-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolve.py
366 lines (242 loc) · 10.4 KB
/
solve.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import keras
import tensorflow
from keras.models import Sequential
from keras.layers import Dense , Conv2D , Flatten
from keras.utils import plot_model , vis_utils
from mip import *
import random
from scipy.stats import zscore
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import StandardScaler
from mip import Model, xsum, maximize, BINARY
import numpy
import pandas
import sklearn
from sklearn.linear_model import LinearRegression
from sklearn.metrics import f1_score
from sklearn.metrics import r2_score
from sklearn.preprocessing import normalize , PolynomialFeatures
'''
Limit the upper and lower bound for the list we are generating for the questions so that the range is not too large.
'''
NUM_ITERATION = 2000
NUM_CONTRAINTS = 2
RANDOM_LOWER_LIMIT = 0
RANDOM_UPPER_LIMIT = 50
LIMIT_CONST_LOWER = 100
LIMIT_CONST_UPPER = 1000
LIST_ANSWER = []
LIST_QUESTION = []
NUM_FEATURE = 8
MEAN_Y = []
STD_Y = []
OBJ = [ ]
#(constraintMatrixOne,constraintOneConstant, constraintMatrixTwo,constraintTwoConstant, objectiveMatrix)
def solveLinearEquation(constraintMatrixOne,constraintOneConstant, constraintMatrixTwo,constraintTwoConstant, objectiveMatrix):
m = Model("LP")
variableList = [m.add_var(var_type=INTEGER, lb = 0, ub = 10) for i in range(NUM_CONTRAINTS)]
m.objective = maximize(xsum(objectiveMatrix[i] * variableList[i] for i in range(NUM_CONTRAINTS)))
m += xsum(constraintMatrixOne[i] * variableList[i] for i in range(NUM_CONTRAINTS)) <= constraintOneConstant
m += xsum(constraintMatrixTwo[i] * variableList[i] for i in range(NUM_CONTRAINTS)) <= constraintTwoConstant
m.optimize()
selected = [variableList[i].x for i in range(NUM_CONTRAINTS) ]
return selected
def z_normalize(arr,size):
mean = [numpy.mean(arr[:,col]) for col in range(size)]
std = [numpy.std(arr[:,col]) for col in range(size)]
arr = (arr - mean) / std
return arr
def printStuffs():
print("----- THESE ARE THE ARRAYS THAT WE HAVE FORMED---")
print ("constraintMatrixOne constraintOneConstant constraintMatrixTwo constraintTwoConstant objectiveMatrix")
print (numpy.array (LIST_QUESTION))
print()
print("This is the list of array of answers: ")
print (numpy.array (LIST_ANSWER))
print()
print("This is the length of of the answers: ")
print (len (numpy.array (LIST_ANSWER)))
print ()
print ()
print ("---- NORMALIZED VALUES OF THE DATA AFTER Z_SCORE NORMALIZATION -----")
print ("constraintMatrixOne constraintOneConstant constraintMatrixTwo constraintTwoConstant objectiveMatrix")
print (zscore (numpy.array (LIST_QUESTION)))
print()
print("This is the list of array of answers: ")
print (zscore (numpy.array (LIST_ANSWER)))
print()
print("This is the length of of the answers: ")
print (len (numpy.array (LIST_ANSWER)))
print ("---- MEAN AND STD VALUES FOR THE Y -----")
print (MEAN_Y)
print (STD_Y)
# its the same as above so no point oops !
print ("--- My normalization")
print (z_normalize(numpy.array (LIST_ANSWER) , len (LIST_ANSWER [ 0 ])))
def randomList():
a = random.randrange(RANDOM_LOWER_LIMIT,RANDOM_UPPER_LIMIT)
b= random.randrange(RANDOM_LOWER_LIMIT,RANDOM_UPPER_LIMIT)
return [a,b]
def data_mining():
objectiveMatrix = [0.2 , 0.4]
for x in range(NUM_ITERATION):
constraintMatrixOne= randomList ()
constraintMatrixTwo = randomList()
answersMatrix = []
constraintOneConstant = random.randrange(LIMIT_CONST_LOWER,LIMIT_CONST_UPPER)
constraintTwoConstant = random.randrange(RANDOM_LOWER_LIMIT,LIMIT_CONST_UPPER)
solution = solveLinearEquation(constraintMatrixOne,constraintOneConstant, constraintMatrixTwo,constraintTwoConstant, [2,4])
if(solution[0] != 0 and solution[1]!= 0 and solution[0] != 100 and solution[1] != 100):
#This is the place where the first matric is added
answersMatrix.extend(constraintMatrixOne)
answersMatrix.append(constraintOneConstant)
#This is the place where the second matric is added
answersMatrix.extend(constraintMatrixTwo)
answersMatrix.append(constraintTwoConstant)
#This is the place where the objective is
OBJ.append(objectiveMatrix)
#This is where the answes are appended
LIST_ANSWER.append(solution)
#Final data is added here for quesitons
LIST_QUESTION.append(answersMatrix)
array_Questions = numpy.array(LIST_QUESTION)
#Create more features
print("---THE NON DENORMALIZED VALUES---")
#poly=PolynomialFeatures (degree=2)
#X_poly = poly.fit_transform(numpy.array(LIST_QUESTION))
np.save ('x_experiment_denormalized.npy' , array_Questions)
np.save ('y_experiment_denormalized.npy', numpy.array(LIST_ANSWER))
print("---THE NON NORMALIZED VALUES---")
#Save Question
array_Questions = zscore(array_Questions)
objective = numpy.array(OBJ)
print(objective.shape)
print(array_Questions.shape)
array_Questions = numpy.hstack((array_Questions,objective))
print(array_Questions)
np.save ('x_experiment.npy' , array_Questions)
np.save ('y_experiment.npy', zscore(numpy.array(LIST_ANSWER)))
MEAN_Y = [numpy.mean(numpy.array(LIST_ANSWER)[:,col]) for col in range(2) ]
STD_Y = [numpy.std(numpy.array(LIST_ANSWER)[:,col]) for col in range(2) ]
print("-MEAND AND STDS - ")
print(MEAN_Y, STD_Y)
print(LIST_QUESTION[20])
print(zscore(LIST_ANSWER[20]))
np.save ('mean.npy' , MEAN_Y)
np.save ('std.npy' , STD_Y)
#printStuffs()
def RNN(x,y, mean, std ):
tensorflow.compat.v1.reset_default_graph ()
model = Sequential()
model.add (Dense (128 , activation='gelu' , input_shape=(None, 8)))
model.add (Dense (64 , activation='gelu'))
model.add (Dense (32 , activation='gelu'))
model.add (Dense (16 , activation='gelu'))
model.add (Dense (8 , activation='gelu'))
#model.add (Dense (4 , activation='gelu'))
model.add (Dense (2 , activation='softmax'))
model.compile (loss='mse' , optimizer='adamax' , metrics=[ 'accuracy' ] , )
plot_model (model , to_file='model.png' , show_shapes=True , show_layer_names=True)
history = model.fit (x ,y , epochs=250 , batch_size=32)
# Plot the training and validation loss over epochs
plt.plot (history.history [ 'loss' ] , label='Training loss')
plt.xlabel ('Epoch')
plt.ylabel ('Loss')
plt.legend ()
plt.show ()
# Assuming you have already trained your model and have the test data
y_pred = model.predict(x)
print()
print("THIS IS THE Y PREDICTION SHAPE AND ACTUAL SHAPE OF THE Y DATA SET ")
print(y_pred.shape)
print(y.shape)
print()
print("-----R2------")
r2 = r2_score(y,y_pred)
print(r2)
print("----")
ans = model.predict(np.reshape(x[0],(-1,1)).T)
print("Answer BY THE MODEL FOR THE FIRST DATA --- ",ans)
print("Real answer normalized --- " , y[0] )
print()
val1 = (ans[ 0 ][ 0 ] * std[0]) + mean[0]
val2 = (ans[ 0 ][ 1 ] * std[1]) + mean[1]
print("Denormalized values that we recieve from the model: " , val1, val2)
val3=(y [ 0 ] [ 0 ] * std [ 0 ]) + mean [ 0 ]
val4=(y [ 0 ] [ 1 ] * std [ 1 ]) + mean [ 1 ]
print("Denormalized values we recieve from the actual answers: " ,val3,val4)
d=numpy.load ('x_experiment_denormalized.npy')
dy=numpy.load ('y_experiment_denormalized.npy')
# (constraintMatrixOne,constraintOneConstant, constraintMatrixTwo,constraintTwoConstant, objectiveMatrix)
countMaxtrixOne=0
countMaxtrixTwo=0
count = 0
print()
print()
print("Testing the ys :")
print(dy.shape)
print(y.shape)
averageLossOnX = 0
averageLossOnY = 0
for row in d :
ans = model.predict (np.reshape (x[count], (-1 , 1)).T)
val1=(ans [ 0 ] [ 0 ] * std [ 0 ]) + mean [ 0 ]
val2=(ans [ 0 ] [ 1 ] * std [ 1 ]) + mean [ 1 ]
# print("Actual answer from MPI : " ,dy[count] )
print()
#print ("Denormalized values that we recieve from the model: " , val1 , val2)
# print("Actual answer from the dbms: " , dy[count])
val3=(y [ count ] [ 0 ] * std [ 0 ]) + mean [ 0 ]
val4=(y [ count ] [ 1 ] * std [ 1 ]) + mean [ 1 ]
#print ("Denormalized values we recieve from the actual answers: " , val3 , val4)
averageLossOnX = averageLossOnX + abs(dy[count] [0] - val1)
averageLossOnY = averageLossOnY + abs(dy[count] [1] - val2)
sum = row [ 0 ] * val1 + row [ 1 ] * val2
if ((sum) <= row [ 2 ]) :
countMaxtrixOne = countMaxtrixOne + 1
sum = row [ 3 ] * val1 + row [ 4 ] * val2
if ((sum) <= row [ 5 ]) :
countMaxtrixTwo = countMaxtrixTwo + 1
count = count + 1
print ()
print ()
print()
print ("This is the number of constraint that matched for 1st constraint: ")
print (countMaxtrixOne , "/" , len(d))
print ("This is the number of constraint that matched for 2nd constraint: ")
print (countMaxtrixTwo , "/" , len(d))
print()
print("On aerage the model is off on x by : " , averageLossOnX/ len(d))
print("On aerage the model is off on y by : " , averageLossOnY/ len(d))
def linear_regression(x,y ):
reg = LinearRegression()
reg.fit(x,y)
print("Result of linear regression" , (reg.predict(numpy.array(np.reshape(x[0],(-1,1)).T))))
print(y[0])
#print (c ([ 2 , 1 ] , 20 [ 2 , 3 ] , 50 , [ 1 , 2 ]))
def main():
data_mining()
#Doing some lable work to plot some variables
name = numpy.array([0,1, 2,3,4])
x = numpy.load('x_experiment.npy')
numpy.insert(x,0,name)
y = numpy.load('y_experiment.npy')
name = [5 , 6]
numpy.insert(y,0,name)
sns.pairplot (data=pandas.DataFrame (numpy.concatenate ((x , y) , axis=1)) , x_vars=[ 0 , 1 , 2 , 3 , 4 ] , y_vars=[ 5 , 6 ])
plt.show ()
print(numpy.shape(x),numpy.shape(y))
MEAN_Y = numpy.load ('mean.npy')
STD_Y =numpy.load ('std.npy')
print(len(x))
#We print mean here
print("Mean and Stds: ")
print(MEAN_Y[0],MEAN_Y[1])
print(STD_Y[0],STD_Y[1])
print()
RNN(x,y, MEAN_Y , STD_Y)
# def solveLinearEquation(constraintMatrixOne , constraintOneConstant , constraintMatrixTwo , constraintTwoConstant , objectiveMatrix) :
#([ [ 2 ] , [ 1 ] , [ 20 ] , [ 2 ] , [ 3 ] , [ 50 ] , [ 2 ] , [ 1 ] ])
print(solveLinearEquation([2,1],20 ,[3,3], 50, [2,1]))
main()