft, the Netherlands, Doctoral dissertation, https://doi.org/10.4233/uuid:09d84cc1-27e2-4327-a8c7-207a75952061.\nHartgring, S., 2023. On Forecasting the Rur River: Using hindcasts and forecasts of the 2021 flood event to improve understanding of flood forecasting in the Rur catchment. Delft University of Technology, Delft, the Netherlands, MSc thesis, http://resolver.tudelft.nl/uuid:2909d997-a983-490a-a588-87119998543a.\nJaime, D.E.V, 2021. Ensemble hydrological forecasts to derive extreme return periods: Case Study of the Overijsselse Vecht River using the wflow_sbm model, MSc thesis, Unesco IHE, Delft.\nLópez López, P., 2018. Application of Global Hydrological Datasets for River Basin Modelling Utrecht University, Utrecht, the Netherlands, pp. 1-214, Doctoral dissertation, http://dspace.library.uu.nl/handle/1874/364148.\nMaat, W.H., 2015. Simulating discharges and forecasting floods using a conceptual rainfall-runoff model for the Bolivian Mamoré basin, MSc Thesis, University of Twente, Enschede. https://essay.utwente.nl/67046/.\nvan Osnabrugge, B., 2020. Interpolate, simulate, assimilate: operational aspects of improving hydrological forecasts in the Rhine basin. Wageningen University, Doctoral dissertation, https://doi.org/10.18174/513157.\nRohrmueller, I., 2019. BENCHMARKING THE NEW WFLOW DISTRIBUTED HYDROLOGICAL MODEL, MSc Thesis, School of Engineering - Newcastle University.\nRusli, S.R., 2024. Deepening the quantitative understanding of groundwater systems in data-scarce areas: application in the Bandung Groundwater Basin, Indonesia. Wageningen University, Doctoral dissertation, https://doi.org/10.18174/640983.\nTretjakova, D., 2015. Investigating the effect of using fully-distributed model and data assimilation on the performance of hydrological forecasting in the Karasu catchment, Turkey, MSc thesis, Wageningen University.\nvan der Gaast, R.H., 2024. Evaluating the transferability of data-driven pedo-transfer functions for the wflow_sbm parameter KsatHorFrac in central and Western Europe. Universiteit Twente, Enschede, The Netherlands, https://essay.utwente.nl/103634/1/vandergaast_MA_ET.pdf.\nVerbrugge, M., 2019. Reservoir Operation Optimization, a case study in the Chao Phraya Basin, BSc thesis, Hydrology and Quantitative Water Management Group, Wageningen University.\nVerbrugge, M., 2023. Bias-correcting meteorological forcing to improve seasonal discharge forecasting of the Rhine, Internship report, Deltares.\nViguures, P., 2020. Modelling of flash floods in current and future climate with high resolution convection permitting regional climate models in the European Alps, MSc Thesis, Wageningen University.\nVisser, B., 2020. Impact of climate change on local water resources of European catchments, Intersnhip report, Deltares.\nWannasin, C., 2023. Modelling and forecasting daily streamflow with reservoir operation in the upper Chao Phraya River basin, Thailand. Wageningen University, Doctoral dissertation, https://doi.org/10.18174/584572.\n\n\nReports\nWorld Bank. 2021. Plastic Waste Discharges from Rivers and Coastlines in Indonesia. Marine Plastics Series;. World Bank, Washington, DC. © World Bank, https://openknowledge.worldbank.org/handle/10986/35607, License: CC BY 3.0 IGO.\nWorld Meteorological Organization (WMO), 2023. State of Global Water Resources report 2022, WMO-No. 1333, https://library.wmo.int/idurl/4/68473.\nWorld Meteorological Organization (WMO), 2024. State of Global Water Resources report 2023, WMO-No. 1362, https://library.wmo.int/idurl/4/69033.", + "text": "Publications using wflow\n\nPeer reviewed journal papers\nAerts, J. P. M., Hut, R. W., van de Giesen, N. C., Drost, N., van Verseveld, W. J., Weerts, A. H., and Hazenberg, P., 2022. Large-sample assessment of varying spatial resolution on the streamflow estimates of the wflow_sbm hydrological model. Hydrol. Earth Syst. Sci., 26, 4407–4430. https://doi.org/10.5194/hess-26-4407-2022.\nde Boer-Euser, T., Bouaziz, L., De Niel, J., Brauer, C., Dewals, B., Drogue, G., Fenicia, F., Grelier, B., Nossent, J., Pereira, F., Savenije, H., Thirel, G., Willems, P., 2017. Looking beyond general metrics for model comparison – lessons from an international model intercomparison study. Hydrol. Earth Syst. Sci. 21, 423–440. https://doi:10.5194/hess-21-423-2017.\nBouaziz, L.J.E., Fenicia, F., Thirel, G., de Boer-Euser, T., Buitink, J., Brauer, C.C., De Niel, J., Dewals, B.J., Drogue, G., Grelier, B., Melsen, L. A., Moustakas, S., Nossent, J., Pereira, F., Sprokkereef, E., Stam, J., Weerts, A.H., Willems, P., Savenije, H.H.G., Hrachowitz, M., 2021. Behind the scenes of streamflow model performance. Hydrol. Earth Syst. Sci., 25, 1069–1095. https://doi.org/10.5194/hess-25-1069-2021.\nBouaziz, L. J. E., Aalbers, E. E., Weerts, A. H., Hegnauer, M., Buiteveld, H., Lammersen, R., Stam, J., Sprokkereef, E., Savenije, H. H. G., and Hrachowitz, M., 2022. Ecosystem adaptation to climate change: the sensitivity of hydrological predictions to time-dynamic model parameters, Hydrol. Earth Syst. Sci., 26, 1295–1318. https://doi.org/10.5194/hess-26-1295-2022.\nCasson, D. R., Werner, M., Weerts, A., and Solomatine, D., 2018. Global re-analysis datasets to improve hydrological assessment and snow water equivalent estimation in a sub-Arctic watershed. Hydrol. Earth Syst. Sci., 22, 4685–4697. https://doi.org/10.5194/hess-22-4685-2018.\nDroppers, B., Rakovec, O., Avila, L., Azimi, S., Cortés-Torres N., De León Pérez, D., Imhoff, R., Francés, F., Kollet, S., Rigon, R., Weerts, A. & Samaniego, L, 2024. Multi-model hydrological reference dataset over continental Europe and an African basin. Sci Data, 11, 1009. https://doi.org/10.1038/s41597-024-03825-9.\nDroppers, B., Rakovec, O., Avila, L., Azimi, S., Cortés-Torres N., De León Pérez, D., Imhoff, R., Francés, F., Kollet, S., Rigon, R., Weerts, A. & Samaniego, L, 2024. Multi-model hydrological reference dataset over continental Europe and an African basin. Sci Data, 11, 1009. https://doi.org/10.1038/s41597-024-03825-9.\nEmerton, R.E., Stephens, E.M., Pappenberger, F., Pagano, T.C., Weerts, A.H., Wood, A.W., Salamon, P., Brown, J.D., Hjerdt, N., Donnelly, C., Baugh, C.A., Cloke, H.L., 2016. Continental and global scale flood forecasting systems. WIREs Water 3, 391–418. https://doi.org/10.1002/wat2.1137.\nGebremicael, T.G., Mohamed, Y.A., Van der Zaag, P., 2019. Attributing the hydrological impact of different land use types and their long-term dynamics through combining parsimonious hydrological modelling, alteration analysis and PLSR analysis. Science of The Total Environment, 660, 1155-1167, https://doi.org/10.1016/jscitotenv.2019.01.085.\nGiardino, A., Schrijvershof, R., Nederhoff, C.M., de Vroeg, H., Brière, C., Tonnon, P.-K., Caires, S., Walstra, D.J., Sosa, J., van Verseveld, W., Schellekens, J., Sloff, C.J., 2018. A quantitative assessment of human interventions and climate change on the West African sediment budget, Ocean & Coastal Management, 156, 249-265. https://doi.org/10.1016/j.ocecoaman.2017.11.008.\nHally, A., Caumont, O., Garrote, L., Richard, E., Weerts, A., Delogu, F., Fiori, E., Rebora, N., Parodi, A., Mihalović, A., Ivković, M., Dekić, L., van Verseveld, W., Nuissier, O., Ducrocq, V., D’Agostino, D., Galizia, A., Danovaro, E., Clematis, A., 2015. Hydrometeorological multi-model ensemble simulations of the 4 November 2011 flash flood event in Genoa, Italy, in the framework of the DRIHM project. Nat. Hazards Earth Syst. Sci. 15, 537–555. https://doi:10.5194/nhess-15-537-2015.\nHassaballah, K., Mohamed, Y., Uhlenbrook, S., and Biro, K., 2017. Analysis of streamflow response to land use and land cover changes using satellite data and hydrological modelling: case study of Dinder and Rahad tributaries of the Blue Nile (Ethiopia–Sudan), Hydrol. Earth Syst. Sci., 21, 5217–5242. https://doi.org/10.5194/hess-21-5217-2017.\nImhoff, R.O., Buitink, J., van Verseveld, W.J., Weerts, A.H., 2024. A fast high resolution distributed hydrological model for forecasting, climate scenarios and digital twin applications using wflow_sbm. Environmental Modelling & Software, 179, 106099. https://doi.org/10.1016/j.envsoft.2024.106099\nImhoff, R.O, van Verseveld, W.J., van Osnabrugge, B., Weerts, A.H., 2020. Scaling Point-Scale (Pedo)transfer Functions to Seamless Large-Domain Parameter Estimates for High-Resolution Distributed Hydrologic Modeling: An Example for the Rhine River. Water Resources Research, 56, e2019WR026807. https://doi.org/10.1029/2019WR026807.\nImhoff, R.O., van Verseveld, W., van Osnabrugge, B., Weerts, A.H., 2020. Ruimtelijk schaalbare hydrologische modelparameters uit open-source omgevingsdata: een voorbeeld voor de Rijn. Stromingen: vakblad voor hydrologen, 26(3), 19-36 https://edepot.wur.nl/540682.\nJeuken, A., Bouaziz, L., Corzo, G., Alfonso, L., 2016. Analyzing Needs for Climate Change Adaptation in the Magdalena River Basin in Colombia, in: Filho, W.L., Musa, H., Cavan, G., O’Hare, P., Seixas, J. (Eds.), Climate Change Adaptation, Resilience and Hazards, Climate Change Management. Springer International Publishing, pp. 329–344 https://doi.org/10.1007/978-3-319-39880-8.\nLópez López, P., Wanders, N., Schellekens, J., Renzullo, L.J., Sutanudjaja, E.H., Bierkens, M.F.P., 2016. Improved large-scale hydrological modelling through the assimilation of streamflow and downscaled satellite soil moisture observations. Hydrol. Earth Syst. Sci., 20, 3059–3076. https://doi.org/10.5194/hess-20-3059-2016.\nPranoto, B., Soekarno, H., Hartulistiyoso, E., Nur Aidi, M., Sutrisno, D., Pohan, D., Radhika, Sutejo, B., Heru Kuncoro, A., Nahib, I., 2024. Integrating Flood Early Warning System (FEWS) for Optimizing Small Hydropower Sites: A West Java Case Study. EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 11, 3, 2691-2699. https://www.tj.kyushu-u.ac.jp/evergreen/contents/EG2024-11_3_content/pdf/p2691-2699.pdf\nRakovec, O., Weerts, A.H., Sumihar, J., Uijlenhoet, R., 2015. Operational aspects of asynchronous filtering for flood forecasting. Hydrol. Earth Syst. Sci., 19, 2911–2924, https://doi.org/10.5194/hess-19-2911-2015.\nRatri, D.N., A.H. Weerts, R. Muharsyah, K. Whan, A. Klein Tank, E. Aldrian, M. H. Hariadi, Calibration of ECMWF SEAS5 based streamflow forecast in Seasonal hydrological forecasting for Citarum river basin, West Java, Indonesia, Journal of Hydrology: Regional Studies,45,101305, https://doi.org/10.1016/j.ejrh.2022.101305.\nRusli, S.R., A.H. Weerts, A. Taufiq, V. Bense, 2021. Estimating water balance components and their uncertainty bounds in highly groundwater-dependent and data-scarce area: An example for the Upper Citarum basin, J. Hydrol. Regional Studies, https://doi.org/10.1016/j.ejrh.2021.100911.\nRusli, S.R., V.F. Bense, A. Taufiq, A.H. Weerts,2023. Quantifying basin-scale changes in groundwater storage using GRACE and one-way coupled hydrological and groundwater flow model in the data-scarce Bandung groundwater Basin, Indonesia, Groundwater for Sustainable Development,22, 100953, https://doi.org/10.1016/j.gsd.2023.100953.\nRusli, S.R., A.H. Weerts, S.M.T. Mustafa, D.E. Irawan, A. Taufiq, V.F. Bense, 2023. Quantifying aquifer interaction using numerical groundwater flow model evaluated by environmental water tracer data: Application to the data-scarce area of the Bandung groundwater basin, West Java, Indonesia, Journal of Hydrology: Regional Studies, 50, https://doi.org/10.1016/j.ejrh.2023.101585.\nRusli, S. R., Bense, V. F., Mustafa, S. M. T., and Weerts, A. H.,2024. The impact of future changes in climate variables and groundwater abstraction on basin-scale groundwater availability, Hydrol. Earth Syst. Sci., 28, 5107–5131, https://doi.org/10.5194/hess-28-5107-2024, https://doi.org/10.5194/hess-28-5107-2024.\nSchaller, N., Sillmann, J., Müller, M., Haarsma, R., Hazeleger, W., Hegdahl, T.J., Kelder, T., van den Oord, G., Weerts, A., Whan, K., 2020. The role of spatial and temporal model resolution in a flood event storyline approach in western Norway. Weather and Climate Extremes, doi: https://doi.org/10.1016/j.wace.2020.100259.\nSeizarwati, W. and M. Syahidah, 2021. Rainfall-Runoff Simulation for Water Availability Estimation in Small Island Using Distributed Hydrological Model wflow. IOP Conf. Ser.: Earth Environ. Sci., 930,012050, doi:10.1088/1755-1315/930/1/012050. https://iopscience.iop.org/article/10.1088/1755-1315/930/1/012050/pdf\nSperna Weiland, F.C., R.D. Visser, P. Greve, B. Bisselink, L. Brunner and A.H. Weerts, 2021. Estimating Regionalized Hydrological Impacts of Climate Change Over Europe by Performance-Based Weighting of CORDEX Projections, Frontiers of Water, https://doi.org/10.3389/frwa.2021.713537.\nTangdamrongsub, N., Steele-Dunne, S.C., Gunter, B.C., Ditmar, P.G., Weerts, A.H., 2015. Data assimilation of GRACE terrestrial water storage estimates into a regional hydrological model of the Rhine River basin. Hydrol. Earth Syst. Sci. 19, 2079–2100. https://doi:10.5194/hess-19-2079-2015.\nvan der Laan, E., P. Hazenberg, A.H. Weerts, 2024. Simulation of long-term storage dynamics of headwater reservoirs across the globe using public cloud computing infrastructure. Science of The Total Environment, 172678, https://doi.org/10.1016/j.scitotenv.2024.172678.\nPranoto, B., Soekarno, H., Hartulistiyoso, E., Nur Aidi, M., Sutrisno, D., Pohan, D., Radhika, Sutejo, B., Heru Kuncoro, A., Nahib, I., 2024. Integrating Flood Early Warning System (FEWS) for Optimizing Small Hydropower Sites: A West Java Case Study. EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 11, 3, 2691-2699. https://www.tj.kyushu-u.ac.jp/evergreen/contents/EG2024-11_3_content/pdf/p2691-2699.pdf\nvan Osnabrugge, B., Weerts, A.H., Uijlenhoet, R., 2017. genRE: A method to extend gridded precipitation climatology data sets in near real-time for hydrological forecasting purposes. Water Resources Research, 53. https://doi.org/10.1002/2017WR021201.\nvan Osnabrugge, B., Uijlenhoet, R., Weerts, A., 2019. Contribution of potential evaporation forecasts to 10-day streamflow forecast skill for the Rhine River, Hydrol. Earth Syst. Sci., 23, 1453–1467, https://doi.org/10.5194/hess-23-1453-2019.\nvan der Vat, M., Boderie, P., Bons, K.A., Hegnauer, M., Hendriksen, G., van Oorschot, M., Ottow, B., Roelofsen, F., Sankhua, R.N., Sinha, S.K., Warren, A., Young, W., 2019. Participatory Modelling of Surface and Groundwater to Support Strategic Planning in the Ganga Basin in India. Water, 11, 2443. https://doi.org/10.3390/w11122443.\nWannasin, C., Brauer, C. C., Uijlenhoet, R., van Verseveld, W. J., Weerts, A. H., 2021. Daily flow simulation in Thailand Part I: Testing a distributed hydrological model with seamless parameter maps based on global data. Journal of Hydrology: Regional Studies, 34, 1-19. https://doi.org/10.1016/j.ejrh.2021.100794.\nWannasin, C., Brauer, C. C., Uijlenhoet, R., van Verseveld, W. J., Weerts, A. H., 2021. Daily flow simulation in Thailand Part II: Unraveling effects of reservoir operation. Journal of Hydrology: RegionalStudies, 34, 1-17. https://doi.org/10.1016/j.ejrh.2021.100792.\nWang, X., Zhang, J., Babovic, V., 2016. Improving real-time forecasting of water quality indicators with combination of process-based models and data assimilation technique. Ecological Indicators 66, 428–439. https://doi:10.1016/j.ecolind.2016.02.016.\n\n\nPhD, MSc, BSc Theses & Internship reports\nAbdelnour, A., 2022. Bias Correction of Climate Simulations to Assess Climate Change Impacts on Low Flows in the Rhine River, MSc thesis, Delft Universitry of technology, https://repository.tudelft.nl/islandora/object/uuid:50489399-cbd2-467f-9b82-98e5f3e371e9.\nAli, M.A., 2023. Machine learning for predicting spatially variable lateral hydraulic conductivity: a step towards efficient hydrological model calibration and global applicability, Intersnhip report, Deltares.\nArnal, L., 2014. An intercomparison of flood forecasting models for the Meuse River basin, MSc Thesis, Vrije Universiteit, Amsterdam, https://hal.inrae.fr/hal-02600749.\nAlkemade, G., 2019. Routing and calibration of distributed hydrological models, MSc Thesis, Vrije Universiteit, Amsterdam, Faculty of Science, Hydrology.\nAzadeh Karami Fard, 2015. Modeling runoff of an Ethiopian catchment with WFLOW, MSc. Thesis, Vrije Universiteit, Amsterdam.\nBenschop, J., 2023. The application of hybrid lateral routing in hydrological simulations of the Rhine catchment, MSc Thesis, Hydrology and Environmental Hydraulics Group, Wageningen University.\nBeusen, B., 2021. The effect of rooting depth on discharge and evapotranspiration in (semi-)arid areas, MSc Thesis, Hydrology and Quantitative Water Management Group, Wageningen University.\nBeusen, B., 2021. Plastic transport and the effect of climate change in the Rhine, Internship report, Deltares.\nBouaziz, L. J. E., 2021. Internal processes in hydrological models: A glance at the Meuse basin from space. Delft University of Technology, Delft, the Netherlands, Doctoral dissertation, https://doi.org/10.4233/uuid:09d84cc1-27e2-4327-a8c7-207a75952061.\nHartgring, S., 2023. On Forecasting the Rur River: Using hindcasts and forecasts of the 2021 flood event to improve understanding of flood forecasting in the Rur catchment. Delft University of Technology, Delft, the Netherlands, MSc thesis, http://resolver.tudelft.nl/uuid:2909d997-a983-490a-a588-87119998543a.\nJaime, D.E.V, 2021. Ensemble hydrological forecasts to derive extreme return periods: Case Study of the Overijsselse Vecht River using the wflow_sbm model, MSc thesis, Unesco IHE, Delft.\nLópez López, P., 2018. Application of Global Hydrological Datasets for River Basin Modelling Utrecht University, Utrecht, the Netherlands, pp. 1-214, Doctoral dissertation, http://dspace.library.uu.nl/handle/1874/364148.\nMaat, W.H., 2015. Simulating discharges and forecasting floods using a conceptual rainfall-runoff model for the Bolivian Mamoré basin, MSc Thesis, University of Twente, Enschede. https://essay.utwente.nl/67046/.\nvan Osnabrugge, B., 2020. Interpolate, simulate, assimilate: operational aspects of improving hydrological forecasts in the Rhine basin. Wageningen University, Doctoral dissertation, https://doi.org/10.18174/513157.\nRohrmueller, I., 2019. BENCHMARKING THE NEW WFLOW DISTRIBUTED HYDROLOGICAL MODEL, MSc Thesis, School of Engineering - Newcastle University.\nRusli, S.R., 2024. Deepening the quantitative understanding of groundwater systems in data-scarce areas: application in the Bandung Groundwater Basin, Indonesia. Wageningen University, Doctoral dissertation, https://doi.org/10.18174/640983.\nTretjakova, D., 2015. Investigating the effect of using fully-distributed model and data assimilation on the performance of hydrological forecasting in the Karasu catchment, Turkey, MSc thesis, Wageningen University.\nvan der Gaast, R.H., 2024. Evaluating the transferability of data-driven pedo-transfer functions for the wflow_sbm parameter KsatHorFrac in central and Western Europe. Universiteit Twente, Enschede, The Netherlands, https://essay.utwente.nl/103634/1/vandergaast_MA_ET.pdf.\nVerbrugge, M., 2019. Reservoir Operation Optimization, a case study in the Chao Phraya Basin, BSc thesis, Hydrology and Quantitative Water Management Group, Wageningen University.\nVerbrugge, M., 2023. Bias-correcting meteorological forcing to improve seasonal discharge forecasting of the Rhine, Internship report, Deltares.\nViguures, P., 2020. Modelling of flash floods in current and future climate with high resolution convection permitting regional climate models in the European Alps, MSc Thesis, Wageningen University.\nVisser, B., 2020. Impact of climate change on local water resources of European catchments, Intersnhip report, Deltares.\nWannasin, C., 2023. Modelling and forecasting daily streamflow with reservoir operation in the upper Chao Phraya River basin, Thailand. Wageningen University, Doctoral dissertation, https://doi.org/10.18174/584572.\n\n\nReports\nWorld Bank. 2021. Plastic Waste Discharges from Rivers and Coastlines in Indonesia. Marine Plastics Series;. World Bank, Washington, DC. © World Bank, https://openknowledge.worldbank.org/handle/10986/35607, License: CC BY 3.0 IGO.\nWorld Meteorological Organization (WMO), 2023. State of Global Water Resources report 2022, WMO-No. 1333, https://library.wmo.int/idurl/4/68473.\nWorld Meteorological Organization (WMO), 2024. State of Global Water Resources report 2023, WMO-No. 1362, https://library.wmo.int/idurl/4/69033.", "crumbs": [ "Home", "Publications"