forked from edzer/OGH22
-
Notifications
You must be signed in to change notification settings - Fork 0
/
time.qmd
123 lines (104 loc) · 2.82 KB
/
time.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
---
title: "Time and spatial data"
author: "Edzer Pebesma"
date: "August 29, 2022"
---
# Time
Load the foot-and-mouth disease data from package `stpp`:
```{r}
data(fmd, package = "stpp")
head(fmd)
class(fmd)
library(sf)
library(dplyr)
fmd1 <- fmd |>
as.data.frame() |>
st_as_sf(coords = c("X", "Y")) |>
mutate(time = as.Date("2001-02-01") + ReportedDay)
fmd1
data(northcumbria, package = "stpp")
head(northcumbria)
class(northcumbria)
northc = st_sfc(st_polygon(list(rbind(northcumbria, northcumbria[1,]))))
northc
```
Create a plot of all points, with `time` the colored attribute:
```{r}
plot(fmd1["time"], extent = northc, reset = FALSE, cex = .6, pch = 16)
plot(northc, add = TRUE)
```
We can also do this with `ggplot2`:
```{r}
library(ggplot2)
ggplot(fmd1) + geom_sf(data = northc) + geom_sf(aes(col = time))
```
and, in that case, easily create faceted plots, here by 4 time classes,
facet label indicating the start of the time interval:
```{r}
ggplot(fmd1) +
geom_sf(data = northc) +
geom_sf(aes(col = time)) +
facet_wrap(~cut(time, "2 months")) +
theme_void()
```
# Time as a coordinate
As said, in the above time is an attribute column like any other.
Package `sftime` creates objects where time, like space, is a
coordinate pointing out space-time geometry.
```{r}
library(sftime)
fmd_t = fmd1
st_time(fmd_t) = fmd1$time
fmd_t
```
Alternatively, we could use `ReportedDay` as the time coordinate:
```{r}
fmd_d = fmd1
st_time(fmd_d) = fmd1$ReportedDay
fmd_d
```
`sftime` objects derive from `sf` objects, and the dedicated
methods for them largely reflect methods available for `sf`
objects:
```{r}
methods(class = "sftime")
```
As an exploratory step (before the space-time density modelling
and estimation of Gabriel et al.) we may want to count cases
over a space-time grid, e.g. over 60-day intervals.
```{r}
fmd1$time_c = cut(fmd1$time, "30 days")
library(stars)
st = st_as_stars(northc, dx = 20000)
st_as_sf(st) |> st_geometry() |> plot()
plot(northc, border = 'red', lwd = 2, add = TRUE)
```
For each time interval, we can count records by
```{r}
geom = st_as_sf(st)
st$values = NULL
for (i in levels(fmd1$time_c))
st[[ paste0("v", i) ]] = aggregate(fmd1[fmd1$time_c == i, "time"], geom, length)$time
st
```
We can move that into a three-dimensional (x/y/time) datacube by:
```{r}
st <- st |>
merge(name = "time") |>
st_set_dimensions(3, values = as.Date(levels(fmd1$time_c))) |>
setNames("count")
st[is.na(st)] = 0
st
plot(st, breaks = "equal", hook = function() plot(northc, border = 'red', add = TRUE))
```
... and plot, using `ggplot()`:
```{r eval=TRUE}
library(ggplot2)
library(stars)
ggplot() + geom_stars(data = st) +
facet_wrap(~time) + coord_equal() +
theme_void() +
scale_x_discrete(expand = c(0,0)) +
scale_y_discrete(expand = c(0,0)) +
scale_fill_viridis_c()
```