forked from kaka-lin/stock-price-predict
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
151 lines (122 loc) · 4.64 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import os
import csv
import errno
import numpy as np
from keras.utils import plot_model
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
def file_processing(file_path, encode=None):
data = []
with open(file_path, encoding=encode) as file:
rows = csv.reader(file, delimiter=",")
n_row = 0
for row in rows:
if n_row != 0:
#column -> 0: code, 1: date
for column in range(2, len(row)):
data[n_row - 1].append(float(row[column].strip()))
data.append([])
n_row += 1
del data[-1]
return np.array(data)
def normalize_data(data, scaler, feature_len):
minmaxscaler = scaler.fit(data)
normalize_data = minmaxscaler.transform(data)
return normalize_data
def inverse_normalize_data(data, scaler):
for i in range(len(data)):
data[i] = scaler.inverse_transform(data[i])
return data
def generate_output(output, model_name, class_list):
class_list = class_list
_output = []
for i in range(len(output)):
_output.append([])
_output[i].append(class_list[i])
for j in range(len(output[i]) - 1):
if output[i][j+1] > output[i][j]:
_output[i].append(1)
_output[i].append(output[i][j+1])
elif output[i][j+1] == output[i][j]:
_output[i].append(0)
_output[i].append(output[i][j+1])
else:
_output[i].append(-1)
_output[i].append(output[i][j+1])
file_path = 'outputs/output_{}.csv'.format(model_name)
if not os.path.exists(os.path.dirname(file_path)):
try:
os.makedirs(os.path.dirname(file_path))
except OSError as exc: # Guard against race condition
if exc.errno != errno.EEXIST:
raise
with open(file_path, 'w+') as file:
w = csv.writer(file)
w.writerow(['ETFid','Mon_ud','Mon_cprice','Tue_ud','Tue_cprice','Wed_ud','Wed_cprice','Thu_ud','Thu_cprice','Fri_ud','Fri_cprice'])
w.writerows(_output)
def plot_model_architecture(model, model_name):
file_path = 'images/model/{}.png'.format(model_name)
if not os.path.exists(os.path.dirname(file_path)):
try:
os.makedirs(os.path.dirname(file_path))
except OSError as exc: # Guard against race condition
if exc.errno != errno.EEXIST:
raise
plot_model(model, to_file=file_path, show_shapes=True)
def save_model(model, model_name):
file_path = 'model/{}.h5'.format(model_name)
if not os.path.exists(os.path.dirname(file_path)):
try:
os.makedirs(os.path.dirname(file_path))
except OSError as exc: # Guard against race condition
if exc.errno != errno.EEXIST:
raise
model.save(file_path)
def plot_predict(data, data_predict, file_name):
file_path = 'images/result/{}.png'.format(file_name)
if not os.path.exists(os.path.dirname(file_path)):
try:
os.makedirs(os.path.dirname(file_path))
except OSError as exc: # Guard against race condition
if exc.errno != errno.EEXIST:
raise
fig = plt.figure(figsize=(15, 10))
ax1 = fig.add_subplot(231)
ax2 = fig.add_subplot(232)
ax3 = fig.add_subplot(233)
ax4 = fig.add_subplot(234)
ax5 = fig.add_subplot(235)
ax1.plot(data[:, 0, 3], color='black')
ax1.plot(data_predict[:, 0, 3], color='red')
ax1.title.set_text("Day 1")
ax2.plot(data[:, 1, 3], color='black')
ax2.plot(data_predict[:, 1, 3], color='red')
ax2.title.set_text("Day 2")
ax3.plot(data[:, 2, 3], color='black')
ax3.plot(data_predict[:, 2, 3], color='red')
ax3.title.set_text("Day 3")
ax4.plot(data[:, 3, 3], color='black')
ax4.plot(data_predict[:, 3, 3], color='red')
ax4.title.set_text("Day 4")
ax5.plot(data[:, 4, 3], color='black')
ax5.plot(data_predict[:, 4, 3], color='red')
ax5.title.set_text("Day 5")
plt.savefig(file_path)
#plt.show()
def plot_loss(history, file_name):
file_path = 'images/loss/{}.png'.format(file_name)
if not os.path.exists(os.path.dirname(file_path)):
try:
os.makedirs(os.path.dirname(file_path))
except OSError as exc: # Guard against race condition
if exc.errno != errno.EEXIST:
raise
plt.figure()
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model train vs validation loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'validation'], loc='upper right')
plt.savefig(file_path)
#plt.show()