-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
948 lines (788 loc) · 37.9 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
from PIL import Image
from tqdm import tqdm
from numpy.testing import assert_array_almost_equal
import numpy as np
import os
import torch
import random
import mlconfig
import torch.utils.data as torchdata
from torch.utils.data.dataset import Dataset
import glob
from skimage import io
import pandas as pd
import math
def build_for_cifar100(size, noise):
""" random flip between two random classes.
"""
assert(noise >= 0.) and (noise <= 1.)
P = (1. - noise) * np.eye(size)
for i in np.arange(size - 1):
P[i, i+1] = noise
# adjust last row
P[size-1, 0] = noise
assert_array_almost_equal(P.sum(axis=1), 1, 1)
return P
def multiclass_noisify(y, P, random_state=0):
""" Flip classes according to transition probability matrix T.
It expects a number between 0 and the number of classes - 1.
"""
assert P.shape[0] == P.shape[1]
assert np.max(y) < P.shape[0]
# row stochastic matrix
assert_array_almost_equal(P.sum(axis=1), np.ones(P.shape[1]))
assert (P >= 0.0).all()
m = y.shape[0]
new_y = y.copy()
flipper = np.random.RandomState(random_state)
for idx in np.arange(m):
i = y[idx]
# draw a vector with only an 1
flipped = flipper.multinomial(1, P[i, :], 1)[0]
new_y[idx] = np.where(flipped == 1)[0]
return new_y
def other_class(n_classes, current_class):
"""
Returns a list of class indices excluding the class indexed by class_ind
:param nb_classes: number of classes in the task
:param class_ind: the class index to be omitted
:return: one random class that != class_ind
"""
if current_class < 0 or current_class >= n_classes:
error_str = "class_ind must be within the range (0, nb_classes - 1)"
raise ValueError(error_str)
other_class_list = list(range(n_classes))
other_class_list.remove(current_class)
other_class = np.random.choice(other_class_list)
return other_class
class GTSRBDataset(Dataset):
def __init__(self, train=True):
self.root_dir = "/home/Techniques/GTSRB/"
self.train_root_dir = self.root_dir + "Final_Training/Images/"
self.test_root_dir = self.root_dir + "Final_Test/"
if train:
train_images, train_labels = self.__read_train_data(self.train_root_dir)
self.images = train_images
self.targets = train_labels
else:
test_images, test_labels = self.__read_test_data(self.test_root_dir)
self.images = test_images
self.targets = test_labels
# Calculate len
self.data_len = len(self.targets)
def __getitem__(self, index):
im_as_im = self.images[index]
im_as_ten = np.moveaxis(im_as_im, -1, 0)
label = self.targets[index]
return (im_as_ten, label)
def __len__(self):
return self.data_len
def __read_train_data(self, train_root_dir):
imgs = []
labels = []
all_img_paths = glob.glob(os.path.join(train_root_dir, '*/*.ppm'))
np.random.shuffle(all_img_paths)
for img_path in all_img_paths:
img = io.imread(img_path)
label = self.__get_class(img_path)
imgs.append(img)
labels.append(label)
train_images = np.array(imgs, dtype='float32')
train_labels = np.array(labels)
return train_images, train_labels
def __read_test_data(self, test_root_dir):
test = pd.read_csv(test_root_dir + "Labels/GT-final_test.csv", sep=';')
# Load test dataset
x_test = []
y_test = []
for file_name, class_id in zip(list(test['Filename']), list(test['ClassId'])):
img_path = os.path.join(test_root_dir + "Images/", file_name)
img = io.imread(img_path)
x_test.append(img)
y_test.append(class_id)
test_images = np.array(x_test, dtype='float32')
test_labels = np.array(y_test)
return test_images, test_labels
def __get_class(self, img_path):
return int(img_path.split('/')[-2])
class PneumoniaDataset(Dataset):
def __init__(self, train=True, transform=None):
self.pneumonia_root = "/home/Pneumonia/"
self.train_root_dir = self.pneumonia_root + "train"
self.test_root_dir = self.pneumonia_root + "test"
if train:
trainset = datasets.ImageFolder(self.train_root_dir, transform = transform)
self.images = [np.array(t[0]) for t in trainset]
self.targets = [t[1] for t in trainset]
self.images = np.array(self.images)
self.targets = np.array(self.targets)
else:
testset = datasets.ImageFolder(self.test_root_dir, transform = transform)
self.images = [np.array(t[0]) for t in testset]
self.targets = [t[1] for t in testset]
self.images = np.array(self.images)
self.targets = np.array(self.targets)
# Calculate len
self.data_len = len(self.targets)
def __getitem__(self, index):
im_as_im = self.images[index]
label = self.targets[index]
return (im_as_im, label)
def __len__(self):
return self.data_len
class MNISTNoisy(datasets.MNIST):
def __init__(self, root, train=True, transform=None, target_transform=None, download=True, nosiy_rate=0.0, asym=False, seed=0):
super(MNISTNoisy, self).__init__(root, transform=transform, target_transform=target_transform, download=download)
self.targets = self.targets.numpy()
if asym:
P = np.eye(10)
n = nosiy_rate
P[7, 7], P[7, 1] = 1. - n, n
# 2 -> 7
P[2, 2], P[2, 7] = 1. - n, n
# 5 <-> 6
P[5, 5], P[5, 6] = 1. - n, n
P[6, 6], P[6, 5] = 1. - n, n
# 3 -> 8
P[3, 3], P[3, 8] = 1. - n, n
y_train_noisy = multiclass_noisify(self.targets, P=P, random_state=seed)
actual_noise = (y_train_noisy != self.targets).mean()
assert actual_noise > 0.0
print('Actual noise %.2f' % actual_noise)
self.targets = y_train_noisy
else:
n_samples = len(self.targets)
n_noisy = int(nosiy_rate * n_samples)
print("%d Noisy samples" % (n_noisy))
class_index = [np.where(np.array(self.targets) == i)[0] for i in range(10)]
class_noisy = int(n_noisy / 10)
noisy_idx = []
for d in range(10):
noisy_class_index = np.random.choice(class_index[d], class_noisy, replace=False)
noisy_idx.extend(noisy_class_index)
print("Class %d, number of noisy % d" % (d, len(noisy_class_index)))
for i in noisy_idx:
self.targets[i] = other_class(n_classes=10, current_class=self.targets[i])
print(len(noisy_idx))
print("Print noisy label generation statistics:")
for i in range(10):
n_noisy = np.sum(np.array(self.targets) == i)
print("Noisy class %s, has %s samples." % (i, n_noisy))
return
class cifar10Nosiy(datasets.CIFAR10):
def __init__(self, root, train=True, transform=None, target_transform=None, download=True, nosiy_rate=0.0, asym=False):
super(cifar10Nosiy, self).__init__(root, transform=transform, target_transform=target_transform, download=True)
self.download = download
if asym:
# automobile < - truck, bird -> airplane, cat <-> dog, deer -> horse
source_class = [9, 2, 3, 5, 4]
target_class = [1, 0, 5, 3, 7]
for s, t in zip(source_class, target_class):
cls_idx = np.where(np.array(self.targets) == s)[0]
n_noisy = int(nosiy_rate * cls_idx.shape[0])
noisy_sample_index = np.random.choice(cls_idx, n_noisy, replace=False)
for idx in noisy_sample_index:
self.targets[idx] = t
return
elif nosiy_rate > 0:
n_samples = len(self.targets)
n_noisy = int(nosiy_rate * n_samples)
print("%d Noisy samples" % (n_noisy))
class_index = [np.where(np.array(self.targets) == i)[0] for i in range(10)]
class_noisy = int(n_noisy / 10)
noisy_idx = []
for d in range(10):
noisy_class_index = np.random.choice(class_index[d], class_noisy, replace=False)
noisy_idx.extend(noisy_class_index)
print("Class %d, number of noisy % d" % (d, len(noisy_class_index)))
for i in noisy_idx:
self.targets[i] = other_class(n_classes=10, current_class=self.targets[i])
print(len(noisy_idx))
print("Print noisy label generation statistics:")
for i in range(10):
n_noisy = np.sum(np.array(self.targets) == i)
print("Noisy class %s, has %s samples." % (i, n_noisy))
return
class cifar100Nosiy(datasets.CIFAR100):
def __init__(self, root, train=True, transform=None, target_transform=None, download=True, nosiy_rate=0.0, asym=False, seed=0):
super(cifar100Nosiy, self).__init__(root, download=download, transform=transform, target_transform=target_transform)
self.download = download
if asym:
"""mistakes are inside the same superclass of 10 classes, e.g. 'fish'
"""
nb_classes = 100
P = np.eye(nb_classes)
n = nosiy_rate
nb_superclasses = 20
nb_subclasses = 5
if n > 0.0:
for i in np.arange(nb_superclasses):
init, end = i * nb_subclasses, (i+1) * nb_subclasses
P[init:end, init:end] = build_for_cifar100(nb_subclasses, n)
y_train_noisy = multiclass_noisify(np.array(self.targets), P=P, random_state=seed)
actual_noise = (y_train_noisy != np.array(self.targets)).mean()
assert actual_noise > 0.0
print('Actual noise %.2f' % actual_noise)
self.targets = y_train_noisy.tolist()
return
elif nosiy_rate > 0:
n_samples = len(self.targets)
n_noisy = int(nosiy_rate * n_samples)
print("%d Noisy samples" % (n_noisy))
class_index = [np.where(np.array(self.targets) == i)[0] for i in range(100)]
class_noisy = int(n_noisy / 100)
noisy_idx = []
for d in range(100):
noisy_class_index = np.random.choice(class_index[d], class_noisy, replace=False)
noisy_idx.extend(noisy_class_index)
print("Class %d, number of noisy % d" % (d, len(noisy_class_index)))
for i in noisy_idx:
self.targets[i] = other_class(n_classes=100, current_class=self.targets[i])
print(len(noisy_idx))
print("Print noisy label generation statistics:")
for i in range(100):
n_noisy = np.sum(np.array(self.targets) == i)
print("Noisy class %s, has %s samples." % (i, n_noisy))
return
class gtsrbNosiy(GTSRBDataset):
def __init__(self, train=True, nosiy_rate=0.0, asym=False):
super(gtsrbNosiy, self).__init__(train)
if asym:
raise("Asym not implemented for GTSRB")
pass
elif nosiy_rate > 0:
y_test = self.targets
num = y_test.shape[0]
err_sz = nosiy_rate
err_sz = err_sz * num
err_sz = math.floor(err_sz)
ind = random.sample(range(num), err_sz)
for item in ind:
maxval = np.amax(y_test)
r = list(range(0, y_test[item])) + list(range(y_test[item] + 1, maxval+1))
y_test[item] = random.choice(r)
self.targets = y_test
return
class pneumoniaNosiy(PneumoniaDataset):
def __init__(self, train=True, nosiy_rate=0.0, asym=False, transform=None):
super(pneumoniaNosiy, self).__init__(train, transform)
if asym:
raise("Asym not implemented for Pneumonia")
pass
elif nosiy_rate > 0:
y_test = self.targets
num = y_test.shape[0]
err_sz = nosiy_rate
err_sz = err_sz * num
err_sz = math.floor(err_sz)
ind = random.sample(range(num), err_sz)
for item in ind:
maxval = np.amax(y_test)
r = list(range(0, y_test[item])) + list(range(y_test[item] + 1, maxval+1))
y_test[item] = random.choice(r)
self.targets = y_test
return
@mlconfig.register
class DatasetGenerator():
def __init__(self,
train_batch_size=128,
eval_batch_size=256,
data_path='data/',
seed=123,
num_of_workers=4,
asym=False,
dataset_type='CIFAR10',
is_cifar100=False,
cutout_length=16,
noise_rate=0.4,
removal_rate=0.0,
repeat_rate=0.0):
self.seed = seed
np.random.seed(seed)
self.train_batch_size = train_batch_size
self.eval_batch_size = eval_batch_size
self.data_path = data_path
self.num_of_workers = num_of_workers
self.cutout_length = cutout_length
self.noise_rate = noise_rate
self.removal_rate = removal_rate
self.repeat_rate = repeat_rate
self.dataset_type = dataset_type
self.asym = asym
self.data_loaders = self.loadData()
return
def getDataLoader(self):
return self.data_loaders
def loadData(self):
if self.dataset_type == 'MNIST':
MEAN = [0.1307]
STD = [0.3081]
train_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(MEAN, STD)])
test_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(MEAN, STD)])
train_dataset = MNISTNoisy(root=self.data_path,
train=True,
transform=train_transform,
download=True,
asym=self.asym,
seed=self.seed,
nosiy_rate=self.noise_rate)
test_dataset = datasets.MNIST(root=self.data_path,
train=False,
transform=test_transform,
download=True)
elif self.dataset_type == 'CIFAR100':
CIFAR_MEAN = [0.5071, 0.4865, 0.4409]
CIFAR_STD = [0.2673, 0.2564, 0.2762]
train_transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(20),
transforms.ToTensor(),
transforms.Normalize(CIFAR_MEAN, CIFAR_STD)])
test_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(CIFAR_MEAN, CIFAR_STD)])
train_dataset = cifar100Nosiy(root=self.data_path,
train=True,
transform=train_transform,
download=True,
asym=self.asym,
seed=self.seed,
nosiy_rate=self.noise_rate)
test_dataset = datasets.CIFAR100(root=self.data_path,
train=False,
transform=test_transform,
download=True)
elif self.dataset_type == 'CIFAR10':
CIFAR_MEAN = [0.49139968, 0.48215827, 0.44653124]
CIFAR_STD = [0.24703233, 0.24348505, 0.26158768]
train_transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(CIFAR_MEAN, CIFAR_STD)])
test_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(CIFAR_MEAN, CIFAR_STD)])
train_dataset = cifar10Nosiy(root=self.data_path,
train=True,
transform=train_transform,
download=True,
asym=self.asym,
nosiy_rate=self.noise_rate)
test_dataset = datasets.CIFAR10(root=self.data_path,
train=False,
transform=test_transform,
download=True)
if (self.removal_rate > 0):
remove_len = int(len(train_dataset)*self.removal_rate)
train_len = len(train_dataset) - remove_len
train_dataset, _ = torchdata.random_split(train_dataset, [train_len, remove_len])
elif (self.repeat_rate > 0):
repeat_len = int(len(train_dataset)*self.repeat_rate)
train_len = len(train_dataset) - repeat_len
_, repeat_dataset = torchdata.random_split(train_dataset, [train_len, repeat_len])
train_dataset = torchdata.ConcatDataset([train_dataset, repeat_dataset])
print("Length of train dataset = " + str(len(train_dataset)))
print("Length of test dataset = " + str(len(test_dataset)))
elif self.dataset_type == 'GTSRB':
GTSRB_MEAN = [0.49139968, 0.48215827, 0.44653124]
GTSRB_STD = [0.24703233, 0.24348505, 0.26158768]
train_transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(GTSRB_MEAN, GTSRB_STD)])
test_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(GTSRB_MEAN, GTSRB_STD)])
train_dataset = gtsrbNosiy(train=True,
asym=self.asym,
nosiy_rate=self.noise_rate)
test_dataset = GTSRBDataset(train=False)
if (self.removal_rate > 0):
remove_len = int(len(train_dataset)*self.removal_rate)
train_len = len(train_dataset) - remove_len
train_dataset, _ = torchdata.random_split(train_dataset, [train_len, remove_len])
elif (self.repeat_rate > 0):
repeat_len = int(len(train_dataset)*self.repeat_rate)
train_len = len(train_dataset) - repeat_len
_, repeat_dataset = torchdata.random_split(train_dataset, [train_len, repeat_len])
train_dataset = torchdata.ConcatDataset([train_dataset, repeat_dataset])
print("Length of train dataset = " + str(len(train_dataset)))
print("Length of test dataset = " + str(len(test_dataset)))
elif self.dataset_type == 'Pneumonia':
PNEUMONIA_MEAN = [0.49139968, 0.48215827, 0.44653124]
PNEUMONIA_STD = [0.24703233, 0.24348505, 0.26158768]
train_transform = transforms.Compose([
transforms.ColorJitter(),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(PNEUMONIA_MEAN, PNEUMONIA_STD)])
test_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(PNEUMONIA_MEAN, PNEUMONIA_STD)])
train_dataset = pneumoniaNosiy(train=True,
asym=self.asym,
transform=train_transform,
nosiy_rate=self.noise_rate)
test_dataset = PneumoniaDataset(train=False,
transform=test_transform)
if (self.removal_rate > 0):
remove_len = int(len(train_dataset)*self.removal_rate)
train_len = len(train_dataset) - remove_len
train_dataset, _ = torchdata.random_split(train_dataset, [train_len, remove_len])
elif (self.repeat_rate > 0):
repeat_len = int(len(train_dataset)*self.repeat_rate)
train_len = len(train_dataset) - repeat_len
_, repeat_dataset = torchdata.random_split(train_dataset, [train_len, repeat_len])
train_dataset = torchdata.ConcatDataset([train_dataset, repeat_dataset])
print("Length of train dataset = " + str(len(train_dataset)))
print("Length of test dataset = " + str(len(test_dataset)))
else:
raise("Unknown Dataset")
data_loaders = {}
data_loaders['train_dataset'] = DataLoader(dataset=train_dataset,
batch_size=self.train_batch_size,
shuffle=True,
pin_memory=True,
num_workers=self.num_of_workers)
data_loaders['test_dataset'] = DataLoader(dataset=test_dataset,
batch_size=self.eval_batch_size,
shuffle=False,
pin_memory=True,
num_workers=self.num_of_workers)
print("Num of train %d" % (len(train_dataset)))
print("Num of test %d" % (len(test_dataset)))
return data_loaders
class Clothing1MDataset:
def __init__(self, path, type='train', transform=None, target_transform=None):
self.path = path
if type == 'test':
flist = os.path.join(path, "annotations/clean_test.txt")
elif type == 'valid':
flist = os.path.join(path, "annotations/clean_val.txt")
elif type == 'train':
flist = os.path.join(path, "annotations/noisy_train.txt")
else:
raise('Unknown type')
self.imlist = self.flist_reader(flist)
self.transform = transform
def __len__(self):
return len(self.imlist)
def __getitem__(self, index):
impath, target = self.imlist[index]
img = Image.open(impath).convert("RGB")
if self.transform is not None:
img = self.transform(img)
return img, target
def flist_reader(self, flist):
imlist = []
with open(flist, 'r') as rf:
for line in rf.readlines():
row = line.split(" ")
impath = self.path + row[0]
imlabel = row[1]
imlist.append((impath, int(imlabel)))
return imlist
@mlconfig.register
class Clothing1MDatasetLoader:
def __init__(self, train_batch_size=128, eval_batch_size=256, data_path='data/', num_of_workers=4, use_cutout=True, cutout_length=112):
self.train_batch_size = train_batch_size
self.eval_batch_size = eval_batch_size
self.data_path = data_path
self.num_of_workers = num_of_workers
self.use_cutout = use_cutout
self.cutout_length = cutout_length
self.data_loaders = self.loadData()
def getDataLoader(self):
return self.data_loaders
def loadData(self):
MEAN = [0.485, 0.456, 0.406]
STD = [0.229, 0.224, 0.225]
train_transform = transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(20),
transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.2),
transforms.ToTensor(),
transforms.Normalize(mean=MEAN, std=STD),
])
test_transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=MEAN, std=STD)
])
if self.use_cutout:
print('Using Cutout')
train_transform.transforms.append(Cutout(self.cutout_length))
train_dataset = Clothing1MDataset(path=self.data_path,
type='train',
transform=train_transform)
test_dataset = Clothing1MDataset(path=self.data_path,
type='test',
transform=test_transform)
valid_dataset = Clothing1MDataset(path=self.data_path,
type='valid',
transform=test_transform)
data_loaders = {}
data_loaders['train_dataset'] = DataLoader(dataset=train_dataset,
batch_size=self.train_batch_size,
shuffle=True,
pin_memory=True,
num_workers=self.num_of_workers)
data_loaders['test_dataset'] = DataLoader(dataset=test_dataset,
batch_size=self.eval_batch_size,
shuffle=False,
pin_memory=True,
num_workers=self.num_of_workers)
data_loaders['valid_dataset'] = DataLoader(dataset=valid_dataset,
batch_size=self.eval_batch_size,
shuffle=False,
pin_memory=True,
num_workers=self.num_of_workers)
return data_loaders
class WebVisionDataset:
def __init__(self, path, file_name='webvision_mini_train', transform=None, target_transform=None):
self.target_list = []
self.path = path
self.load_file(os.path.join(path, file_name))
self.transform = transform
self.target_transform = target_transform
return
def load_file(self, filename):
f = open(filename, "r")
for line in f:
train_file, label = line.split()
self.target_list.append((train_file, int(label)))
f.close()
return
def __len__(self):
return len(self.target_list)
def __getitem__(self, index):
impath, target = self.target_list[index]
img = Image.open(os.path.join(self.path, impath)).convert("RGB")
if self.transform is not None:
img = self.transform(img)
return img, target
@mlconfig.register
class WebVisionDatasetLoader:
def __init__(self, setting='mini', train_batch_size=128, eval_batch_size=256, train_data_path='data/', valid_data_path='data/', num_of_workers=4):
self.train_batch_size = train_batch_size
self.eval_batch_size = eval_batch_size
self.train_data_path = train_data_path
self.valid_data_path = valid_data_path
self.num_of_workers = num_of_workers
self.setting = setting
self.data_loaders = self.loadData()
def getDataLoader(self):
return self.data_loaders
def loadData(self):
IMAGENET_MEAN = [0.485, 0.456, 0.406]
IMAGENET_STD = [0.229, 0.224, 0.225]
train_transform = transforms.Compose([transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(brightness=0.4,
contrast=0.4,
saturation=0.4,
hue=0.2),
transforms.ToTensor(),
transforms.Normalize(IMAGENET_MEAN, IMAGENET_STD)])
test_transform = transforms.Compose([transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(IMAGENET_MEAN, IMAGENET_STD)])
if self.setting == 'mini':
train_dataset = WebVisionDataset(path=self.train_data_path,
file_name='webvision_mini_train.txt',
transform=train_transform)
test_dataset = ImageNetMini(root=self.valid_data_path,
split='val',
transform=test_transform)
elif self.setting == 'full':
train_dataset = WebVisionDataset(path=self.train_data_path,
file_name='train_filelist_google.txt',
transform=train_transform)
test_dataset = WebVisionDataset(path=self.valid_data_path,
file_name='val_filelist.txt',
transform=test_transform)
elif self.setting == 'full_imagenet':
train_dataset = WebVisionDataset(path=self.train_data_path,
file_name='train_filelist_google',
transform=train_transform)
test_dataset = datasets.ImageNet(root=self.valid_data_path,
split='val',
transform=test_transform)
else:
raise(NotImplementedError)
data_loaders = {}
print('Training Set Size %d' % (len(train_dataset)))
print('Test Set Size %d' % (len(test_dataset)))
data_loaders['train_dataset'] = DataLoader(dataset=train_dataset,
batch_size=self.train_batch_size,
shuffle=True,
pin_memory=True,
num_workers=self.num_of_workers)
data_loaders['test_dataset'] = DataLoader(dataset=test_dataset,
batch_size=self.eval_batch_size,
shuffle=False,
pin_memory=True,
num_workers=self.num_of_workers)
return data_loaders
class ImageNetMini(datasets.ImageNet):
def __init__(self, root, split='val', download=False, **kwargs):
super(ImageNetMini, self).__init__(root, download=download, split=split, **kwargs)
self.new_targets = []
self.new_images = []
for i, (file, cls_id) in enumerate(self.imgs):
if cls_id <= 49:
self.new_targets.append(cls_id)
self.new_images.append((file, cls_id))
print((file, cls_id))
self.imgs = self.new_images
self.targets = self.new_targets
self.samples = self.imgs
print(len(self.samples))
print(len(self.targets))
return
class NosieImageNet(datasets.ImageNet):
def __init__(self, root, split='train', seed=999, download=False, target_class_num=200, nosiy_rate=0.4, **kwargs):
super(NosieImageNet, self).__init__(root, download=download, split=split, **kwargs)
random.seed(seed)
np.random.seed(seed)
self.new_idx = random.sample(list(range(0, 1000)), k=target_class_num)
print(len(self.new_idx), len(self.imgs))
self.new_imgs = []
self.new_targets = []
for file, cls_id in self.imgs:
if cls_id in self.new_idx:
new_idx = self.new_idx.index(cls_id)
self.new_imgs.append((file, new_idx))
self.new_targets.append(new_idx)
self.imgs = self.new_imgs
self.targets = self.new_targets
print(min(self.targets), max(self.targets))
# Noise
if split == 'train':
n_samples = len(self.targets)
n_noisy = int(nosiy_rate * n_samples)
print("%d Noisy samples" % (n_noisy))
class_index = [np.where(np.array(self.targets) == i)[0] for i in range(target_class_num)]
class_noisy = int(n_noisy / target_class_num)
noisy_idx = []
for d in range(target_class_num):
print(len(class_index[d]), d)
noisy_class_index = np.random.choice(class_index[d], class_noisy, replace=False)
noisy_idx.extend(noisy_class_index)
print("Class %d, number of noisy % d" % (d, len(noisy_class_index)))
for i in noisy_idx:
self.targets[i] = other_class(n_classes=target_class_num, current_class=self.targets[i])
(file, old_idx) = self.imgs[i]
self.imgs[i] = (file, self.targets[i])
print(len(noisy_idx))
print("Print noisy label generation statistics:")
for i in range(target_class_num):
n_noisy = np.sum(np.array(self.targets) == i)
print("Noisy class %s, has %s samples." % (i, n_noisy))
self.samples = self.imgs
class ImageNetDatasetLoader:
def __init__(self,
batchSize=128,
eval_batch_size=256,
dataPath='data/',
seed=999,
target_class_num=200,
nosiy_rate=0.4,
numOfWorkers=4):
self.batchSize = batchSize
self.eval_batch_size = eval_batch_size
self.dataPath = dataPath
self.numOfWorkers = numOfWorkers
self.seed = seed
self.target_class_num = target_class_num
self.nosiy_rate = nosiy_rate
self.data_loaders = self.loadData()
def getDataLoader(self):
return self.data_loaders
def loadData(self):
IMAGENET_MEAN = [0.485, 0.456, 0.406]
IMAGENET_STD = [0.229, 0.224, 0.225]
train_transform = transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(brightness=0.4,
contrast=0.4,
saturation=0.4,
hue=0.2),
transforms.ToTensor(),
transforms.Normalize(IMAGENET_MEAN, IMAGENET_STD)])
test_transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(IMAGENET_MEAN, IMAGENET_STD)])
train_dataset = NosieImageNet(root=self.dataPath,
split='train',
nosiy_rate=self.nosiy_rate,
target_class_num=self.target_class_num,
seed=self.seed,
transform=train_transform,
download=True)
test_dataset = NosieImageNet(root=self.dataPath,
split='val',
nosiy_rate=self.nosiy_rate,
target_class_num=self.target_class_num,
seed=self.seed,
transform=test_transform,
download=True)
data_loaders = {}
data_loaders['train_dataset'] = DataLoader(dataset=train_dataset,
batch_size=self.batchSize,
shuffle=True,
pin_memory=True,
num_workers=self.numOfWorkers)
data_loaders['test_dataset'] = DataLoader(dataset=test_dataset,
batch_size=self.batchSize,
shuffle=False,
pin_memory=True,
num_workers=self.numOfWorkers)
return data_loaders
def online_mean_and_sd(loader):
"""Compute the mean and sd in an online fashion
Var[x] = E[X^2] - E^2[X]
"""
cnt = 0
fst_moment = torch.empty(3)
snd_moment = torch.empty(3)
for data, _ in tqdm(loader):
b, c, h, w = data.shape
nb_pixels = b * h * w
sum_ = torch.sum(data, dim=[0, 2, 3])
sum_of_square = torch.sum(data ** 2, dim=[0, 2, 3])
fst_moment = (cnt * fst_moment + sum_) / (cnt + nb_pixels)
snd_moment = (cnt * snd_moment + sum_of_square) / (cnt + nb_pixels)
cnt += nb_pixels
return fst_moment, torch.sqrt(snd_moment - fst_moment ** 2)
class Cutout(object):
def __init__(self, length):
self.length = length
def __call__(self, img):
h, w = img.size(1), img.size(2)
mask = np.ones((h, w), np.float32)
y = np.random.randint(h)
x = np.random.randint(w)
y1 = np.clip(y - self.length // 2, 0, h)
y2 = np.clip(y + self.length // 2, 0, h)
x1 = np.clip(x - self.length // 2, 0, w)
x2 = np.clip(x + self.length // 2, 0, w)
mask[y1: y2, x1: x2] = 0.
mask = torch.from_numpy(mask)
mask = mask.expand_as(img)
img *= mask
return img