-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_multi_gpu.py
606 lines (516 loc) · 20.3 KB
/
train_multi_gpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
# %% import packages
import os
import sys
join = os.path.join
import monai
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
from skimage import transform
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader,Dataset
from segment_anything import sam_model_registry
import argparse
import random
from tqdm import tqdm
from datetime import datetime
import shutil
import glob
from os import listdir
from os.path import isfile, join
from PIL import Image
import cv2
# set seeds
torch.manual_seed(2023)
torch.cuda.empty_cache()
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([251 / 255, 252 / 255, 30 / 255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_box(box, ax):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(
plt.Rectangle((x0, y0), w, h, edgecolor="blue", facecolor=(0, 0, 0, 0), lw=2)
)
# %% resize images
def resize_images_in_directory(path, size=(1024, 1024), quality=100):
"""
Resize all images in the specified directory to the given size.
Parameters:
- path: Path to the directory containing images to be resized.
- size: Tuple specifying the desired width and height of the resized images.
- quality: Desired quality of the resized images.
Returns:
None
"""
dirs = os.listdir(path)
for item in tqdm(dirs):
full_path = os.path.join(path, item)
if os.path.isfile(full_path):
with Image.open(full_path) as im:
imResize = im.resize(size, Image.NEAREST)
f, e = os.path.splitext(full_path)
imResize.save(f + e, 'PNG', quality=quality)
# Example usage:
label_path = "data/nucleus_data/segmentation_maps"
output_features_path = "data/nucleus_data/features"
resize_images_in_directory(label_path)
# %% filter out empty masks
def filter_non_empty_masks(label_path, output_features_path, full_ids_csv='full_file_ids.csv', filtered_ids_csv='file_ids.csv'):
"""
Extracts file IDs from feature filenames, saves them to a CSV,
and then filters out IDs corresponding to empty masks.
Parameters:
- label_path: Path to the directory containing label files.
- output_features_path: Path to the directory containing feature files.
- full_ids_csv: Name of the CSV file to save all file IDs.
- filtered_ids_csv: Name of the CSV file to save filtered file IDs.
Returns:
None
"""
# Extract IDs from feature filenames
ids = []
feature_filenames = [f for f in listdir(output_features_path) if isfile(join(output_features_path, f))]
for i in range(len(feature_filenames)):
ids.append(feature_filenames[i][1:])
# Save all IDs to a CSV file
df = pd.DataFrame(ids, columns=["file_ids"])
df.to_csv(full_ids_csv, index=False)
# Load the saved CSV
df = pd.read_csv(full_ids_csv)
ids = df['file_ids'].tolist()
non_empty_ids = []
# Filter out IDs corresponding to empty masks
for file_id in ids:
mask_path = os.path.join(label_path, 'L' + file_id)
mask = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE)
if cv2.countNonZero(mask) > 0:
non_empty_ids.append(file_id)
# Save the filtered IDs to another CSV file
df_non_empty = pd.DataFrame(non_empty_ids, columns=["file_ids"])
df_non_empty.sort_values(by='file_ids', inplace=True) # Sort the DataFrame by 'file_ids'
df_non_empty.to_csv(filtered_ids_csv, index=False)
# %% dataset
class SegmentationDataset(Dataset):
def __init__(self, csv_file, bbox_shift=20):
self.df = pd.read_csv(csv_file)
self.ids = self.df["file_ids"]
self.img_path = "data/features/"
self.mask_path = "data/segmentation_maps/"
self.bbox_shift = bbox_shift
print(f"number of images: {len(self.ids)}")
def __len__(self):
return len(self.ids)
def __getitem__(self, index):
# Load image and mask using the ID from the CSV
img_name = f"F{self.ids[index]}"
mask_name = f"L{self.ids[index]}"
# Load and resize image to 1024x1024, then convert to RGB
img = Image.open(join(self.img_path, img_name)).resize((1024, 1024)).convert("RGB")
img = np.array(img) # Convert image to numpy array
img = img / 255.0
# Load and resize mask to 1024x1024
mask = Image.open(join(self.mask_path, mask_name)).resize((1024, 1024))
mask = np.array(mask) # Convert mask to numpy array
# Convert the shape to (3, H, W) for image and (1, H, W) for mask
img = np.transpose(img, (2, 0, 1))
mask = np.expand_dims(mask, axis=0) # Add an extra dimension for the channel
label_ids = np.unique(mask)[1:]
mask_binary = np.uint8(mask == random.choice(label_ids.tolist()))[1] # only one label, (1024, 1024)
y_indices, x_indices = np.where(mask_binary > 0)
x_min, x_max = np.min(x_indices), np.max(x_indices)
y_min, y_max = np.min(y_indices), np.max(y_indices)
# add perturbation to bounding box coordinates
H, W = mask_binary.shape
x_min = max(0, x_min - random.randint(0, self.bbox_shift))
x_max = min(W, x_max + random.randint(0, self.bbox_shift))
y_min = max(0, y_min - random.randint(0, self.bbox_shift))
y_max = min(H, y_max + random.randint(0, self.bbox_shift))
bboxes = np.array([x_min, y_min, x_max, y_max])
return (
torch.tensor(img).float(),
torch.tensor(mask_binary[None, :, :]).long(),
torch.tensor(bboxes).float(),
img_name,
)
# %% sanity check
tr_dataset = SegmentationDataset(csv_file='file_ids.csv',)
tr_dataloader = DataLoader(tr_dataset, batch_size=4, shuffle=True)
for step, (image, mask_binary, bboxes, img_name) in enumerate(tr_dataloader):
print(image.shape, mask_binary.shape, bboxes.shape)
# show the example
_, axs = plt.subplots(1, 2, figsize=(25, 25))
idx = random.randint(0, image.size(0) - 1) # Update this line to get a valid index
axs[0].imshow(image[idx].cpu().permute(1, 2, 0).numpy())
show_mask(mask_binary[idx].cpu().numpy()[0], axs[0]) # Passing the 2D mask to show_mask
show_box(bboxes[idx].numpy(), axs[0])
axs[0].axis("off")
# set title
axs[0].set_title(img_name[idx])
idx = random.randint(0, image.size(0) - 1) # Update this line to get a valid index
axs[1].imshow(image[idx].cpu().permute(1, 2, 0).numpy())
show_mask(mask_binary[idx].cpu().numpy()[0], axs[1]) # Passing the 2D mask to show_mask
show_box(bboxes[idx].numpy(), axs[1])
axs[1].axis("off")
# set title
axs[1].set_title(img_name[idx])
# plt.show()
plt.subplots_adjust(wspace=0.01, hspace=0)
plt.savefig("./data_sanitycheck.png", bbox_inches="tight", dpi=300)
plt.close()
break
# %% set up parser
parser = argparse.ArgumentParser()
parser.add_argument(
"--csv_file",
type=str,
default="data/nucleus_data/file_ids.csv",
help="Path to the CSV file containing file IDs for the dataset."
)
parser.add_argument(
"--bbox_shift",
type=int,
default=20,
help="Bounding box shift value for data augmentation."
)
parser.add_argument(
"--img_path",
type=str,
default="data/nucleus_data/features/",
help="Path to the directory containing image files."
)
parser.add_argument(
"--mask_path",
type=str,
default="data/nucleus_data/segmentation_maps/",
help="Path to the directory containing mask files."
)
parser.add_argument("-task_name", type=str, default="CellSAM-ViT-B")
parser.add_argument("-model_type", type=str, default="vit_b")
parser.add_argument(
"-checkpoint", type=str, default="work_dir/CellSAM/sam_vit_b_01ec64.pth"
)
# parser.add_argument('-device', type=str, default='cuda:0')
parser.add_argument(
"--load_pretrain", type=bool, default=True, help="use wandb to monitor training"
)
parser.add_argument("-pretrain_model_path", type=str, default="")
parser.add_argument("-work_dir", type=str, default="./work_dir")
# train
parser.add_argument("-num_epochs", type=int, default=1000)
parser.add_argument("-batch_size", type=int, default=2)
parser.add_argument("-num_workers", type=int, default=0)
# Optimizer parameters
parser.add_argument(
"-weight_decay", type=float, default=0.01, help="weight decay (default: 0.01)"
)
parser.add_argument(
"-lr", type=float, default=0.0001, metavar="LR", help="learning rate (absolute lr)"
)
parser.add_argument(
"-use_wandb", type=bool, default=False, help="use wandb to monitor training"
)
parser.add_argument("-use_amp", action="store_true", default=False, help="use amp")
## Distributed training args
parser.add_argument("--world_size", type=int, help="world size")
parser.add_argument("--node_rank", type=int, default=0, help="Node rank")
parser.add_argument(
"--bucket_cap_mb",
type=int,
default=25,
help="The amount of memory in Mb that DDP will accumulate before firing off gradient communication for the bucket (need to tune)",
)
parser.add_argument(
"--grad_acc_steps",
type=int,
default=1,
help="Gradient accumulation steps before syncing gradients for backprop",
)
parser.add_argument(
"--resume", type=str, default="", help="Resuming training from checkpoint"
)
parser.add_argument("--init_method", type=str, default="env://")
args = parser.parse_args()
# %% set up wandb
if args.use_wandb:
import wandb
wandb.login()
wandb.init(
project=args.task_name,
config={
"lr": args.lr,
"batch_size": args.batch_size,
"data_path": args.tr_npy_path,
"model_type": args.model_type,
},
)
# %% set up model
run_id = datetime.now().strftime("%Y%m%d-%H%M")
model_save_path = join(args.work_dir, args.task_name + "-" + run_id)
# %% model
class CellSAM(nn.Module):
def __init__(
self,
image_encoder,
mask_decoder,
prompt_encoder,
):
super().__init__()
self.image_encoder = image_encoder
self.mask_decoder = mask_decoder
self.prompt_encoder = prompt_encoder
# freeze prompt encoder
for param in self.prompt_encoder.parameters():
param.requires_grad = False
for param in self.image_encoder.parameters():
param.requires_grad = False
def forward(self, image, box):
image_embedding = self.image_encoder(image) # (B, 256, 64, 64)
# do not compute gradients for prompt encoder
with torch.no_grad():
box_torch = torch.as_tensor(box, dtype=torch.float32, device=image.device)
if len(box_torch.shape) == 2:
box_torch = box_torch[:, None, :] # (B, 1, 4)
sparse_embeddings, dense_embeddings = self.prompt_encoder(
points=None,
boxes=box_torch,
masks=None,
)
low_res_masks, _ = self.mask_decoder(
image_embeddings=image_embedding, # (B, 256, 64, 64)
image_pe=self.prompt_encoder.get_dense_pe(), # (1, 256, 64, 64)
sparse_prompt_embeddings=sparse_embeddings, # (B, 2, 256)
dense_prompt_embeddings=dense_embeddings, # (B, 256, 64, 64)
multimask_output=False,
)
ori_res_masks = F.interpolate(
low_res_masks,
size=(image.shape[2], image.shape[3]),
mode="bilinear",
align_corners=False,
)
return ori_res_masks
def main():
ngpus_per_node = torch.cuda.device_count()
print("Spwaning processces")
mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args))
def main_worker(gpu, ngpus_per_node, args):
node_rank = int(args.node_rank)
rank = node_rank * ngpus_per_node + gpu
world_size = args.world_size
print(f"[Rank {rank}]: Use GPU: {gpu} for training")
is_main_host = rank == 0
if is_main_host:
os.makedirs(model_save_path, exist_ok=True)
shutil.copyfile(
__file__, join(model_save_path, run_id + "_" + os.path.basename(__file__))
)
torch.cuda.set_device(gpu)
# device = torch.device("cuda:{}".format(gpu))
torch.distributed.init_process_group(
backend="nccl", init_method=args.init_method, rank=rank, world_size=world_size
)
sam_model = sam_model_registry[args.model_type](checkpoint=args.checkpoint)
cellsam_model = CellSAM(
image_encoder=sam_model.image_encoder,
mask_decoder=sam_model.mask_decoder,
prompt_encoder=sam_model.prompt_encoder
).cuda()
cuda_mem_info = torch.cuda.mem_get_info(gpu)
free_cuda_mem, total_cuda_mem = cuda_mem_info[0] / (1024**3), cuda_mem_info[1] / (
1024**3
)
print(
f"[RANK {rank}: GPU {gpu}] Total CUDA memory before DDP initialised: {total_cuda_mem} Gb"
)
print(
f"[RANK {rank}: GPU {gpu}] Free CUDA memory before DDP initialised: {free_cuda_mem} Gb"
)
if rank % ngpus_per_node == 0:
print("Before DDP initialization:")
os.system("nvidia-smi")
cellsam_model = nn.parallel.DistributedDataParallel(
cellsam_model,
device_ids=[gpu],
output_device=gpu,
gradient_as_bucket_view=True,
find_unused_parameters=True,
bucket_cap_mb=args.bucket_cap_mb, ## Too large -> comminitation overlap, too small -> unable to overlap with computation
)
cuda_mem_info = torch.cuda.mem_get_info(gpu)
free_cuda_mem, total_cuda_mem = cuda_mem_info[0] / (1024**3), cuda_mem_info[1] / (
1024**3
)
print(
f"[RANK {rank}: GPU {gpu}] Total CUDA memory after DDP initialised: {total_cuda_mem} Gb"
)
print(
f"[RANK {rank}: GPU {gpu}] Free CUDA memory after DDP initialised: {free_cuda_mem} Gb"
)
if rank % ngpus_per_node == 0:
print("After DDP initialization:")
os.system("nvidia-smi")
cellsam_model.train()
print(
"Number of total parameters: ",
sum(p.numel() for p in cellsam_model.parameters()),
) # 93735472
print(
"Number of trainable parameters: ",
sum(p.numel() for p in cellsam_model.parameters() if p.requires_grad),
)
img_mask_encdec_params = cellsam_model.mask_decoder.parameters()
optimizer = torch.optim.AdamW(
img_mask_encdec_params, lr=args.lr, weight_decay=args.weight_decay
)
print(
"Number of image encoder and mask decoder parameters: ",
sum(p.numel() for p in img_mask_encdec_params if p.requires_grad),
)
seg_loss = monai.losses.DiceLoss(sigmoid=True, squared_pred=True, reduction="mean")
ce_loss = nn.BCEWithLogitsLoss(reduction="mean")
# %% train
num_epochs = args.num_epochs
iter_num = 0
losses = []
best_loss = 1e10
train_dataset = SegmentationDataset(csv_file=args.csv_file, bbox_shift=args.bbox_shift)
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
print("Number of training samples: ", len(train_dataset))
train_dataloader = DataLoader(
train_dataset,
batch_size=args.batch_size,
shuffle=(train_sampler is None),
num_workers=args.num_workers,
pin_memory=True,
sampler=train_sampler,
)
start_epoch = 0
if args.resume is not None:
if os.path.isfile(args.resume):
print(rank, "=> loading checkpoint '{}'".format(args.resume))
## Map model to be loaded to specified single GPU
loc = "cuda:{}".format(gpu)
checkpoint = torch.load(args.resume, map_location=loc)
start_epoch = checkpoint["epoch"] + 1
cellsam_model.load_state_dict(checkpoint["model"])
optimizer.load_state_dict(checkpoint["optimizer"])
print(
rank,
"=> loaded checkpoint '{}' (epoch {})".format(
args.resume, checkpoint["epoch"]
),
)
torch.distibuted.barrier()
if args.use_amp:
scaler = torch.cuda.amp.GradScaler()
print(f"[RANK {rank}: GPU {gpu}] Using AMP for training")
for epoch in range(start_epoch, num_epochs):
epoch_loss = 0
train_dataloader.sampler.set_epoch(epoch)
for step, (image, gt2D, boxes, _) in enumerate(
tqdm(train_dataloader, desc=f"[RANK {rank}: GPU {gpu}]")
):
optimizer.zero_grad()
boxes_np = boxes.detach().cpu().numpy()
image , gt2D = image.cuda(), gt2D.cuda()
if args.use_amp:
## AMP
with torch.autocast(device_type="cuda", dtype=torch.float16):
cellsam_pred = cellsam_model(image, boxes_np)
loss = seg_loss(cellsam_pred, gt2D) + ce_loss(
cellsam_pred, gt2D.float()
)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
else:
cellsam_pred = cellsam_model(image, boxes_np)
loss = seg_loss(cellsam_pred, gt2D) + ce_loss(
cellsam_pred, gt2D.float()
)
# Gradient accumulation
if args.grad_acc_steps > 1:
loss = (
loss / args.grad_acc_steps
) # normalize the loss because it is accumulated
if (step + 1) % args.grad_acc_steps == 0:
## Perform gradient sync
loss.backward()
optimizer.step()
optimizer.zero_grad()
else:
## Accumulate gradient on current node without backproping
with cellsam_model.no_sync():
loss.backward()
else:
loss.backward()
optimizer.step()
optimizer.zero_grad()
if step > 10 and step % 100 == 0:
if is_main_host:
checkpoint = {
"model": cellsam_model.state_dict(),
"optimizer": optimizer.state_dict(),
"epoch": epoch,
}
torch.save(
checkpoint,
join(model_save_path, "cellsam_model_latest_step.pth"),
)
epoch_loss += loss.item()
iter_num += 1
# if rank % ngpus_per_node == 0:
# print('\n')
# os.system('nvidia-smi')
# print('\n')
# Check CUDA memory usage
cuda_mem_info = torch.cuda.mem_get_info(gpu)
free_cuda_mem, total_cuda_mem = cuda_mem_info[0] / (1024**3), cuda_mem_info[
1
] / (1024**3)
print("\n")
print(f"[RANK {rank}: GPU {gpu}] Total CUDA memory: {total_cuda_mem} Gb")
print(f"[RANK {rank}: GPU {gpu}] Free CUDA memory: {free_cuda_mem} Gb")
print(
f"[RANK {rank}: GPU {gpu}] Used CUDA memory: {total_cuda_mem - free_cuda_mem} Gb"
)
print("\n")
epoch_loss /= step
losses.append(epoch_loss)
if args.use_wandb:
wandb.log({"epoch_loss": epoch_loss})
print(
f'Time: {datetime.now().strftime("%Y%m%d-%H%M")}, Epoch: {epoch}, Loss: {epoch_loss}'
)
# save the model checkpoint
if is_main_host:
checkpoint = {
"model": cellsam_model.state_dict(),
"optimizer": optimizer.state_dict(),
"epoch": epoch,
}
torch.save(checkpoint, join(model_save_path, "cellsam_model_latest.pth"))
## save the best model
if epoch_loss < best_loss:
best_loss = epoch_loss
torch.save(checkpoint, join(model_save_path, "cellsam_model_best.pth"))
torch.distributed.barrier()
# %% plot loss
plt.plot(losses)
plt.title("Dice + Cross Entropy Loss")
plt.xlabel("Epoch")
plt.ylabel("Loss")
# plt.show() # comment this line if you are running on a server
plt.savefig(join(model_save_path, args.task_name + "train_loss.png"))
plt.close()
if __name__ == "__main__":
main()