generated from DistributedScience/Distributed-Something
-
Notifications
You must be signed in to change notification settings - Fork 1
/
run.py
793 lines (703 loc) · 32.2 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
import os, sys
import boto3
import datetime
import json
import time
from base64 import b64encode
import configparser
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
CREATE_DASHBOARD = False
CLEAN_DASHBOARD = False
from config import *
# Back compatability with old config requirements
if ':' in SQS_DEAD_LETTER_QUEUE:
SQS_DEAD_LETTER_QUEUE = SQS_DEAD_LETTER_QUEUE.rsplit(':',1)[1]
WAIT_TIME = 60
MONITOR_TIME = 60
#################################
# SETUP TEMPLATES
#################################
TASK_DEFINITION = {
"family": APP_NAME,
"containerDefinitions": [
{
"environment": [
{
"name": "AWS_REGION",
"value": AWS_REGION
}
],
"name": APP_NAME,
"image": DOCKERHUB_TAG,
"cpu": CPU_SHARES,
"memory": MEMORY,
"essential": True,
"privileged": True,
"logConfiguration": {
"logDriver": "awslogs",
"options": {
"awslogs-group": LOG_GROUP_NAME+"_perInstance",
"awslogs-region": AWS_REGION,
"awslogs-stream-prefix": APP_NAME
}
}
}
]
}
#################################
# AUXILIARY FUNCTIONS
#################################
def generate_task_definition(AWS_PROFILE):
taskRoleArn = False
task_definition = TASK_DEFINITION.copy()
config = configparser.ConfigParser()
config.read(f"{os.environ['HOME']}/.aws/config")
if config.has_section(AWS_PROFILE):
profile_name = AWS_PROFILE
elif config.has_section(f'profile {AWS_PROFILE}'):
profile_name = f'profile {AWS_PROFILE}'
else:
print ('Problem handling profile')
if config.has_option(profile_name, 'role_arn'):
print ("Using role for credentials", config[profile_name]['role_arn'])
taskRoleArn = config[profile_name]['role_arn']
else:
if config.has_option(profile_name, 'source_profile'):
creds = configparser.ConfigParser()
creds.read(f"{os.environ['HOME']}/.aws/credentials")
source_profile = config[profile_name]['source_profile']
aws_access_key = creds[source_profile]['aws_access_key_id']
aws_secret_key = creds[source_profile]['aws_secret_access_key']
elif config.has_option(profile_name, 'aws_access_key_id'):
aws_access_key = config[profile_name]['aws_access_key_id']
aws_secret_key = config[profile_name]['aws_secret_access_key']
else:
print ("Problem getting credentials")
task_definition['containerDefinitions'][0]['environment'] += [
{
"name": "AWS_ACCESS_KEY_ID",
"value": aws_access_key
},
{
"name": "AWS_SECRET_ACCESS_KEY",
"value": aws_secret_key
}]
sqs = boto3.client('sqs')
queue_name = get_queue_url(sqs)
task_definition['containerDefinitions'][0]['environment'] += [
{
'name': 'APP_NAME',
'value': APP_NAME
},
{
'name': 'SQS_QUEUE_URL',
'value': queue_name
},
{
"name": "LOG_GROUP_NAME",
"value": LOG_GROUP_NAME
},
{
"name": "CHECK_IF_DONE_BOOL",
"value": CHECK_IF_DONE_BOOL
},
{
"name": "ECS_CLUSTER",
"value": ECS_CLUSTER
},
]
return task_definition, taskRoleArn
def update_ecs_task_definition(ecs, ECS_TASK_NAME, AWS_PROFILE):
task_definition, taskRoleArn = generate_task_definition(AWS_PROFILE)
if not taskRoleArn:
ecs.register_task_definition(family=ECS_TASK_NAME,containerDefinitions=task_definition['containerDefinitions'])
elif taskRoleArn:
ecs.register_task_definition(family=ECS_TASK_NAME,containerDefinitions=task_definition['containerDefinitions'],taskRoleArn=taskRoleArn)
else:
print('Mistake in handling role for Task Definition.')
print('Task definition registered')
def get_or_create_cluster(ecs):
data = ecs.list_clusters()
cluster = [clu for clu in data['clusterArns'] if clu.endswith(ECS_CLUSTER)]
if len(cluster) == 0:
ecs.create_cluster(clusterName=ECS_CLUSTER)
time.sleep(WAIT_TIME)
print('Cluster '+ECS_CLUSTER+' created')
else:
print('Cluster '+ECS_CLUSTER+' exists')
def create_or_update_ecs_service(ecs, ECS_SERVICE_NAME, ECS_TASK_NAME):
# Create the service with no workers (0 desired count)
data = ecs.list_services(cluster=ECS_CLUSTER)
service = [srv for srv in data['serviceArns'] if srv.endswith(ECS_SERVICE_NAME)]
if len(service) > 0:
print('Service exists. Removing')
ecs.delete_service(cluster=ECS_CLUSTER, service=ECS_SERVICE_NAME)
print('Removed service '+ECS_SERVICE_NAME)
time.sleep(WAIT_TIME)
print('Creating new service')
ecs.create_service(cluster=ECS_CLUSTER, serviceName=ECS_SERVICE_NAME, taskDefinition=ECS_TASK_NAME, desiredCount=0)
print('Service created')
def get_queue_url(sqs, queue_name):
result = sqs.list_queues()
queue_url = None
if 'QueueUrls' in result.keys():
for u in result['QueueUrls']:
if u.split('/')[-1] == queue_name:
queue_url = u
return queue_url
def get_or_create_queue(sqs):
queue_url = get_queue_url(sqs, SQS_QUEUE_NAME)
dead_url = get_queue_url(sqs, SQS_DEAD_LETTER_QUEUE)
if dead_url is None:
print("Creating DeadLetter queue")
sqs.create_queue(QueueName=SQS_DEAD_LETTER_QUEUE)
time.sleep(WAIT_TIME)
dead_url = get_queue_url(sqs, SQS_DEAD_LETTER_QUEUE)
else:
print (f'DeadLetter queue {SQS_DEAD_LETTER_QUEUE} already exists.')
if queue_url is None:
print('Creating queue')
response = sqs.get_queue_attributes(QueueUrl=dead_url, AttributeNames=["QueueArn"])
dead_arn = response["Attributes"]["QueueArn"]
SQS_DEFINITION = {
"DelaySeconds": "0",
"MaximumMessageSize": "262144",
"MessageRetentionPeriod": "1209600",
"ReceiveMessageWaitTimeSeconds": "0",
"RedrivePolicy": '{"deadLetterTargetArn":"'
+ dead_arn
+ '","maxReceiveCount":"10"}',
"VisibilityTimeout": str(SQS_MESSAGE_VISIBILITY),
}
sqs.create_queue(QueueName=SQS_QUEUE_NAME, Attributes=SQS_DEFINITION)
time.sleep(WAIT_TIME)
else:
print('Queue exists')
def killdeadAlarms(fleetId,monitorapp,ec2,cloud):
todel=[]
changes = ec2.describe_spot_fleet_request_history(SpotFleetRequestId=fleetId,StartTime=(datetime.datetime.now()-datetime.timedelta(hours=2)).replace(microsecond=0))
for eachevent in changes['HistoryRecords']:
if eachevent['EventType']=='instanceChange':
if eachevent['EventInformation']['EventSubType']=='terminated':
todel.append(eachevent['EventInformation']['InstanceId'])
existing_alarms = [x['AlarmName'] for x in cloud.describe_alarms(AlarmNamePrefix=monitorapp)['MetricAlarms']]
for eachmachine in todel:
monitorname = monitorapp+'_'+eachmachine
if monitorname in existing_alarms:
cloud.delete_alarms(AlarmNames=[monitorname])
print('Deleted', monitorname, 'if it existed')
time.sleep(3)
print('Old alarms deleted')
def generateECSconfig(ECS_CLUSTER,APP_NAME,AWS_BUCKET,s3client):
configfile=open('configtemp.config','w')
configfile.write('ECS_CLUSTER='+ECS_CLUSTER+'\n')
configfile.write('ECS_AVAILABLE_LOGGING_DRIVERS=["json-file","awslogs"]')
configfile.close()
s3client.upload_file('configtemp.config',AWS_BUCKET,'ecsconfigs/'+APP_NAME+'_ecs.config')
os.remove('configtemp.config')
return 's3://'+AWS_BUCKET+'/ecsconfigs/'+APP_NAME+'_ecs.config'
def generateUserData(ecsConfigFile,dockerBaseSize):
config_str = '#!/bin/bash \n'
config_str += 'sudo yum install -y aws-cli \n'
config_str += 'sudo yum install -y awslogs \n'
config_str += 'aws s3 cp '+ecsConfigFile+' /etc/ecs/ecs.config'
boothook_str = '#!/bin/bash \n'
boothook_str += "echo 'OPTIONS="+'"${OPTIONS} --storage-opt dm.basesize='+str(dockerBaseSize)+'G"'+"' >> /etc/sysconfig/docker"
config = MIMEText(config_str, _subtype='x-shellscript')
config.add_header('Content-Disposition', 'attachment',filename='config_temp.txt')
boothook = MIMEText(boothook_str, _subtype='cloud-boothook')
boothook.add_header('Content-Disposition', 'attachment',filename='boothook_temp.txt')
pre_user_data = MIMEMultipart()
pre_user_data.attach(boothook)
pre_user_data.attach(config)
try: #Python2
return b64encode(pre_user_data.as_string())
except TypeError: #Python3
pre_user_data_string = pre_user_data.as_string()
return b64encode(pre_user_data_string.encode('utf-8')).decode('utf-8')
def removequeue(queueName):
sqs = boto3.client('sqs')
queueoutput= sqs.list_queues(QueueNamePrefix=queueName)
if len(queueoutput["QueueUrls"])==1:
queueUrl=queueoutput["QueueUrls"][0]
else: #In case we have "AnalysisQueue" and "AnalysisQueue1" and only want to delete the first of those
for eachUrl in queueoutput["QueueUrls"]:
if eachUrl.split('/')[-1] == queueName:
queueUrl=eachUrl
sqs.delete_queue(QueueUrl=queueUrl)
def deregistertask(taskName, ecs):
taskArns = ecs.list_task_definitions(familyPrefix=taskName, status='ACTIVE')
for eachtask in taskArns['taskDefinitionArns']:
fulltaskname=eachtask.split('/')[-1]
ecs.deregister_task_definition(taskDefinition=fulltaskname)
def removeClusterIfUnused(clusterName, ecs):
if clusterName != 'default':
#never delete the default cluster
result = ecs.describe_clusters(clusters=[clusterName])
if sum([result['clusters'][0]['pendingTasksCount'],result['clusters'][0]['runningTasksCount'],result['clusters'][0]['activeServicesCount'],result['clusters'][0]['registeredContainerInstancesCount']])==0:
ecs.delete_cluster(cluster=clusterName)
def downscaleSpotFleet(queue, spotFleetID, ec2, manual=False):
visible, nonvisible = queue.returnLoad()
if manual:
ec2.modify_spot_fleet_request(ExcessCapacityTerminationPolicy='noTermination', SpotFleetRequestId=spotFleetID, TargetCapacity = int(manual))
return
elif visible > 0:
return
else:
status = ec2.describe_spot_fleet_instances(SpotFleetRequestId=spotFleetID)
if nonvisible < len(status['ActiveInstances']):
ec2.modify_spot_fleet_request(ExcessCapacityTerminationPolicy='noTermination', SpotFleetRequestId=spotFleetID, TargetCapacity = nonvisible)
def export_logs(logs, loggroupId, starttime, bucketId):
result = logs.create_export_task(taskName = loggroupId, logGroupName = loggroupId, fromTime = int(starttime), to = int(time.time()*1000), destination = bucketId, destinationPrefix = 'exportedlogs/'+loggroupId)
logExportId = result['taskId']
while True:
result = logs.describe_export_tasks(taskId = logExportId)
if result['exportTasks'][0]['status']['code']!='PENDING':
if result['exportTasks'][0]['status']['code']!='RUNNING':
print(result['exportTasks'][0]['status']['code'])
break
time.sleep(30)
def create_dashboard(requestInfo):
cloudwatch = boto3.client("cloudwatch")
DashboardMessage = {
"widgets": [
{
"height": 6,
"width": 6,
"y": 0,
"x": 18,
"type": "metric",
"properties": {
"metrics": [
[ "AWS/SQS", "NumberOfMessagesReceived", "QueueName", f'{APP_NAME}Queue' ],
[ ".", "NumberOfMessagesDeleted", ".", "." ],
],
"view": "timeSeries",
"stacked": False,
"region": AWS_REGION,
"period": 300,
"stat": "Average"
}
},
{
"height": 6,
"width": 6,
"y": 0,
"x": 6,
"type": "metric",
"properties": {
"view": "timeSeries",
"stacked": False,
"metrics": [
[ "AWS/ECS", "MemoryUtilization", "ClusterName", ECS_CLUSTER ]
],
"region": AWS_REGION,
"period": 300,
"yAxis": {
"left": {
"min": 0
}
}
}
},
{
"height": 6,
"width": 6,
"y": 0,
"x": 12,
"type": "metric",
"properties": {
"metrics": [
[ "AWS/SQS", "ApproximateNumberOfMessagesVisible", "QueueName", f"{APP_NAME}Queue" ],
[ ".", "ApproximateNumberOfMessagesNotVisible", ".", "."],
],
"view": "timeSeries",
"stacked": True,
"region": AWS_REGION,
"period": 300,
"stat": "Average"
}
},
{
"height": 6,
"width": 12,
"y": 6,
"x": 12,
"type": "log",
"properties": {
"query": f"SOURCE {APP_NAME} | fields @message| filter @message like 'bioformats2raw'| stats count_distinct(@message)",
"region": AWS_REGION,
"stacked": False,
"title": "Distinct Logs",
"view": "table"
}
},
{
"height": 6,
"width": 12,
"y": 6,
"x": 0,
"type": "log",
"properties": {
"query": f"SOURCE {APP_NAME} | fields @message| filter @message like 'bioformats2raw'| stats count(@message)",
"region": AWS_REGION,
"stacked": False,
"title": "All Logs",
"view": "table"
}
},
{
"height": 6,
"width": 24,
"y": 12,
"x": 0,
"type": "log",
"properties": {
"query": f"SOURCE {APP_NAME} | fields @message | filter @message like \"Error\"\n\n | display @message",
"region": AWS_REGION,
"stacked": False,
"title": "Errors",
"view": "table"
}
},
{
"height": 6,
"width": 6,
"y": 0,
"x": 0,
"type": "metric",
"properties": {
"metrics": [
[ "AWS/EC2Spot", "FulfilledCapacity", "FleetRequestId", requestInfo["SpotFleetRequestId"]],
[ ".", "TargetCapacity", ".", "."],
],
"view": "timeSeries",
"stacked": False,
"region": AWS_REGION,
"period": 300,
"stat": "Average"
}
}
]
}
DashboardMessage_json = json.dumps(DashboardMessage, indent = 4)
response = cloudwatch.put_dashboard(DashboardName=APP_NAME, DashboardBody=DashboardMessage_json)
if response['DashboardValidationMessages']:
print ('Likely error in Dashboard creation')
print (response['DashboardValidationMessages'])
def clean_dashboard(monitorapp):
cloudwatch = boto3.client("cloudwatch")
dashboard_list = cloudwatch.list_dashboards()
for entry in dashboard_list["DashboardEntries"]:
if monitorapp in entry["DashboardName"]:
cloudwatch.delete_dashboards(DashboardNames=[entry["DashboardName"]])
#################################
# CLASS TO HANDLE SQS QUEUE
#################################
class JobQueue():
def __init__(self,name=None):
self.sqs = boto3.resource('sqs')
if name==None:
self.queue = self.sqs.get_queue_by_name(QueueName=SQS_QUEUE_NAME)
else:
self.queue = self.sqs.get_queue_by_name(QueueName=name)
self.inProcess = -1
self.pending = -1
def scheduleBatch(self, data):
msg = json.dumps(data)
response = self.queue.send_message(MessageBody=msg)
print('Batch sent. Message ID:',response.get('MessageId'))
def pendingLoad(self):
self.queue.load()
visible = int( self.queue.attributes['ApproximateNumberOfMessages'] )
nonVis = int( self.queue.attributes['ApproximateNumberOfMessagesNotVisible'] )
if [visible, nonVis] != [self.pending,self.inProcess]:
self.pending = visible
self.inProcess = nonVis
d = datetime.datetime.now()
print(d,'In process:',nonVis,'Pending',visible)
if visible + nonVis > 0:
return True
else:
return False
def returnLoad(self):
self.queue.load()
visible = int( self.queue.attributes['ApproximateNumberOfMessages'] )
nonVis = int( self.queue.attributes['ApproximateNumberOfMessagesNotVisible'] )
return visible, nonVis
#################################
# SERVICE 1: SETUP (formerly fab)
#################################
def setup():
ECS_TASK_NAME = APP_NAME + 'Task'
ECS_SERVICE_NAME = APP_NAME + 'Service'
USER = os.environ['HOME'].split('/')[-1]
AWS_CONFIG_FILE_NAME = os.environ['HOME'] + '/.aws/config'
AWS_CREDENTIAL_FILE_NAME = os.environ['HOME'] + '/.aws/credentials'
sqs = boto3.client('sqs')
get_or_create_queue(sqs)
ecs = boto3.client('ecs')
get_or_create_cluster(ecs)
update_ecs_task_definition(ecs, ECS_TASK_NAME, AWS_PROFILE)
create_or_update_ecs_service(ecs, ECS_SERVICE_NAME, ECS_TASK_NAME)
#################################
# SERVICE 2: SUBMIT JOB
#################################
def submitJob():
if len(sys.argv) < 3:
print('Use: run.py submitJob jobfile')
sys.exit()
# Step 1: Read the job configuration file
jobInfo = loadConfig(sys.argv[2])
templateMessage = {eachkey:jobInfo[eachkey] for eachkey in jobInfo.keys() if eachkey != "plates" and "_comment" not in eachkey}
# Step 2: Reach the queue and schedule tasks
print('Contacting queue')
queue = JobQueue()
print('Scheduling tasks')
for plate in jobInfo["plates"]:
templateMessage["plate"] = plate
queue.scheduleBatch(templateMessage)
print('Job submitted. Check your queue')
#################################
# SERVICE 3: START CLUSTER
#################################
def startCluster():
if len(sys.argv) < 3:
print('Use: run.py startCluster configFile')
sys.exit()
thistime = datetime.datetime.now().replace(microsecond=0)
#Step 1: set up the configuration files
s3client = boto3.client('s3')
ecsConfigFile=generateECSconfig(ECS_CLUSTER,APP_NAME,AWS_BUCKET,s3client)
spotfleetConfig=loadConfig(sys.argv[2])
spotfleetConfig['ValidFrom']=thistime
spotfleetConfig['ValidUntil']=(thistime+datetime.timedelta(days=365)).replace(microsecond=0)
spotfleetConfig['TargetCapacity']= CLUSTER_MACHINES
spotfleetConfig['SpotPrice'] = '%.2f' %MACHINE_PRICE
DOCKER_BASE_SIZE = int(round(float(EBS_VOL_SIZE)/int(TASKS_PER_MACHINE))) - 2
userData=generateUserData(ecsConfigFile,DOCKER_BASE_SIZE)
for LaunchSpecification in range(0,len(spotfleetConfig['LaunchSpecifications'])):
spotfleetConfig['LaunchSpecifications'][LaunchSpecification]["UserData"]=userData
spotfleetConfig['LaunchSpecifications'][LaunchSpecification]['BlockDeviceMappings'][1]['Ebs']["VolumeSize"]= EBS_VOL_SIZE
spotfleetConfig['LaunchSpecifications'][LaunchSpecification]['InstanceType'] = MACHINE_TYPE[LaunchSpecification]
# Step 2: make the spot fleet request
ec2client=boto3.client('ec2')
requestInfo = ec2client.request_spot_fleet(SpotFleetRequestConfig=spotfleetConfig)
print('Request in process. Wait until your machines are available in the cluster.')
print('SpotFleetRequestId',requestInfo['SpotFleetRequestId'])
# Step 3: Make the monitor
starttime=str(int(time.time()*1000))
monitor_file_name=f'files/{APP_NAME}SpotFleetRequestId.json'
createMonitor=open(monitor_file_name,'w')
createMonitor.write('{"MONITOR_FLEET_ID" : "'+requestInfo['SpotFleetRequestId']+'",\n')
createMonitor.write('"MONITOR_APP_NAME" : "'+APP_NAME+'",\n')
createMonitor.write('"MONITOR_ECS_CLUSTER" : "'+ECS_CLUSTER+'",\n')
createMonitor.write('"MONITOR_QUEUE_NAME" : "'+SQS_QUEUE_NAME+'",\n')
createMonitor.write('"MONITOR_BUCKET_NAME" : "'+AWS_BUCKET+'",\n')
createMonitor.write('"MONITOR_LOG_GROUP_NAME" : "'+LOG_GROUP_NAME+'",\n')
createMonitor.write('"MONITOR_START_TIME" : "'+ starttime+'"}\n')
createMonitor.write('"CLEAN_DASHBOARD" : "'+ CLEAN_DASHBOARD+'"}\n')
createMonitor.close()
# Upload monitor file to S3 so it can be read by Auto-Monitor lambda function
if AUTO_MONITOR.lower()=='true':
s3 = boto3.client("s3")
json_on_bucket_name = f'monitors/{APP_NAME}SpotFleetRequestId.json' # match path set in lambda function
with open(monitor_file_name, "rb") as a:
s3.put_object(Body=a, Bucket=AWS_BUCKET, Key=json_on_bucket_name)
# Step 4: Create a log group for this app and date if one does not already exist
logclient=boto3.client('logs')
loggroupinfo=logclient.describe_log_groups(logGroupNamePrefix=LOG_GROUP_NAME)
groupnames=[d['logGroupName'] for d in loggroupinfo['logGroups']]
if LOG_GROUP_NAME not in groupnames:
logclient.create_log_group(logGroupName=LOG_GROUP_NAME)
logclient.put_retention_policy(logGroupName=LOG_GROUP_NAME, retentionInDays=60)
if LOG_GROUP_NAME+'_perInstance' not in groupnames:
logclient.create_log_group(logGroupName=LOG_GROUP_NAME+'_perInstance')
logclient.put_retention_policy(logGroupName=LOG_GROUP_NAME+'_perInstance', retentionInDays=60)
# Step 5: update the ECS service to be ready to inject docker containers in EC2 instances
print('Updating service')
ecs = boto3.client('ecs')
ecs.update_service(cluster=ECS_CLUSTER, service=APP_NAME+'Service', desiredCount=CLUSTER_MACHINES*TASKS_PER_MACHINE)
print('Service updated.')
# Step 6: Monitor the creation of the instances until all are present
status = ec2client.describe_spot_fleet_instances(SpotFleetRequestId=requestInfo['SpotFleetRequestId'])
#time.sleep(15) # This is now too fast, so sometimes the spot fleet request history throws an error!
while len(status['ActiveInstances']) < CLUSTER_MACHINES:
# First check to make sure there's not a problem
errorcheck = ec2client.describe_spot_fleet_request_history(SpotFleetRequestId=requestInfo['SpotFleetRequestId'], EventType='error', StartTime=thistime - datetime.timedelta(minutes=1))
if len(errorcheck['HistoryRecords']) != 0:
print('Your spot fleet request is causing an error and is now being cancelled. Please check your configuration and try again')
for eacherror in errorcheck['HistoryRecords']:
print(eacherror['EventInformation']['EventSubType'] + ' : ' + eacherror['EventInformation']['EventDescription'])
#If there's only one error, and it's the type we see for insufficient capacity (but also other types)
#AND if there are some machines on, indicating that other than capacity the spec is otherwise good, don't cancel
if len(errorcheck['HistoryRecords']) == 1:
if errorcheck['HistoryRecords'][0]['EventInformation']['EventSubType'] == 'allLaunchSpecsTemporarilyBlacklisted':
if len(status['ActiveInstances']) >= 1:
print("I think, but am not sure, that this is an insufficient capacity error. You should check the console for more information.")
return
ec2client.cancel_spot_fleet_requests(SpotFleetRequestIds=[requestInfo['SpotFleetRequestId']], TerminateInstances=True)
return
# If everything seems good, just bide your time until you're ready to go
print('.')
time.sleep(20)
status = ec2client.describe_spot_fleet_instances(SpotFleetRequestId=requestInfo['SpotFleetRequestId'])
print('Spot fleet successfully created. Your job should start in a few minutes.')
print(f"Your monitor file is available at {monitor_file_name}")
if CREATE_DASHBOARD.lower()=='true':
print ("Creating CloudWatch dashboard for run metrics")
create_dashboard(requestInfo)
if AUTO_MONITOR.lower()=='true':
# Create alarms that will trigger Monitor based on SQS queue metrics
cloudwatch = boto3.client("cloudwatch")
metricnames = [
"ApproximateNumberOfMessagesNotVisible",
"ApproximateNumberOfMessagesVisible",
]
sns = boto3.client("sns")
MonitorARN = sns.create_topic(Name="Monitor")['TopicArn'] # returns ARN since topic already exists
for metric in metricnames:
response = cloudwatch.put_metric_alarm(
AlarmName=f'{metric}isZero_{APP_NAME}',
ActionsEnabled=True,
OKActions=[],
AlarmActions=[MonitorARN],
InsufficientDataActions=[],
MetricName=metric,
Namespace="AWS/SQS",
Statistic="Average",
Dimensions=[
{"Name": "QueueName", "Value": f'{APP_NAME}Queue'}
],
Period=300,
EvaluationPeriods=1,
DatapointsToAlarm=1,
Threshold=0,
ComparisonOperator="LessThanOrEqualToThreshold",
TreatMissingData="missing",
)
#################################
# SERVICE 4: MONITOR JOB
#################################
def monitor(cheapest=False):
if len(sys.argv) < 3:
print('Use: run.py monitor spotFleetIdFile')
sys.exit()
if '.json' not in sys.argv[2]:
print('Use: run.py monitor spotFleetIdFile')
sys.exit()
if len(sys.argv) == 4:
cheapest = sys.argv[3]
monitorInfo = loadConfig(sys.argv[2])
monitorcluster=monitorInfo["MONITOR_ECS_CLUSTER"]
monitorapp=monitorInfo["MONITOR_APP_NAME"]
fleetId=monitorInfo["MONITOR_FLEET_ID"]
queueId=monitorInfo["MONITOR_QUEUE_NAME"]
ec2 = boto3.client('ec2')
cloud = boto3.client('cloudwatch')
# Optional Step 0 - decide if you're going to be cheap rather than fast. This means that you'll get 15 minutes
# from the start of the monitor to get as many machines as you get, and then it will set the requested number to 1.
# Benefit: this will always be the cheapest possible way to run, because if machines die they'll die fast,
# Potential downside- if machines are at low availability when you start to run, you'll only ever get a small number
# of machines (as opposed to getting more later when they become available), so it might take VERY long to run if that happens.
if cheapest:
queue = JobQueue(name=queueId)
startcountdown = time.time()
while queue.pendingLoad():
if time.time() - startcountdown > 900:
downscaleSpotFleet(queue, fleetId, ec2, manual=1)
# Print spot fleet metrics.
spot_fleet_info = ec2.describe_spot_fleet_requests(SpotFleetRequestIds=[fleetId])
target = spot_fleet_info['SpotFleetRequestConfigs'][0]['SpotFleetRequestConfig']['TargetCapacity']
fulfilled = spot_fleet_info['SpotFleetRequestConfigs'][0]['SpotFleetRequestConfig']['FulfilledCapacity']
print(f'Spot fleet has {target} requested instances. {fulfilled} are currently fulfilled.')
break
time.sleep(MONITOR_TIME)
# Step 1: Create job and count messages periodically
queue = JobQueue(name=queueId)
while queue.pendingLoad():
#Once an hour (except at midnight) check for terminated machines and delete their alarms.
#This is slooooooow, which is why we don't just do it at the end
curtime=datetime.datetime.now().strftime('%H%M')
if curtime[-2:]=='00':
if curtime[:2]!='00':
killdeadAlarms(fleetId,monitorapp,ec2,cloud)
#Once every 10 minutes, check if all jobs are in process, and if so scale the spot fleet size to match
#the number of jobs still in process WITHOUT force terminating them.
#This can help keep costs down if, for example, you start up 100+ machines to run a large job, and
#1-10 jobs with errors are keeping it rattling around for hours.
if curtime[-1:]=='9':
downscaleSpotFleet(queue, fleetId, ec2)
time.sleep(MONITOR_TIME)
# Step 2: When no messages are pending, stop service
# Reload the monitor info, because for long jobs new fleets may have been started, etc
monitorInfo = loadConfig(sys.argv[2])
monitorcluster=monitorInfo["MONITOR_ECS_CLUSTER"]
monitorapp=monitorInfo["MONITOR_APP_NAME"]
fleetId=monitorInfo["MONITOR_FLEET_ID"]
queueId=monitorInfo["MONITOR_QUEUE_NAME"]
bucketId=monitorInfo["MONITOR_BUCKET_NAME"]
loggroupId=monitorInfo["MONITOR_LOG_GROUP_NAME"]
starttime=monitorInfo["MONITOR_START_TIME"]
ecs = boto3.client('ecs')
ecs.update_service(cluster=monitorcluster, service=monitorapp+'Service', desiredCount=0)
print('Service has been downscaled')
# Step3: Delete the alarms from active machines and machines that have died since the last sweep
# This is in a try loop, because while it is important, we don't want to not stop the spot fleet
try:
result = ec2.describe_spot_fleet_instances(SpotFleetRequestId=fleetId)
instancelist = result['ActiveInstances']
while len(instancelist) > 0:
to_del = instancelist[:100]
del_alarms = [monitorapp+'_'+x['InstanceId'] for x in to_del]
cloud.delete_alarms(AlarmNames=del_alarms)
time.sleep(10)
instancelist = instancelist[100:]
killdeadAlarms(fleetId,monitorapp)
except:
pass
# Step 4: Read spot fleet id and terminate all EC2 instances
print('Shutting down spot fleet',fleetId)
ec2.cancel_spot_fleet_requests(SpotFleetRequestIds=[fleetId], TerminateInstances=True)
print('Job done.')
# Step 5. Release other resources
# Remove SQS queue, ECS Task Definition, ECS Service
ECS_TASK_NAME = monitorapp + 'Task'
ECS_SERVICE_NAME = monitorapp + 'Service'
print('Deleting existing queue.')
removequeue(queueId)
print('Deleting service')
ecs.delete_service(cluster=monitorcluster, service = ECS_SERVICE_NAME)
print('De-registering task')
deregistertask(ECS_TASK_NAME,ecs)
print("Removing cluster if it's not the default and not otherwise in use")
removeClusterIfUnused(monitorcluster, ecs)
# Remove Cloudwatch dashboard if created and cleanup desired
if CREATE_DASHBOARD.lower()=='true' and CLEAN_DASHBOARD.lower()=='true':
clean_dashboard(monitorapp)
#Step 6: Export the logs to S3
logs=boto3.client('logs')
print('Transfer of program logs to S3 initiated')
export_logs(logs, loggroupId, starttime, bucketId)
print('Transfer of per-instance logs to S3 initiated')
export_logs(logs, loggroupId+'_perInstance', starttime, bucketId)
print('All export tasks done')
#################################
# MAIN USER INTERACTION
#################################
if __name__ == '__main__':
if len(sys.argv) < 2:
print('Use: run.py setup | submitJob | startCluster | monitor')
sys.exit()
if sys.argv[1] == 'setup':
setup()
elif sys.argv[1] == 'submitJob':
submitJob()
elif sys.argv[1] == 'startCluster':
startCluster()
elif sys.argv[1] == 'monitor':
monitor()
else:
print('Use: run.py setup | submitJob | startCluster | monitor')
sys.exit()