-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscript-compiled.py
198 lines (152 loc) · 7.71 KB
/
script-compiled.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
#!/usr/bin/env python3
import pandas as pd
import time
import datetime
# Switch off some warning
pd.options.mode.chained_assignment = None
# Print datetime for logging purpose
now = datetime.datetime.now()
print('['+str(now)+']')
start = time.time()
### Google Mobility Data ### ========================================================================
# Read google data
google = pd.read_csv("https://storage.googleapis.com/covid19-open-data/v3/mobility.csv")
# Filter to rows containing "Malaysia" country, removing 'Total' values
malaysia = google.loc[google.location_key.str.contains('^MY_[0-9]+$', na=False)]
# Clean up "state" data
state_code = {
'MY_01':'Johor',
'MY_02':'Kedah',
'MY_03':'Kelantan',
'MY_04':'Melaka',
'MY_05':'Negeri Sembilan',
'MY_06':'Pahang',
'MY_07':'Penang',
'MY_08':'Perak',
'MY_09':'Perlis',
'MY_10':'Selangor',
'MY_11':'Terengganu',
'MY_12':'Sabah',
'MY_13':'Sarawak',
'MY_14':'Kuala Lumpur',
'MY_15':'Labuan',
'MY_16':'Putrajaya'
}
malaysia.location_key.replace(state_code, inplace=True)
# Rename columns
malaysia.columns = ['date', 'state', 'retail and recreation', 'grocery and pharmacy', 'parks', 'transit stations', 'workplaces', 'residential']
# Export csv
malaysia.to_csv("./data/google-mobility-data-malaysia.csv", index=False)
print("Google data exported. Elapsed time: "+str(time.time()-start), flush = True)
start = time.time()
### Apple Mobility Data ### ========================================================================
# Read apple data
apple = pd.read_csv("https://raw.githubusercontent.com/ActiveConclusion/COVID19_mobility/master/apple_reports/apple_mobility_report.csv")
# Filter to rows containing "Malaysia" country
malaysia = apple.loc[(apple['country']=='Malaysia')]
# Select relevant columns and rename into 'state'
appledata = malaysia[['date', 'sub-region', 'driving', 'transit', 'walking']]
appledata.rename(columns={'sub-region':'state'}, inplace=True)
# Export csv
appledata.to_csv("./data/apple-mobility-data-malaysia.csv", index=False)
print("Apple data exported. Elapsed time: "+str(time.time()-start), flush = True)
start = time.time()
### Waze Traffic Data ### ========================================================================
# Read waze data
waze = pd.read_csv("https://raw.githubusercontent.com/ActiveConclusion/COVID19_mobility/master/waze_reports/waze_mobility.csv")
# Filter to rows containing "Malaysia" country
malaysia = waze.loc[(waze['country']=='Malaysia')]
# Select relevant columns and create new column 'state' with their respective states
wazedata = malaysia[['date', 'city', 'driving_waze']]
state_dict = {'Ipoh':'Perak',
'Johor Bahru':'Johor',
'Kuala Lumpur':'Kuala Lumpur',
'Petaling Jaya':'Selangor',
'Puchong':'Selangor',
'Shah Alam':'Selangor',
'Total': 'N/A'}
wazedata['state'] = [state_dict[city] for city in wazedata['city']]
# Export csv
wazedata.to_csv("./data/waze-mobility-data-malaysia.csv", index=False)
print("Waze data exported. Elapsed time: "+str(time.time()-start), flush = True)
start = time.time()
### TomTom Traffic Data ========================================================================
# Read tomtom data
tomtom = pd.read_csv("https://raw.githubusercontent.com/ActiveConclusion/COVID19_mobility/master/tomtom_reports/tomtom_trafic_index.csv")
# Filter to rows containing "Malaysia" country
malaysia = tomtom.loc[(tomtom['country']=='Malaysia')]
# Select relevant columns and create new column 'state' with their respective state
tomtomdata = malaysia[['date', 'city', 'congestion', 'diffRatio']]
tomtomdata['state'] = tomtom['city'] # Only Kuala Lumpur data here so KL will be its state too
# Normalize congestion data
mean_val = tomtomdata.loc[tomtomdata['date'] <= "2020-02-06", "congestion"].mean()
tomtomdata['congestion-norm'] = tomtomdata['congestion'] - mean_val
min_val = tomtomdata['congestion'].min()
max_val = tomtomdata['congestion'].max()
tomtomdata['congestion-norm'] = ((tomtomdata['congestion-norm'] - min_val)/ (max_val - min_val)) * 100
# Export csv
tomtomdata.to_csv("./data/tomtom-mobility-data-malaysia.csv", index=False)
print("TomTom data exported. Elapsed time: "+str(time.time()-start), flush = True)
start = time.time()
### MOH COVID-19 Cases Data ========================================================================
# Read state cases data
statecase = pd.read_csv("https://raw.githubusercontent.com/MoH-Malaysia/covid19-public/main/epidemic/cases_state.csv")
# Clean up "state" data
statecase['state'].replace({"W.P. ":""}, regex=True, inplace=True)
statecase.loc[statecase['state']=='Pulau Pinang', 'state'] = 'Penang'
'''
# Add country cases data
mycase = pd.read_csv("https://raw.githubusercontent.com/MoH-Malaysia/covid19-public/main/epidemic/cases_malaysia.csv")
mycase = mycase[['date', 'cases_new', 'cases_import', 'cases_recovered']]
mycase['state'] = 'Malaysia'
# Concat state and country data
mohcases = pd.concat([statecase, mycase])
mohcases.to_csv("./data/moh-cases.csv", index=False)
print("MOH cases data exported. Elapsed time: "+str(time.time()-start)+'\n', flush = True)
'''
# Skip country cases data
statecase.to_csv("./data/moh-cases.csv", index=False)
print("MOH cases data exported. Elapsed time: "+str(time.time()-start), flush = True)
start = time.time()
### MOH COVID-19 Deaths Data ========================================================================
# Read state deaths data
statedeath = pd.read_csv("https://raw.githubusercontent.com/MoH-Malaysia/covid19-public/main/epidemic/deaths_state.csv")
# Remove null columns
statedeath.drop(columns=['deaths_new_dod', 'deaths_bid_dod'], axis=1, inplace=True)
# Clean up "state" data
statedeath['state'].replace({"W.P. ":""}, regex=True, inplace=True)
statedeath.loc[statedeath['state']=='Pulau Pinang', 'state'] = 'Penang'
# Skip country, export statedeaths data
statedeath.to_csv("./data/moh-deaths.csv", index=False)
print("MOH deaths data exported. Elapsed time: "+str(time.time()-start), flush = True)
start = time.time()
### MOH MySejahtera Check-Ins Data ========================================================================
# Read state checkin data
checkinstate = pd.read_csv("https://raw.githubusercontent.com/MoH-Malaysia/covid19-public/main/mysejahtera/checkin_state.csv")
# Clean up "state" data
checkinstate['state'].replace({"W.P. ":""}, regex=True, inplace=True)
checkinstate.loc[checkinstate['state']=='Pulau Pinang', 'state'] = 'Penang'
checkinstate.loc[checkinstate['state']=='KualaLumpur', 'state'] = 'Kuala Lumpur'
'''
# Add country checkin data
checkinmy = pd.read_csv("https://raw.githubusercontent.com/MoH-Malaysia/covid19-public/main/mysejahtera/checkin_malaysia.csv")
checkinmy['state'] = 'Malaysia'
# Concat state and country data
checkindata = pd.concat([checkinstate, checkinmy])
# Export csv
checkindata.to_csv("./data/mysjh-checkins.csv", index=False)
print("MySejahtera Check-Ins data exported. Elapsed time: "+str(time.time()-start)+'\n', flush = True)
'''
# Skip country checkin data
checkinstate.to_csv("./data/mysjh-checkins.csv", index=False)
print("MySejahtera Check-Ins data exported. Elapsed time: "+str(time.time()-start), flush = True)
start = time.time()
### MOH MySejahtera Check-Ins Data ========================================================================
# Read state checkin data
testdata = pd.read_csv("https://raw.githubusercontent.com/MoH-Malaysia/covid19-public/main/epidemic/tests_state.csv")
# Clean up "state" data
testdata['state'].replace({"W.P. ":""}, regex=True, inplace=True)
testdata.loc[testdata['state']=='Pulau Pinang', 'state'] = 'Penang'
# Export clean dataset
testdata.to_csv("./data/moh-tests.csv", index=False)
print("COVID-19 testing data exported. Elapsed time: "+str(time.time()-start)+'\n', flush = True)