-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvolve_spiketrain_gaussian.py
131 lines (99 loc) · 4.35 KB
/
convolve_spiketrain_gaussian.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
#!/usr/bin/env python
# coding: utf-8
'''
Generates gaussian spike trains
'''
#%% Load libraries
from brian2 import*
get_ipython().run_line_magic('matplotlib', 'inline')
from random import sample
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
from IPython.core.debugger import Pdb
ipdb = Pdb()
import scipy
import scipy as sp
from scipy import signal
#%% Sim. details
import parameters_sim # import parameter file
parameters_sim.neuron_num() # load neuron numbers
# Simtime
simtime = 5000*ms
dt_value = 0.1
#%% Gaussian spikes function
def gaussian(spiketrain, truncate = 3, sigma = 500):
# spiketrain = binary spiketrain
# Width of function
window_size = 2*int(truncate*sigma + 0.5) + 1
# Gaussian function
gaussian_function = signal.gaussian(window_size, sigma)
# Convolution
spiketrain_conv = np.convolve(gaussian_function, spiketrain, 'same')
return spiketrain_conv
#%% Gaussian spike generation (for each configuration-- all synaptic ratios; specific thalamic input frequency)
# store in the same folder as spikes, spike trains etc.
gvariable = linspace(0,10,21) # synaptic ratios
# generate 150 random numbers (zero to neuron number)
idx_4e = np.random.randint(0,parameters_sim.n_e_4,150)
idx_4i = np.random.randint(0,parameters_sim.n_i_4,150)
idx_23e = np.random.randint(0,parameters_sim.n_e_23,150)
idx_23i = np.random.randint(0,parameters_sim.n_i_23,150)
for ii in gvariable:
ii = ii
# Load spike trains for all gvariables and each thalamic input frequency
spikes_4e_i = np.load('E:\\Zeldenrust lab\\pythoncodes\\balanced_state\\dataset25\\config_5\\Spiketraintest_4e_g=%g_r=20.npy'%ii,allow_pickle=True)[0]
spikes_4i_i = np.load('E:\\Zeldenrust lab\\pythoncodes\\balanced_state\\dataset25\\config_5\\Spiketraintest_4i_g=%g_r=20.npy' %ii,allow_pickle=True)[0]
spikes_23i_i = np.load('E:\\Zeldenrust lab\\pythoncodes\\balanced_state\\dataset25\\config_5\\Spiketraintest_23i_g=%g_r=20.npy'%ii,allow_pickle=True)[0]
spikes_23e_i = np.load('E:\\Zeldenrust lab\\pythoncodes\\balanced_state\\dataset25\\config_5\\Spiketraintest_23e_g=%g_r=20.npy' %ii,allow_pickle=True)[0]
e23 = []
i23 = []
e4 = []
i4 = []
gg = ii*20
# L2/3 - e
for jj in range(150):
# Create binary spike train
train_e_23 = spikes_23e_i[idx_23e[jj]]
train_e_23 = [int(p) for p in (train_e_23/(dt_value*ms))]
zero_e_23 = zeros(((int(simtime/ms)*(int(1/dt_value)))))
zero_e_23[train_e_23] = 1
# Create gaussian spike train from binary spike train
gaus_e_23 = gaussian(zero_e_23)
# append gaussian spike trains to previous value
e23.append(gaus_e_23)
# Save spike train
np.save('E:\\Zeldenrust lab\\pythoncodes\\balanced_state\\dataset25\\config_5\\Gaus_23e_g=%i_r=20' %gg, e23)
print('g=%i'%gg, ii)
# L2/3 - i
for jj in range(150):
train_i_23 = spikes_23i_i[idx_23i[jj]]
train_i_23 = [int(p) for p in (train_i_23/(dt_value*ms))]
zero_i_23 = zeros(((int(simtime/ms)*(int(1/dt_value)))))
zero_i_23[train_i_23] = 1
gaus_i_23 = gaussian(zero_i_23)
i23.append(gaus_i_23)
# Save spike train
np.save('E:\\Zeldenrust lab\\pythoncodes\\balanced_state\\dataset25\\config_5\\Gaus_23i_g=%i_r=20' %gg, i23)
# L4 - excit.
for jj in range(150):
train_e_4 = spikes_4e_i[idx_4e[jj]]
train_e_4 = [int(p) for p in (train_e_4/(dt_value*ms))]
zero_e_4 = zeros(((int(simtime/ms)*(int(1/dt_value)))))
zero_e_4[train_e_4] = 1
gaus_e_4 = gaussian(zero_e_4)
e4.append(gaus_e_4)
# Save spike train
np.save('E:\\Zeldenrust lab\\pythoncodes\\balanced_state\\dataset25\\config_5\\Gaus_4e_g=%i_r=20' %gg, e4)
# L4 - inhib.
for jj in range(150):
train_i_4 = spikes_4i_i[idx_4i[jj]]
train_i_4 = [int(p) for p in (train_i_4/(dt_value*ms))]
zero_i_4 = zeros(((int(simtime/ms)*(int(1/dt_value)))))
zero_i_4[train_i_4] = 1
gaus_i_4 = gaussian(zero_i_4)
i4.append(gaus_i_4)
# Save spike train
np.save('E:\\Zeldenrust lab\\pythoncodes\\balanced_state\\dataset25\\config_5\\Gaus_4i_g=%i_r=20' %gg, i4)
print('Gaussian spike trains generated')