-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest.py
248 lines (194 loc) · 9.86 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
from multiprocessing.util import is_exiting
import numpy
import torch
import torch.nn as nn
import torch.optim
from torch.utils.data import DataLoader
from torch.autograd import Variable
import numpy as np
import pandas as pd
import os
from util.grab import Grab
from model_others.EAI import GCN_EAI
from util.opt import Options
import util.data_utils as data_utils
from util import utils_utils as utils
from util import loss_func
from tqdm import tqdm
import pdb
import shutil
import random
from torch.utils.data import DataLoader
from prefetch_generator import BackgroundGenerator
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data.distributed import DistributedSampler
def setup_DDP(backend="nccl", verbose=False):
rank = int(os.environ["RANK"])
local_rank = int(os.environ["LOCAL_RANK"])
world_size = int(os.environ["WORLD_SIZE"])
dist.init_process_group(backend=backend)
device = torch.device("cuda:{}".format(local_rank))
if verbose:
print(f"local rank: {local_rank}, global rank: {rank}, world size: {world_size}")
return rank, local_rank, world_size, device
def print_only_rank0(log):
if dist.get_rank() == 0:
print(log)
class DataLoaderX(DataLoader):
def __iter__(self):
return BackgroundGenerator(super().__iter__())
def main(opt):
is_cuda = torch.cuda.is_available()
input_n = opt.input_n
output_n = opt.output_n
all_n = input_n + output_n
print(">>> creating model")
model = GCN_EAI(input_feature=all_n, hidden_feature=opt.linear_size, p_dropout=opt.dropout, num_stage=opt.num_stage, lh_node_n=opt.num_lh*3, rh_node_n=opt.num_rh*3,b_node_n=opt.num_body*3)
model_name = '{}'.format(opt.model_type)
if is_cuda:
model.cuda()
dct_trans_funcs = {
'Norm': get_dct_norm,
'No_Norm': get_dct,
}
idct_trans_funcs = {
'Norm': get_idct_norm,
'No_Norm': get_idct,
}
if opt.is_hand_norm:
dct_trans = dct_trans_funcs['Norm']
idct_trans = idct_trans_funcs['Norm']
else:
dct_trans = dct_trans_funcs['No_Norm']
idct_trans = idct_trans_funcs['No_Norm']
train_expid = opt.exp
test_expid = 'TEST_' + opt.exp[6:]
test_script_name = os.path.basename(__file__).split('.')[0]
train_script_name = 'train_' + test_script_name[5:]
train_script_name = "ckpt_eai_dct_n{:d}_out{:d}_dctn{:d}".format(input_n, output_n, all_n)
test_script_name = "ckpt_eai_dct_n{:d}_out{:d}_dctn{:d}".format(input_n, output_n, all_n)
train_ckpt_path = './checkpoint/{}/{}_best.pth.tar'.format(train_expid,train_script_name)
test_csv_path = './checkpoint/{}'.format(test_expid)
print(">>> loading ckpt len from '{}'".format(train_ckpt_path))
ckpt = torch.load(train_ckpt_path) if is_cuda else torch.load(train_ckpt_path, map_location='cpu')
lr = ckpt['lr']
start_epoch = ckpt['epoch']
train_loss = ckpt['train_loss']
new_ckpt_state_dict = {}
for i in ckpt['state_dict'].keys():
new_ckpt_state_dict[i[7:]] = ckpt['state_dict'][i]
model.load_state_dict(new_ckpt_state_dict)
print(">>> ckpt len loaded (epoch: {} | err: {})".format(start_epoch, train_loss))
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
test_dataset = Grab(path_to_data=opt.grab_data_dict, input_n=input_n, output_n=output_n, split=2, debug= opt.is_debug, using_saved_file=opt.is_using_saved_file,using_noTpose2=opt.is_using_noTpose2)
test_loader = DataLoader(test_dataset, batch_size=opt.test_batch, shuffle=False, num_workers=0,pin_memory=True)
test_loss, test_body_loss, test_lhand_loss, test_rhand_loss,test_lhand_rel_loss,test_rhand_rel_loss,_ = test_split(test_loader, model=model, device=device,dct_trans=dct_trans, idct_trans=idct_trans)
eval_frame = [3, 6, 9, 12, 15, 18, 21, 24, 27, 30]
print('>>> Frames |>>> whole body |>>> main body |>>> left hand |>>> right hand|>>> rel left hand |>>> rel right hand')
for i, f in enumerate(eval_frame):
print('>>> {} |>>> {:.3f} |>>> {:.3f} |>>> {:.3f} |>>> {:.3f} |>>> {:.3f} |>>> {:.3f} '\
.format(f, test_loss[i],test_body_loss[i],test_lhand_loss[i],test_rhand_loss[i],test_lhand_rel_loss[i],test_rhand_rel_loss[i]))
def get_dct(out_joints):
batch, frame, node, dim = out_joints.data.shape
dct_m_in, _ = get_dct_matrix(frame)
input_joints = out_joints.transpose(0, 1).reshape(frame, -1).contiguous()
input_dct_seq = np.matmul((dct_m_in[0:frame, :]), input_joints)
input_dct_seq = torch.as_tensor(input_dct_seq)
input_joints = input_dct_seq.reshape(frame, batch, -1).permute(1, 2, 0).contiguous()
return input_joints
def get_idct(y_out, out_joints, device):
batch, frame, node, dim = out_joints.data.shape
_, idct_m = get_dct_matrix(frame)
idct_m = torch.from_numpy(idct_m).float().to(device)
outputs_t = y_out.view(-1, frame).transpose(1, 0)
outputs_p3d = torch.matmul(idct_m[:, 0:frame], outputs_t)
outputs_p3d = outputs_p3d.reshape(frame, batch, -1, dim).contiguous().transpose(0, 1)
pred_3d = outputs_p3d
targ_3d = out_joints
return pred_3d, targ_3d
def get_dct_norm(out_joints):
batch, frame, node, dim = out_joints.data.shape
out_joints[:,:,25:40,:] = out_joints[:,:,25:40,:] - out_joints[:,:,20:21,:]
out_joints[:,:,40:,:] = out_joints[:,:,40:,:] - out_joints[:,:,21:22,:]
dct_m_in, _ = get_dct_matrix(frame)
input_joints = out_joints.transpose(0, 1).reshape(frame, -1).contiguous()
input_dct_seq = np.matmul((dct_m_in[0:frame, :]), input_joints)
input_dct_seq = torch.as_tensor(input_dct_seq)
input_joints = input_dct_seq.reshape(frame, batch, -1).permute(1, 2, 0).contiguous()
return input_joints
def get_idct_norm(y_out, out_joints, device):
batch, frame, node, dim = out_joints.data.shape
_, idct_m = get_dct_matrix(frame)
idct_m = torch.from_numpy(idct_m).float().to(device)
outputs_t = y_out.view(-1, frame).transpose(1, 0)
# 50,32*55*3
outputs_p3d = torch.matmul(idct_m[:, 0:frame], outputs_t)
outputs_p3d = outputs_p3d.reshape(frame, batch, -1, dim).contiguous().transpose(0, 1)
# 32,162,50
outputs_p3d[:,:,25:40,:] = outputs_p3d[:,:,25:40,:] + outputs_p3d[:,:,20:21,:]
outputs_p3d[:,:,40:,:] = outputs_p3d[:,:,40:,:] + outputs_p3d[:,:,21:22,:]
pred_3d = outputs_p3d
targ_3d = out_joints
return pred_3d, targ_3d
def test_split(test_loader, model, device, dct_trans,idct_trans):
N = 0
eval_frame = [32, 35, 38, 41, 44, 47, 50, 53, 56, 59]
model.eval()
t_posi = np.zeros(len(eval_frame))
t_body_posi = np.zeros(len(eval_frame))
t_lhand_posi = np.zeros(len(eval_frame))
t_rhand_posi = np.zeros(len(eval_frame))
t_lhand_rel_posi = np.zeros(len(eval_frame))
t_rhand_rel_posi = np.zeros(len(eval_frame))
with torch.no_grad():
for i, (input_pose, target_pose) in enumerate(test_loader):
model_input = dct_trans(input_pose)
n = input_pose.shape[0]
if torch.cuda.is_available():
model_input = model_input.to(device).float()
target_pose = target_pose.to(device).float()
out_pose,_,_,_ = model(model_input)
pred_3d, targ_3d = idct_trans(y_out=out_pose, out_joints=target_pose, device=device)
rel_pred_3d = pred_3d.clone()
rel_targ_3d = targ_3d.clone()
rel_pred_3d[:,:,25:40] = rel_pred_3d[:,:,25:40] - rel_pred_3d[:,:,20:21]
rel_pred_3d[:,:,40:] = rel_pred_3d[:,:,40:] - rel_pred_3d[:,:,21:22]
rel_targ_3d[:,:,25:40] = rel_targ_3d[:,:,25:40] - rel_targ_3d[:,:,20:21]
rel_targ_3d[:,:,40:] = rel_targ_3d[:,:,40:] - rel_targ_3d[:,:,21:22]
for k in np.arange(0, len(eval_frame)):
j = eval_frame[k]
test_out, test_joints = pred_3d[:, j, :, :], targ_3d[:, j, :, :]
loss_wholebody, _ = loss_func.joint_body_loss_test(test_out, test_joints)
t_posi[k] += loss_wholebody.cpu().data.numpy() * n * 100
test_body_out, test_body_joints = pred_3d[:, j, :25, :], targ_3d[:, j, :25, :]
t_body_posi[k] += loss_func.joint_loss(test_body_out, test_body_joints).cpu().data.numpy() * n * 100
test_lhand_out, test_lhand_joints = pred_3d[:, j, 25:40, :], targ_3d[:, j, 25:40, :]
t_lhand_posi[k] += loss_func.joint_loss(test_lhand_out, test_lhand_joints).cpu().data.numpy() * n * 100
test_rhand_out, test_rhand_joints = pred_3d[:, j, 40:, :], targ_3d[:, j, 40:, :]
t_rhand_posi[k] += loss_func.joint_loss(test_rhand_out, test_rhand_joints).cpu().data.numpy() * n * 100
test_lhand_rel_out, test_lhand_rel_joints = rel_pred_3d[:, j, 25:40, :], rel_targ_3d[:, j, 25:40, :]
t_lhand_rel_posi[k] += loss_func.joint_loss(test_lhand_rel_out, test_lhand_rel_joints).cpu().data.numpy() * n * 100
test_rhand_rel_out, test_rhand_rel_joints = rel_pred_3d[:, j, 40:, :], rel_targ_3d[:, j, 40:, :]
t_rhand_rel_posi[k] += loss_func.joint_loss(test_rhand_rel_out, test_rhand_rel_joints).cpu().data.numpy() * n * 100
N += n
return t_posi / N,t_body_posi / N,t_lhand_posi / N,t_rhand_posi / N,t_lhand_rel_posi / N,t_rhand_rel_posi / N, N
def get_dct_matrix(N):
dct_m = np.eye(N)
for k in np.arange(N):
for i in np.arange(N):
w = np.sqrt(2 / N)
if k == 0:
w = np.sqrt(1 / N)
dct_m[k, i] = w * np.cos(np.pi * (i + 1 / 2) * k / N)
idct_m = np.linalg.inv(dct_m)
return dct_m, idct_m
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
if __name__ == "__main__":
option = Options().parse()
main(option)