-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy pathfamdb_classes.py
1144 lines (983 loc) · 42.4 KB
/
famdb_classes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import datetime
import time
import os
import json
import sys
import h5py
import numpy
from famdb_helper_classes import Family, Lineage
from famdb_globals import (
LOGGER,
FILE_VERSION,
GENERATOR_VERSION,
LEAF_LINK,
ROOT_LINK,
GROUP_FAMILIES,
GROUP_LOOKUP_BYNAME,
GROUP_LOOKUP_BYSTAGE,
GROUP_NODES,
GROUP_TAXANAMES,
MISSING_FILE,
HELP_URL,
COPYRIGHT_TEXT,
)
from famdb_helper_methods import (
sanitize_name,
sounds_like,
families_iterator,
filter_curated,
filter_repeat_type,
filter_search_stages,
filter_name,
get_family,
accession_bin,
gen_min_data,
gen_min_map,
)
class FamDBLeaf:
"""Transposable Element Family and taxonomy database."""
dtype_str = h5py.special_dtype(vlen=str)
def __init__(self, filename, mode="r"):
if mode == "r":
reading = True
# If we definitely will not be writing to the file, optimistically assume
# nobody else is writing to it and disable file locking. File locking can
# be a bit flaky, especially on NFS, and is unnecessary unless there is
# a parallel writer (which is unlikely for famdb files).
os.environ["HDF5_USE_FILE_LOCKING"] = "FALSE"
elif mode == "r+":
reading = True
elif mode == "w":
reading = False
else:
raise ValueError(
"Invalid file mode. Expected 'r' or 'r+' or 'w', got '{}'".format(mode)
)
self.filename = filename
# if filename == "min_init":
# # Create an in-memory HDF5 file
# self.file = h5py.File(filename, "w", driver="core", backing_store=False)
# self.added = {"consensus": 0, "hmm": 0}
# self.__write_metadata()
# else:
# self.file = h5py.File(filename, mode)
self.file = h5py.File(filename, mode)
self.mode = mode
try:
if reading and self.file.attrs["version"] != FILE_VERSION:
raise Exception(
"File version is {}, but this is version {}".format(
self.file.attrs["version"],
FILE_VERSION,
)
)
except:
# This 'except' catches both "version" missing from attrs, or the
# value not matching if it is present.
raise Exception("This file cannot be read by this version of famdb.py.")
if self.mode == "w":
self.seen = {}
self.added = {"consensus": 0, "hmm": 0}
self.__write_metadata()
elif self.mode == "r+":
self.added = self.get_counts()
# Export Setters ----------------------------------------------------------------------------------------------------
def set_partition_info(self, partition_num):
"""Sets partition number (key to file info) and bool if is root file or not"""
self.file.attrs["partition_num"] = partition_num
self.file.attrs["root"] = partition_num == "0" or partition_num == 0
def set_file_info(self, map_str):
"""Stores information about other files as json string"""
self.file.attrs["file_info"] = json.dumps(map_str)
def set_db_info(self, name, version, date, desc, copyright_text):
"""Sets database metadata for the current file"""
self.file.attrs["db_name"] = name
self.file.attrs["db_version"] = version
self.file.attrs["db_date"] = date
self.file.attrs["db_description"] = desc
self.file.attrs["db_copyright"] = copyright_text
def __write_metadata(self):
"""Sets file data during writing"""
self.file.attrs["generator"] = f"famdb.py v{GENERATOR_VERSION}"
self.file.attrs["version"] = FILE_VERSION
self.file.attrs["created"] = str(datetime.datetime.now())
def finalize(self):
"""Writes some collected metadata, such as counts, to the database"""
self.file.attrs["count_consensus"] = self.added["consensus"]
self.file.attrs["count_hmm"] = self.added["hmm"]
# Attribute Getters -----------------------------------------------------------------------------------------------
def get_partition_num(self):
"""Partition num is used as the key in file_info"""
return self.file.attrs["partition_num"]
def get_file_info(self):
"""returns dictionary containing information regarding other related files"""
return json.loads(self.file.attrs["file_info"])
def is_root(self):
"""Tests if file is root file"""
return self.file.attrs["root"]
def get_db_info(self):
"""
Gets database database metadata for the current file as a dict with keys
'name', 'version', 'date', 'description', 'copyright'
"""
if "db_name" not in self.file.attrs:
return None
return {
"name": self.file.attrs["db_name"],
"version": self.file.attrs["db_version"],
"date": self.file.attrs["db_date"],
"description": self.file.attrs["db_description"],
"copyright": self.file.attrs["db_copyright"],
}
def get_metadata(self):
"""
Gets file metadata for the current file as a dict with keys
'generator', 'version', 'created', 'partition_name', 'partition_detail'
"""
num = self.file.attrs["partition_num"]
partition = self.get_file_info()["file_map"][str(num)]
return {
"generator": self.file.attrs["generator"],
"version": self.file.attrs["version"],
"created": self.file.attrs["created"],
"partition_name": partition["T_root_name"],
"partition_detail": ", ".join(partition["F_roots_names"]),
}
def get_counts(self):
"""
Gets counts of entries in the current file as a dict
with 'consensus', 'hmm'
"""
return {
"consensus": self.file.attrs["count_consensus"],
"hmm": self.file.attrs["count_hmm"],
}
# File Utils
def close(self):
"""Closes this FamDB instance, making further use invalid."""
self.file.close()
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
self.close()
# Data Writing Methods ---------------------------------------------------------------------------------------------
# Family Methods
def __check_unique(self, family):
"""Verifies that 'family' is uniquely identified by its value of 'key'."""
# TODO: This is awkward. The EMBL files being appended may only have an
# "accession", but that accession may match the *name* of a family
# already in Dfam. The accession may also match a family already in
# Dfam, but with a "v" added.
# check by accession first
accession = family.accession
binned_acc = accession_bin(accession)
binned_v = accession_bin(accession + "v")
if self.file.get(f"{binned_acc}/{accession}") or self.file.get(
f"{binned_v}/{accession}v"
):
return False
# check for unique name
# if family.name:
# name_lookup = f"{GROUP_LOOKUP_BYNAME}/{family.name}"
# if self.file.get(name_lookup) or self.file.get(name_lookup + 'v'):
# return False
if self.file.get(f"{GROUP_LOOKUP_BYNAME}/{accession}") or self.file.get(
f"{GROUP_LOOKUP_BYNAME}/{accession}v"
):
return False
return True
def add_family(self, family):
"""Adds the family described by 'family' to the database."""
# Verify uniqueness of name and accession.
# This is important because of the links created to them later.
if not self.__check_unique(family):
raise Exception(
f"Family is not unique! Already seen {family.accession} {f'({family.name})' if family.name else ''}"
)
# Increment counts
if family.consensus:
self.added["consensus"] += 1
if family.model:
self.added["hmm"] += 1
# Create the family data
# In v0.5 we bin the datasets into subgroups to improve performance
group_path = accession_bin(family.accession)
dset = self.file.require_group(group_path).create_dataset(
family.accession, (0,)
)
# Set the family attributes
for k in Family.META_LOOKUP:
value = getattr(family, k)
if value:
dset.attrs[k] = value
# Create links
fam_link = f"/{group_path}/{family.accession}"
if family.name:
self.file.require_group(GROUP_LOOKUP_BYNAME)[str(family.name)] = (
h5py.SoftLink(fam_link)
)
# In FamDB format version 0.5 we removed the /Families/ByAccession group as it's redundant
# (all the data is in Families/<datasets> *and* HDF5 suffers from poor performance when
# the number of entries in a group exceeds 200-500k.
for clade_id in family.clades:
clade = str(clade_id)
nodes = self.file[GROUP_NODES]
if clade in nodes:
families_group = nodes[clade].require_group("Families")
families_group[family.accession] = h5py.SoftLink(fam_link)
def add_stage_link(stage, accession):
stage_group = self.file.require_group(GROUP_LOOKUP_BYSTAGE).require_group(
stage.strip()
)
if accession not in stage_group:
stage_group[accession] = h5py.SoftLink(fam_link)
if family.search_stages:
for stage in family.search_stages.split(","):
add_stage_link(stage, family.accession)
if family.buffer_stages:
for stage in family.buffer_stages.split(","):
stage = stage.split("[")[0]
add_stage_link(stage, family.accession)
LOGGER.debug("Added family %s (%s)", family.name, family.accession)
# Taxonomy Nodes
def write_taxonomy(self, tax_db, nodes):
"""Writes taxonomy nodes in 'nodes' to the database."""
LOGGER.info("Writing taxonomy nodes")
start = time.perf_counter()
count = 0
for node in nodes:
count += 1
group = self.file.require_group(GROUP_NODES).require_group(
str(tax_db[node].tax_id)
)
parent_id = int(tax_db[node].parent_id) if node != 1 else None
if parent_id:
group.create_dataset("Parent", data=numpy.array([parent_id]))
child_ids = []
for child in tax_db[node].children:
child_ids += [int(child.tax_id)]
group.create_dataset("Children", data=numpy.array(child_ids))
delta = time.perf_counter() - start
LOGGER.info("Wrote %d taxonomy nodes in %f", count, delta)
# Data Access Methods ------------------------------------------------------------------------------------------------
def has_taxon(self, tax_id):
"""Returns True if 'self' has a taxonomy entry for 'tax_id'"""
return str(tax_id) in self.file[GROUP_NODES]
def get_families_for_taxon(self, tax_id, curated_only=False, uncurated_only=False):
"""Returns a list of the accessions for each family directly associated with 'tax_id'."""
group = (
self.file[GROUP_NODES][str(tax_id)].get("Families")
if f"{GROUP_NODES}/{tax_id}/Families" in self.file
else {}
)
# Filter out DF/DR or not at all depending on flags
if curated_only:
# return list(filter(lambda x: (x[1] == "F"), group.keys()))
return list(filter(lambda x: filter_curated(x,True), group.keys()))
elif uncurated_only:
# return list(filter(lambda x: (x[1] == "R"), group.keys()))
return list(filter(lambda x: filter_curated(x,False), group.keys()))
else:
return list(group.keys())
def get_lineage(self, tax_id, **kwargs):
"""
Returns the lineage of 'tax_id'. Recognized kwargs: 'descendants' to include
descendant taxa, 'ancestors' to include ancestor taxa.
IDs are returned as a nested list, for example
[ 1, [ 2, [3, [4]], [5], [6, [7]] ] ]
where '2' may have been the passed-in 'tax_id'.
Where a lineage crosses between files, a string indicator is used instead of
the int tax_id. The indicator takes the form "FLAG:tax_id", and the FamDB
class uses the FLAG to determine what type of link is indicated, and the tax_id
to continue building the lineage in a different file. The Lineage class uses
the indicators to stitch serialized lineage trees together to form the final
lineage.
"""
group_nodes = self.file[GROUP_NODES]
ancestors = True if kwargs.get("ancestors") else False
descendants = True if kwargs.get("descendants") else False
root = self.is_root()
if descendants:
def descendants_of(tax_id):
descendants = [
int(tax_id)
] # h5py is based on numpy, need to cast numpy base64 to python int for serialization in Lineage class
for child in group_nodes[str(tax_id)]["Children"]:
# only list the decendants of the target node if it's not being combined with another decendant lineage
if not kwargs.get("for_combine") and str(child) in group_nodes:
descendants += [descendants_of(child)]
elif root:
descendants += [f"{LEAF_LINK}{child}"]
return descendants
tree = descendants_of(tax_id)
else:
tree = [tax_id]
if ancestors:
while tax_id:
node = group_nodes[str(tax_id)]
if "Parent" in node:
# test if parent is in this file
if str(node["Parent"][0]) in group_nodes:
tax_id = node["Parent"][0]
tree = [
int(tax_id),
tree,
] # h5py is based on numpy, need to cast numpy base64 to python int for serialization in Lineage class
else:
tree = [f"{ROOT_LINK}{tax_id}", tree]
tax_id = None
else:
tax_id = None
lineage = Lineage(tree, root, self.get_partition_num())
return lineage
def filter_stages(self, accession, stages):
"""Returns True if the family belongs to a search or buffer stage in 'stages'."""
for stage in stages:
grp = self.file[GROUP_LOOKUP_BYSTAGE].get(stage)
if grp and accession in grp:
return True
return False
# Family Getters --------------------------------------------------------------------------
def get_family_names(self): # TODO unused
"""Returns a list of names of families in the database."""
return sorted(self.file[GROUP_LOOKUP_BYNAME].keys(), key=str.lower)
def get_family_by_accession(self, accession):
"""Returns the family with the given accession."""
path = accession_bin(accession)
if path in self.file:
entry = self.file[path].get(accession)
return get_family(entry)
return None
def get_family_by_name(self, name):
"""Returns the family with the given name."""
# TODO: This will also suffer the performance issues seen with
# other groups that exceed 200-500k entries in a single group
# at some point. This needs to be refactored to scale appropriately.
entry = self.file[GROUP_LOOKUP_BYNAME].get(name)
return get_family(entry)
class FamDBRoot(FamDBLeaf):
def __init__(self, filename, mode="r"):
super(FamDBRoot, self).__init__(filename, mode)
# if filename == "min_init":
# tax_db, partition_nodes, min_map, dum_fams = gen_min_data()
# self.write_taxa_names(tax_db, partition_nodes)
# self.set_partition_info(0)
# self.set_file_info(min_map)
# self.set_db_info(
# "Minimal Dfam",
# "min_init",
# self.file.attrs["created"],
# "A minimal instantiation of Dfam, comprising only the root taxon node and contaminate sequences",
# COPYRIGHT_TEXT,
# )
# self.write_taxonomy(tax_db, [1])
# for fam in dum_fams:
# self.add_family(fam)
# self.finalize()
if mode == "r" or mode == "r+":
self.names_dump = {
partition: json.loads(
self.file[f"{GROUP_TAXANAMES}/{partition}"]["TaxaNames"][0]
)
for partition in self.file[GROUP_TAXANAMES]
}
self.file_info = self.get_file_info()
self.__lineage_cache = {}
def write_taxa_names(self, tax_db, nodes):
"""
Writes Names -> taxa maps per partition
"""
LOGGER.info("Writing TaxaNames")
for partition in nodes:
taxnames_group = self.file.require_group(GROUP_TAXANAMES + f"/{partition}")
names_dump = {}
for node in nodes[partition]:
names_dump[node] = tax_db[node].names
names_data = numpy.array([json.dumps(names_dump)])
names_dset = taxnames_group.create_dataset(
"TaxaNames", shape=names_data.shape, dtype=FamDBLeaf.dtype_str
)
names_dset[:] = names_data
def get_taxon_names(self, tax_id):
"""
Checks names_dump for each partition and returns a list of [name_class, name_value, partition]
of the taxon given by 'tax_id'.
"""
for partition in self.names_dump:
names = self.names_dump[partition].get(str(tax_id))
if names:
return names
return []
def get_taxon_name(self, tax_id, kind="scientific name"):
"""
Checks names_dump for each partition and returns eturns the first name of the given 'kind'
for the taxon given by 'tax_id', or None if no such name was found.
"""
for partition in self.names_dump:
names = self.names_dump[partition].get(str(tax_id))
if names is not None:
for name in names:
if name[0] == kind:
return [name[1], int(partition)]
return "Not Found", "N/A"
def search_taxon_names(self, text, kind=None, search_similar=False):
"""
Searches 'self' for taxons with a name containing 'text', returning an
iterator that yields a tuple of (id, is_exact, partition) for each matching node.
Each id is returned at most once, and if any of its names are an exact
match the whole node is treated as an exact match.
If 'similar' is True, names that sound similar will also be considered
eligible.
A list of strings may be passed as 'kind' to restrict what kinds of
names will be searched.
"""
text = text.lower()
for partition in self.names_dump:
for tax_id, names in self.names_dump[partition].items():
matches = False
exact = False
for name_cls, name_txt in names:
name_txt = name_txt.lower()
if kind is None or kind == name_cls:
if text == name_txt:
matches = True
exact = True
elif name_txt.startswith(text + " <"):
matches = True
exact = True
elif text == sanitize_name(name_txt):
matches = True
exact = True
elif text in name_txt:
matches = True
elif search_similar and sounds_like(text, name_txt):
matches = True
if matches:
yield [int(tax_id), exact, int(partition)]
def resolve_species(self, term, kind=None, search_similar=False):
"""
Resolves 'term' as a species or clade in 'self'. If 'term' is a number,
it is a taxon id. Otherwise, it will be searched for in 'self' in the
name fields of all taxa. A list of strings may be passed as 'kind' to
restrict what kinds of names will be searched.
If 'search_similar' is True, a "sounds like" search will be tried
first. If it is False, a "sounds like" search will still be performed
if no results were found.
This function returns a list of tuples (taxon_id, is_exact) that match
the query. The list will be empty if no matches were found.
"""
# Try as a number
try:
tax_id = int(term)
for partition in self.names_dump:
if str(tax_id) in self.names_dump[partition]:
return [[tax_id, int(partition), True]]
return []
except ValueError:
pass
# Perform a search by name, splitting between exact and inexact matches for sorting
exact = []
inexact = []
for tax_id, is_exact, partition in self.search_taxon_names(
term, kind, search_similar
):
hit = [tax_id, partition]
if is_exact:
exact += [hit]
else:
inexact += [hit]
# Combine back into one list, with exact matches first
results = [[*hit, True] for hit in exact]
for hit in inexact:
results += [[*hit, False]]
if len(results) == 0 and not search_similar:
# Try a sounds-like search (currently soundex)
similar_results = self.resolve_species(term, kind, True)
if similar_results:
print(
"No results were found for that name, but some names sound similar:",
file=sys.stderr,
)
for tax_id, _ in similar_results:
names = self.get_taxon_names(tax_id)
print(
tax_id,
", ".join(["{1}".format(*n) for n in names]),
file=sys.stderr,
)
return results
def resolve_one_species(self, term, kind=None):
"""
Resolves 'term' in 'dbfile' as a taxon id or search term unambiguously.
Parameters are as in the 'resolve_species' method.
Returns None if not exactly one result is found,
and prints details to the screen.
"""
results = self.resolve_species(term, kind)
# Check for a single exact match first, to any field
exact_matches = []
for result in results: # result -> [tax_id, partition, exact]
if result[2]:
exact_matches += [[result[0], result[1]]]
if len(exact_matches) == 1:
return exact_matches[0]
if len(results) == 1:
return results[0][:2]
elif len(results) > 1:
print(
f"""Ambiguous search term '{term}' (found {len(results)} results, {len(exact_matches)} exact).
Please use a more specific name or taxa ID, which can be looked
up with the 'names' command.""",
file=sys.stderr,
)
return "Ambiguous", "Ambiguous"
return None, None
def get_sanitized_name(self, tax_id):
"""
Returns the "sanitized name" of tax_id, which is the sanitized version
of the scientific name.
"""
name = self.get_taxon_name(tax_id, "scientific name")
if name:
name = sanitize_name(name[0])
return name
def get_lineage_path(self, tax_id, tree=[], cache=True, partition=True):
"""
Returns a list of strings encoding the lineage for 'tax_id'.
"""
if cache and tax_id in self.__lineage_cache:
return self.__lineage_cache[tax_id]
if not tree:
tree = self.get_lineage(tax_id, ancestors=True)
lineage = []
while tree:
node = tree[0]
if len(tree) > 1:
found = False
for t in tree[1:]:
if type(t) == list:
tree = t
found = True
break
if not found:
tree = None
else:
tree = None
tax_name = self.get_taxon_name(node, "scientific name")
if not partition:
tax_name = tax_name[0]
lineage += [tax_name]
if cache:
self.__lineage_cache[tax_id] = lineage
return lineage
def find_taxon(self, tax_id):
"""
Returns the partition number containing the taxon
"""
for partition in self.names_dump:
if str(tax_id) in self.names_dump[partition]:
return int(partition)
return None
def parent_of(self, tax_id):
group_nodes = self.file[GROUP_NODES]
for node in group_nodes:
if int(tax_id) in group_nodes[node]["Children"]:
return node
return None
def get_all_taxa_names(self):
taxa = set()
for partition in self.names_dump:
for key in self.names_dump[partition].keys():
taxa.add(key)
sanitized_dict = {}
for taxon in taxa:
sanitized_dict[
self.get_taxon_name(taxon, kind="sanitized scientific name")[0].lower()
] = taxon
sanitized_dict[
self.get_taxon_name(taxon, kind="sanitized synonym")[0].lower()
] = taxon
return sanitized_dict
class FamDB:
def __init__(self, db_dir, mode, min=False):
# if min:
# FamDB.min_init(self)
# else:
# FamDB.full_init(self, db_dir, mode)
# def min_init(self):
# """
# Initialize a single taxon (root) with a fixed set of sequences
# """
# self.files = {}
# self.files[0] = FamDBRoot("min_init", "r")
# self.db_dir = "min_init"
# self.file_map = gen_min_map()["file_map"]
# self.uuid = "min_init"
# self.db_version = "min_init"
# self.db_date = time.ctime(time.time())
# def full_init(self, db_dir, mode):
"""
Initialize from a directory containing a *partitioned* famdb dataset
"""
self.files = {}
## First, identify if there are any root partitions of a partitioned
## famdb in this directory:
# A partioned famdb file is named *.#.h5 where
# the number represents the partition number and
# at a minimum partitition 0 must be present.
db_prefixes = {}
h5_files = []
for file in os.listdir(db_dir):
if file.endswith(".h5"):
h5_files += [file]
if file.endswith(".0.h5"):
db_prefixes[file[:-5]] = 1
# Make sure we only have at least one database present
if len(db_prefixes) == 0:
if h5_files:
LOGGER.error(
"A partitioned famdb database is not present in "
+ db_dir
+ "\n"
+ "There were several *.h5 files present. However, they do not appear\n"
+ "to be in the correct format: "
+ "\n".join(h5_files)
+ "\n"
)
else:
LOGGER.error("A partitioned famdb database is not present in " + db_dir)
exit(1)
# Make sure we have *only* one database present
if len(db_prefixes) > 1:
LOGGER.error(
"Multiple famdb root partitions were found in this export directory: "
+ ", ".join(db_prefixes.keys())
+ "\nEach famdb database "
+ "should be in separate folders."
)
exit(1)
# Tabulate all partitions for db_prefix
db_prefix = list(db_prefixes.keys())[0]
for file in h5_files:
if db_prefix in file:
fields = file.split(".")
idx = int(fields[-2])
if idx == 0:
self.files[idx] = FamDBRoot(f"{db_dir}/{file}", mode)
else:
self.files[idx] = FamDBLeaf(f"{db_dir}/{file}", mode)
file_info = self.files[0].get_file_info()
self.db_dir = db_dir
self.file_map = file_info["file_map"]
self.uuid = file_info["meta"]["partition_id"]
self.db_version = file_info["meta"]["db_version"]
self.db_date = file_info["meta"]["db_date"]
err_files = []
for file in self.files:
meta = self.files[file].get_file_info()["meta"]
if (
self.uuid != meta["partition_id"]
or self.db_version != meta["db_version"]
or self.db_date != meta["db_date"]
):
err_files += [file]
if err_files:
LOGGER.error(f"Files From Different Partitioning Runs: {err_files}")
exit()
def get_lineage_combined(self, tax_id, **kwargs):
# check if tax_id exists in Dfam
location = self.find_taxon(tax_id)
if location is None:
print("Taxon Not Found In Dfam")
return None
if location not in self.files:
print(MISSING_FILE % (location, self.db_dir, HELP_URL))
return None
# query lineage in correct file
base_lineage = self.files[location].get_lineage(tax_id, **kwargs)
if base_lineage.descendants: # lineage extends from root file to leaf file(s)
add_lineages = []
missing = {}
for taxa in base_lineage.links[LEAF_LINK].values():
# find location of each linked node
loc = self.find_taxon(taxa)
if loc and loc in self.files:
# query and save subtree if file is installed
add_lineages += [
self.files[loc].get_lineage(
taxa, descendants=True, ancestors=True
)
]
elif loc and loc not in self.files:
# if file is not found, return Lineage of 1 node, record that node is missing
add_lineages += [
Lineage([f"{ROOT_LINK}{taxa}", [int(taxa)]], False, loc)
]
missing[taxa] = loc
# Combine lineages
for lin in add_lineages:
base_lineage += lin
# attach missing file info
base_lineage.missing = missing
if base_lineage.ancestors: # lineage extends from leaf file to root file
# find ancestor node in root and query lineage
ancestor_node = self.files[0].parent_of(
list(base_lineage.links[ROOT_LINK].keys())[0]
) # TODO this is probably really slow
root_lineage = self.files[0].get_lineage(
ancestor_node, descendants=True, ancestors=True, for_combine=True
)
base_lineage += root_lineage
# strip out leftover links
def remove_links(lineage):
for thing in list(lineage):
if not thing or type(thing) == str:
lineage.remove(thing)
if type(thing) == list:
remove_links(thing)
if kwargs.get("remove_links") or base_lineage.descendants:
remove_links(base_lineage)
return base_lineage
def show_files(self):
# repbase_file = "./partitions/RMRB_spec_to_tax.json" TODO
print(f"\nPartition Details\n-----------------")
for part in sorted([int(x) for x in self.file_map]):
part_str = str(part)
partition_name = self.file_map[part_str]["T_root_name"]
partition_detail = ", ".join(self.file_map[part_str]["F_roots_names"])
filename = self.file_map[part_str]["filename"]
if part in self.files:
print(
f" Partition {part} [{filename}]: {partition_name} {f'- {partition_detail}' if partition_detail else ''}"
)
counts = self.files[part].get_counts()
print(f" Consensi: {counts['consensus']}, HMMs: {counts['hmm']}")
else:
print(
f" Partition {part} [ Absent ]: {partition_name} {f'- {partition_detail}' if partition_detail else ''}"
)
print()
def assemble_filters(self, **kwargs):
"""Define family filters (logically ANDed together)"""
filters = []
if kwargs.get("curated_only"):
filters += [lambda a, f: filter_curated(a, True)]
if kwargs.get("uncurated_only"):
filters += [lambda a, f: filter_curated(a, False)]
filter_stage = kwargs.get("stage")
stages = []
if filter_stage:
if filter_stage == 80:
# "stage 80" = "all stages", so skip filtering
pass
elif filter_stage == 95:
# "stage 95" = this specific stage list:
stages = ["35", "50", "55", "60", "65", "70", "75"]
filters += [lambda a, f: self.filter_stages(a, stages)]
else:
stages = [str(filter_stage)]
filters += [lambda a, f: self.filter_stages(a, stages)]
# HMM only: add a search stage filter to "un-list" families that were
# allowed through only because they match in buffer stage
if kwargs.get("is_hmm") and stages:
filters += [lambda a, f: filter_search_stages(f(), stages)]
repeat_type = kwargs.get("repeat_type")
if repeat_type:
repeat_type = repeat_type.lower()
filters += [lambda a, f: filter_repeat_type(f(), repeat_type)]
name = kwargs.get("name")
if name:
name = name.lower()
filters += [lambda a, f: filter_name(f(), name)]
return filters, stages, repeat_type, name
def get_accessions_filtered(self, **kwargs):
"""
Returns an iterator that yields accessions for the given search terms.
Filters are specified in kwargs:
tax_id: int
ancestors: boolean, default False
descendants: boolean, default False
If none of (tax_id, ancestors, descendants) are
specified, *all* families will be checked.
curated_only = boolean
uncurated_only = boolean
stage = int
is_hmm = boolean
repeat_type = string (prefix)
name = string (prefix)
If any of stage, repeat_type, or name are
omitted (or None), they will not be used to filter.
The behavior of 'stage' depends on 'is_hmm': if is_hmm is True,
stage must match in SearchStages (a match in BufferStages is not
enough).
"""
if not ("tax_id" in kwargs or "ancestors" in kwargs or "descendants" in kwargs):
tax_id = 1
ancestors = True
descendants = True
else:
tax_id = kwargs["tax_id"]
ancestors = kwargs.get("ancestors") or False
descendants = kwargs.get("descendants") or False
filters, stages, repeat_type, name_filter = self.assemble_filters(**kwargs)
# Recursive iterator flattener
def walk_tree(tree):
"""Returns all elements in 'tree' with all levels flattened."""
if hasattr(tree, "__iter__"):
for elem in tree:
yield from walk_tree(elem)
else:
yield tree
seen = set()
def iterate_accs():
# special case: Searching the whole database in a specific
# stage only is a common usage pattern in RepeatMasker.
# When searching the whole database instead of a species,
# the number of accessions to read through is shorter
# when going off of only the stage indexes.
files = self.files
if (
tax_id == 1
and descendants
and stages
and not repeat_type
and not name_filter
):
for stage in stages:
for file in files:
by_stage = files[file].file.get(GROUP_LOOKUP_BYSTAGE)
if by_stage:
grp = by_stage.get(stage)
if grp:
yield from grp.keys()
# special case: Searching the whole database, going directly via
# Families/ is faster than repeatedly traversing the tree
elif tax_id == 1 and descendants:
# yield from self.file[FamDBLeaf.GROUP_LOOKUP_BYACC].keys() # TODO unused
for file in files:
names = families_iterator(
files[file].file[GROUP_FAMILIES], "Families"
)
for name in names:
yield name
else: