forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjacobi_iteration_method.py
203 lines (162 loc) · 6.52 KB
/
jacobi_iteration_method.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
"""
Jacobi Iteration Method - https://en.wikipedia.org/wiki/Jacobi_method
"""
from __future__ import annotations
import numpy as np
from numpy import float64
from numpy.typing import NDArray
# Method to find solution of system of linear equations
def jacobi_iteration_method(
coefficient_matrix: NDArray[float64],
constant_matrix: NDArray[float64],
init_val: list[float],
iterations: int,
) -> list[float]:
"""
Jacobi Iteration Method:
An iterative algorithm to determine the solutions of strictly diagonally dominant
system of linear equations
4x1 + x2 + x3 = 2
x1 + 5x2 + 2x3 = -6
x1 + 2x2 + 4x3 = -4
x_init = [0.5, -0.5 , -0.5]
Examples:
>>> coefficient = np.array([[4, 1, 1], [1, 5, 2], [1, 2, 4]])
>>> constant = np.array([[2], [-6], [-4]])
>>> init_val = [0.5, -0.5, -0.5]
>>> iterations = 3
>>> jacobi_iteration_method(coefficient, constant, init_val, iterations)
[0.909375, -1.14375, -0.7484375]
>>> coefficient = np.array([[4, 1, 1], [1, 5, 2]])
>>> constant = np.array([[2], [-6], [-4]])
>>> init_val = [0.5, -0.5, -0.5]
>>> iterations = 3
>>> jacobi_iteration_method(coefficient, constant, init_val, iterations)
Traceback (most recent call last):
...
ValueError: Coefficient matrix dimensions must be nxn but received 2x3
>>> coefficient = np.array([[4, 1, 1], [1, 5, 2], [1, 2, 4]])
>>> constant = np.array([[2], [-6]])
>>> init_val = [0.5, -0.5, -0.5]
>>> iterations = 3
>>> jacobi_iteration_method(
... coefficient, constant, init_val, iterations
... ) # doctest: +NORMALIZE_WHITESPACE
Traceback (most recent call last):
...
ValueError: Coefficient and constant matrices dimensions must be nxn and nx1 but
received 3x3 and 2x1
>>> coefficient = np.array([[4, 1, 1], [1, 5, 2], [1, 2, 4]])
>>> constant = np.array([[2], [-6], [-4]])
>>> init_val = [0.5, -0.5]
>>> iterations = 3
>>> jacobi_iteration_method(
... coefficient, constant, init_val, iterations
... ) # doctest: +NORMALIZE_WHITESPACE
Traceback (most recent call last):
...
ValueError: Number of initial values must be equal to number of rows in coefficient
matrix but received 2 and 3
>>> coefficient = np.array([[4, 1, 1], [1, 5, 2], [1, 2, 4]])
>>> constant = np.array([[2], [-6], [-4]])
>>> init_val = [0.5, -0.5, -0.5]
>>> iterations = 0
>>> jacobi_iteration_method(coefficient, constant, init_val, iterations)
Traceback (most recent call last):
...
ValueError: Iterations must be at least 1
"""
rows1, cols1 = coefficient_matrix.shape
rows2, cols2 = constant_matrix.shape
if rows1 != cols1:
msg = f"Coefficient matrix dimensions must be nxn but received {rows1}x{cols1}"
raise ValueError(msg)
if cols2 != 1:
msg = f"Constant matrix must be nx1 but received {rows2}x{cols2}"
raise ValueError(msg)
if rows1 != rows2:
msg = (
"Coefficient and constant matrices dimensions must be nxn and nx1 but "
f"received {rows1}x{cols1} and {rows2}x{cols2}"
)
raise ValueError(msg)
if len(init_val) != rows1:
msg = (
"Number of initial values must be equal to number of rows in coefficient "
f"matrix but received {len(init_val)} and {rows1}"
)
raise ValueError(msg)
if iterations <= 0:
raise ValueError("Iterations must be at least 1")
table: NDArray[float64] = np.concatenate(
(coefficient_matrix, constant_matrix), axis=1
)
rows, cols = table.shape
strictly_diagonally_dominant(table)
"""
# Iterates the whole matrix for given number of times
for _ in range(iterations):
new_val = []
for row in range(rows):
temp = 0
for col in range(cols):
if col == row:
denom = table[row][col]
elif col == cols - 1:
val = table[row][col]
else:
temp += (-1) * table[row][col] * init_val[col]
temp = (temp + val) / denom
new_val.append(temp)
init_val = new_val
"""
# denominator - a list of values along the diagonal
denominator = np.diag(coefficient_matrix)
# val_last - values of the last column of the table array
val_last = table[:, -1]
# masks - boolean mask of all strings without diagonal
# elements array coefficient_matrix
masks = ~np.eye(coefficient_matrix.shape[0], dtype=bool)
# no_diagonals - coefficient_matrix array values without diagonal elements
no_diagonals = coefficient_matrix[masks].reshape(-1, rows - 1)
# Here we get 'i_col' - these are the column numbers, for each row
# without diagonal elements, except for the last column.
i_row, i_col = np.where(masks)
ind = i_col.reshape(-1, rows - 1)
#'i_col' is converted to a two-dimensional list 'ind', which will be
# used to make selections from 'init_val' ('arr' array see below).
# Iterates the whole matrix for given number of times
for _ in range(iterations):
arr = np.take(init_val, ind)
sum_product_rows = np.sum((-1) * no_diagonals * arr, axis=1)
new_val = (sum_product_rows + val_last) / denominator
init_val = new_val
return new_val.tolist()
# Checks if the given matrix is strictly diagonally dominant
def strictly_diagonally_dominant(table: NDArray[float64]) -> bool:
"""
>>> table = np.array([[4, 1, 1, 2], [1, 5, 2, -6], [1, 2, 4, -4]])
>>> strictly_diagonally_dominant(table)
True
>>> table = np.array([[4, 1, 1, 2], [1, 5, 2, -6], [1, 2, 3, -4]])
>>> strictly_diagonally_dominant(table)
Traceback (most recent call last):
...
ValueError: Coefficient matrix is not strictly diagonally dominant
"""
rows, cols = table.shape
is_diagonally_dominant = True
for i in range(rows):
total = 0
for j in range(cols - 1):
if i == j:
continue
else:
total += table[i][j]
if table[i][i] <= total:
raise ValueError("Coefficient matrix is not strictly diagonally dominant")
return is_diagonally_dominant
# Test Cases
if __name__ == "__main__":
import doctest
doctest.testmod()