forked from ghchen18/cdalign
-
Notifications
You must be signed in to change notification settings - Fork 0
/
generate_attbeam.py
203 lines (169 loc) · 7.27 KB
/
generate_attbeam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
#!/usr/bin/env python3 -u
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
"""
Translate pre-processed data with a trained model.
constrain with mask prob change
"""
import torch
from fairseq import bleu, options, progress_bar, tasks, tokenizer, utils
from fairseq.meters import StopwatchMeter, TimeMeter
from fairseq.sequence_attbeam import SequenceAttbeam
from fairseq.utils import import_user_module
import json,os
def string_clean(hypo_str):
special_tokens = ['<pad>','</s>']
hypo_str_new = []
for w in hypo_str.strip().split(' '):
if w in special_tokens:
continue
hypo_str_new += [w]
hypo_str = ' '.join(hypo_str_new)
return hypo_str
def main(args):
assert args.path is not None, '--path required for generation!'
assert not args.sampling or args.nbest == args.beam, \
'--sampling requires --nbest to be equal to --beam'
assert args.replace_unk is None or args.raw_text, \
'--replace-unk requires a raw text dataset (--raw-text)'
import_user_module(args)
if args.max_tokens is None and args.max_sentences is None:
args.max_tokens = 12000
print(args)
use_cuda = torch.cuda.is_available() and not args.cpu
# Load dataset splits
task = tasks.setup_task(args)
task.load_dataset(args.gen_subset)
print('| {} {} {} examples'.format(args.data, args.gen_subset, len(task.dataset(args.gen_subset))))
# Set dictionaries
src_dict = task.source_dictionary
tgt_dict = task.target_dictionary
# Load ensemble
print('| loading model(s) from {}'.format(args.path))
from fairseq import checkpoint_utils
models, _model_args = checkpoint_utils.load_model_ensemble(
args.path.split(':'), task=task, arg_overrides=eval(args.model_overrides),
)
for model in models:
model.make_generation_fast_(
beamable_mm_beam_size=None if args.no_beamable_mm else args.beam,
need_attn=args.print_alignment,
)
if args.fp16:
model.half()
# Load dataset (possibly sharded)
itr = task.get_batch_iterator(
dataset=task.dataset(args.gen_subset),
max_tokens=args.max_tokens,
max_sentences=args.max_sentences,
max_positions=utils.resolve_max_positions(
task.max_positions(),
*[model.max_positions() for model in models]
),
ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
required_batch_size_multiple=8,
num_shards=args.num_shards,
shard_id=args.shard_id,
num_workers=args.num_workers,
).next_epoch_itr(shuffle=False)
# Initialize generator
gen_timer = StopwatchMeter()
translator = SequenceAttbeam(
models, task.source_dictionary, task.target_dictionary, beam_size=args.beam, minlen=args.min_len,
stop_early=(not args.no_early_stop), normalize_scores=(not args.unnormalized),
len_penalty=args.lenpen, unk_penalty=args.unkpen,
sampling=args.sampling, sampling_topk=args.sampling_topk, sampling_temperature=args.temperature,
diverse_beam_groups=args.diverse_beam_groups, diverse_beam_strength=args.diverse_beam_strength, args=args,
)
if use_cuda:
translator.cuda()
# Generate and compute BLEU score
if args.sacrebleu:
scorer = bleu.SacrebleuScorer()
else:
scorer = bleu.Scorer(tgt_dict.pad(), tgt_dict.eos(), tgt_dict.unk())
num_sentences = 0
has_target = True
def to_tokens(token_id, my_dict, escape_unk=False):
tokens = []
for w in token_id:
if w == 1:
continue
else:
if w == my_dict.unk():
tokens.append(my_dict.unk_string(escape_unk))
else:
tokens.append(my_dict[w])
return tokens
with open(args.trg_pt,'r') as load_f:
trg_pt = json.load(load_f)
with progress_bar.build_progress_bar(args, itr) as t:
if args.decoding_path is not None:
src_sents = [[] for _ in range(10000)]
tgt_sents = [[] for _ in range(10000)]
hyp_sents = [[] for _ in range(10000)]
translations = translator.generate_batched_itr(
t, maxlen_a=args.max_len_a, maxlen_b=args.max_len_b,
cuda=use_cuda, timer=gen_timer, prefix_size=args.prefix_size,
trg_pt=trg_pt, tgt_dict=tgt_dict,
)
wps_meter = TimeMeter()
for hypoID, src_tokens, target_tokens, hypo in translations:
index = (hypo == tgt_dict.eos()).nonzero()
if index.size(0) > 1:
index = index[0,0]
hypo = hypo[index+1:]
hypo_align = to_tokens(hypo,tgt_dict)
ref_align = to_tokens(target_tokens[0], tgt_dict, escape_unk=True)
src_align = to_tokens(src_tokens[0], src_dict)
src_str = ' '.join(src_align)
target_str = ' '.join(ref_align)
hypo_str = ' '.join(hypo_align)
src_str = src_dict.string(src_tokens[0], args.remove_bpe, escape_pad=True, tgt_dict=tgt_dict)
target_str = tgt_dict.string(target_tokens[0], args.remove_bpe, escape_unk=True,escape_pad=True)
hypo_str = tgt_dict.string(hypo, args.remove_bpe, escape_unk=True, escape_pad=True)
if hasattr(scorer, 'add_string'):
scorer.add_string(target_str, hypo_str)
else:
target_tokens = target_tokens.int()
hypo = hypo.int().cpu()
scorer.add(target_tokens, hypo)
wps_meter.update(src_tokens.size(0))
num_sentences += 1
if args.decoding_path is not None:
src_sents[int(hypoID)].append(src_str)
tgt_sents[int(hypoID)].append(target_str)
hyp_sents[int(hypoID)].append(hypo_str)
print('| >=>=>=> Translated {} sentences ({} tokens) in {:.1f}s ({:.2f} sentences/s, {:.2f} tokens/s)'.format(
num_sentences, gen_timer.n, gen_timer.sum, num_sentences / gen_timer.sum, 1. / gen_timer.avg))
if has_target:
print('| Generate {} with beam={}: {}'.format(args.gen_subset, args.beam, scorer.result_string()))
if args.decoding_path is not None:
with open(os.path.join(args.decoding_path, 'source.txt'), 'w') as f:
for sents in src_sents:
if len(sents)==0:
continue
for sent in sents:
f.write(sent+'\n')
with open(os.path.join(args.decoding_path, 'target.txt'), 'w') as f:
for sents in tgt_sents:
if len(sents)==0:
continue
for sent in sents:
f.write(sent+'\n')
with open(os.path.join(args.decoding_path, 'decoding.txt'), 'w') as f:
for sents in hyp_sents:
if len(sents)==0:
continue
for sent in sents:
f.write(sent+'\n')
def cli_main():
parser = options.get_generation_parser()
args = options.parse_args_and_arch(parser)
main(args)
if __name__ == '__main__':
cli_main()