forked from IshiKura-a/AuG-KD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
461 lines (409 loc) · 23.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
import argparse
import json
import logging
import os
import random
import gc
import sys
import wandb
from datetime import datetime
from pathlib import Path
from typing import Optional, Dict, Any
import numpy as np
import pandas as pd
import torch
from torch import nn, optim
from torch.optim.lr_scheduler import ConstantLR, CosineAnnealingLR
from torch.utils.data import DataLoader, Subset, TensorDataset
from torchvision.datasets import ImageFolder, CIFAR100, ImageNet, Caltech256
from torchvision.models import get_model, list_models
from datasets.config import Datasets, dataset_config, get_transform
from datasets.custom_dataset import CompositeDataset, ConcatAndSplitDatasets, LoadImageFolders, MCaltech256, \
collate_wrapper, CustomDataset
from models import get_pretrained_model
from models.anchor_net import AnchorNet
from models.generator import Generator
from models.generator import Encoder, Decoder
from utils.criteria import Compose, CrossEntropy, Accuracy, TopKAccuracy, DistillLoss, \
Uncertainty, CVAELoss, DecoderLoss, AnchorLoss, KLDivLoss
from utils.logger import logger, print_args, save_results
from utils.trainer import validate, run, Scheduler, Ablation, Baseline, Mode, get_ff, df_train, scheduler_dict, Stage
DEFAULT_SPLIT = [0.8, 0.2]
DA_SPLIT = [0.8, 0.1, 0.1]
def seed_everything(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
torch.cuda.manual_seed_all(seed)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--teacher', type=str, choices=list_models(), default='resnet50')
parser.add_argument('--teacher_dir', type=str,
default='/data/home/xxxx/model/resnet50/office_AW/resnet50_ckpt.pt')
parser.add_argument('--student', type=str, choices=list_models(), default='resnet18')
parser.add_argument('--latent_size', type=int, default=256)
parser.add_argument('--dataset', type=Datasets, choices=list(Datasets), default=Datasets.Office)
parser.add_argument('--target', type=str, default='/data/home/xxxx/dataset/office/dslr/images')
parser.add_argument('--test', type=str, default='/data/home/xxxx/dataset/office/dslr/images')
parser.add_argument('--lr', '--learning_rate', type=float, default=1e-3)
parser.add_argument('--wd', '--weight_decay', type=float, default=1e-5)
parser.add_argument('--epoch', type=int, default=50)
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument('--seed', type=int, default=2023)
parser.add_argument('--a', type=float, default=0.4)
parser.add_argument('--b', type=float, default=0.2)
# Generator Arguments
parser.add_argument('--d_lr', type=float, default=1e-3)
parser.add_argument('--e_lr', type=float, default=1e-4)
parser.add_argument('--g_epoch', type=int, default=1000)
parser.add_argument('--g_dir', type=str, default='', help='Used in case of resume')
# Anchor Arguments
parser.add_argument('--a_lr', type=float, default=1e-4)
parser.add_argument('--a_epoch', type=int, default=500)
parser.add_argument('--invariant', type=float, default=0.25)
parser.add_argument('--a_dir', type=str, default='', help='Used in case of resume')
parser.add_argument('--resume', type=str, default=None)
parser.add_argument('--log_dir', type=str, default='/data/home/xxxx/model/GenericKD/')
parser.add_argument('--postfix', type=str, default='')
parser.add_argument('--save_checkpoint', default=True, action='store_true')
parser.add_argument('--sched_type', type=Scheduler, choices=list(Scheduler), default=Scheduler.Linear)
parser.add_argument('--ablation', type=Ablation, choices=list(Ablation), default=Ablation.NoAblation)
parser.add_argument('--baseline', type=Baseline, choices=list(Baseline), default=Baseline.NoBaseline)
parser.add_argument('--s_dir', type=str, help='Used in case of ablation')
subparsers = parser.add_subparsers(dest='cmd')
t_parser = subparsers.add_parser('train_teacher')
t_parser.add_argument('--t_epoch', type=int, default=50)
t_parser.add_argument('--t_lr', '--t_learning_rate', type=float, default=1e-3)
t_parser.add_argument('--t_wd', '--t_weight_decay', type=float, default=0)
t_parser.add_argument('--t_data', type=str, default='/data/home/xxxx/dataset/office/amazon/images', nargs='+')
t_parser.add_argument('--t_mode', type=Mode, default=Mode.Split, choices=list(Mode))
args = parser.parse_args()
date = datetime.now().strftime("%m%d")
postfix = ''
if args.ablation != Ablation.NoAblation:
postfix = '_' + args.ablation.value
elif args.baseline != Baseline.NoBaseline:
postfix = '_' + args.baseline.value
if args.postfix != '' and args.postfix[0] != '_':
args.postfix = '_' + args.postfix
if args.cmd is None:
args.log_dir = os.path.join(args.log_dir, f'{args.teacher}_{args.student}{postfix}_{date}{args.postfix}')
Path(args.log_dir).mkdir(parents=True, exist_ok=True)
logger.addHandler(logging.FileHandler(f'{args.log_dir}/result.log', mode='w'))
# wandb.init(
# project="GenericKD",
# config=vars(args)
# )
print_args(args)
seed_everything(args.seed)
loader_kwargs = {'batch_size': args.batch_size, 'num_workers': 4, 'pin_memory': True}
setattr(args, 'loader_kwargs', loader_kwargs)
setattr(args, 'num_classes', dataset_config[args.dataset].num_classes)
metrics = Compose([Accuracy(), TopKAccuracy(3), TopKAccuracy(5)])
def best_metric(cur: Dict, prev: Optional[Dict]):
if (prev is None) or \
(cur['Acc'] > prev['Acc']) or \
(cur['Acc'] == prev['Acc'] and cur['Acc@3'] > prev['Acc@3']) or \
(cur['Acc'] == prev['Acc'] and cur['Acc@3'] == prev['Acc@3'] and cur['Acc@5'] > prev['Acc@5']):
return True
else:
return False
config = dataset_config[args.dataset]
if args.cmd == 'train_teacher':
setattr(args, 'model', args.teacher)
if args.t_mode == Mode.AutoSplit:
datasets, t_split = ConcatAndSplitDatasets(LoadImageFolders(args.t_data, args), DEFAULT_SPLIT)
t_train_data, t_eval_data = datasets
setattr(args, 'split', t_split)
elif args.t_mode == Mode.Split:
assert len(args.t_data) == 2, "Only accept train / val split here"
t_train_data = ImageFolder(root=args.t_data[0],
transform=get_transform(config.target_size, True, config.normalize))
t_eval_data = ImageFolder(root=args.t_data[1],
transform=get_transform(config.target_size, False, config.normalize))
elif args.t_mode == Mode.Torch:
if args.dataset == Datasets.CIFAR100:
t_train_data = CIFAR100(root=args.t_data[0], train=True, download=False,
transform=get_transform(config.target_size, True, config.normalize))
t_eval_data = CIFAR100(root=args.t_data[0], train=False, download=False,
transform=get_transform(config.target_size, False, config.normalize))
else:
raise NotImplementedError
else:
raise NotImplementedError
logger.info(f'Start to train teacher {args.teacher} on {args.t_data}')
logger.info(f'For better performance, use weights pretrained on ImageNet to initialize feature extractors.')
teacher = get_pretrained_model(args.teacher, config.num_classes)
t_dataloader = {
'train': DataLoader(t_train_data, shuffle=True, **loader_kwargs),
'eval': DataLoader(t_eval_data, shuffle=False, **loader_kwargs)
}
optimizer = optim.Adam(teacher.parameters(), lr=args.t_lr)
run(teacher, criterion=CrossEntropy(), optimizer=optimizer,
scheduler=ConstantLR(optimizer),
eval_metrics=metrics, n_epochs=args.t_epoch, do_eval=True,
save_best=best_metric,
dataloader=t_dataloader, args=args)
else:
args.normalize = True
if args.resume is None:
resume: Dict[str, Any] = {'cur_stage': Stage.NoResume}
else:
resume = torch.load(args.resume)
resume['cur_stage'] = Stage(resume['cur_stage'])
assert resume['cur_stage'] in list(Stage), f'{resume["cur_stage"]} must in {list(Stage)}"'
setattr(args, 'model', args.student)
if args.dataset == Datasets.CIFAR100:
train_data = CIFAR100(root=args.target, train=True, download=False,
transform=get_transform(config.target_size, True, config.normalize))
eval_data = CIFAR100(root=args.target, train=False, download=False,
transform=get_transform(config.target_size, False, config.normalize))
test_data = CIFAR100(root=args.test, train=False, download=False,
transform=get_transform(config.target_size, False, config.normalize))
elif args.target == args.test:
datasets, split = ConcatAndSplitDatasets(LoadImageFolders([args.target], args, False), DA_SPLIT)
train_data, eval_data, test_data = datasets
setattr(args, 'split', split)
else:
datasets, split = ConcatAndSplitDatasets(LoadImageFolders([args.target], args, False), DEFAULT_SPLIT)
train_data, eval_data = datasets
setattr(args, 'split', split)
if args.dataset == Datasets.VisDA2017:
test_data = CustomDataset(root_dir=args.test, transform=get_transform(config.target_size, False, None))
else:
test_data = ImageFolder(root=args.test, transform=get_transform(config.target_size, False, None))
student = get_pretrained_model(args.student, config.num_classes)
teacher = get_model(args.teacher, num_classes=config.num_classes)
teacher.load_state_dict(torch.load(args.teacher_dir))
module_kwargs = {
'kernel_size': 3,
'padding': 1,
'stride': 1
}
encoder = Encoder(3, config.num_classes, args.latent_size, [64, 128, 256], config.target_size,
scale_strategy=[0.5, 0.5], **module_kwargs)
decoder = Generator(img_size=config.target_size, latent_size=args.latent_size, num_classes=config.num_classes,
in_channels=3, hidden_dims=[256, 128, 64], scale_strategy=[2, 2], **module_kwargs)
loader = {
'eval': DataLoader(eval_data, shuffle=False, sampler=None, **loader_kwargs),
'test': DataLoader(test_data, shuffle=False, sampler=None, **loader_kwargs),
}
scheduler = scheduler_dict[args.sched_type](epoch=args.epoch, a=args.a, b=args.b)
setattr(args, 'scheduler', scheduler)
if (args.ablation != Ablation.CurriculumKD) or (
args.ablation == Ablation.NoAblation and args.baseline != Baseline.NoBaseline):
loader['train'] = DataLoader(train_data, shuffle=True, **loader_kwargs)
else:
logger.info(f'Getting uncertainty of train data by teacher')
logger.info(
validate(model=teacher, criteria=metrics, loader=DataLoader(train_data, shuffle=False, **loader_kwargs),
args=args))
logger.info(
validate(model=teacher, criteria=metrics, loader=DataLoader(eval_data, shuffle=False, **loader_kwargs),
args=args))
logger.info(
validate(model=teacher, criteria=metrics, loader=DataLoader(test_data, shuffle=False, **loader_kwargs),
args=args))
ff = get_ff(teacher, DataLoader(train_data, shuffle=False, **loader_kwargs))
logger.info(f'ff = {ff}')
uncertainty = validate(model=teacher,
criteria=Uncertainty(mode=Uncertainty.Energy, num_classes=config.num_classes, ff=ff,
t=0.9),
# criteria=Uncertainty(mode=Uncertainty.MaxSoftmax),
loader=DataLoader(train_data, shuffle=False, **loader_kwargs),
args=args)
uncertainty = uncertainty.get_results()
# Scale uncertainty to [0,1] if needed.
# Mind that since eval_data is applied with random crop, uncertainty will be slightly different in each run.
# if uncertainty.min() < 0:
# uncertainty -= uncertainty.min().floor()
# if uncertainty.max() > 1:
# uncertainty /= uncertainty.max().ceil()
uncertainty = uncertainty.detach().cpu()
# uncertainty = torch.ones_like(uncertainty)
logger.info(pd.DataFrame(uncertainty).describe())
train_data = CompositeDataset([train_data, TensorDataset(uncertainty)])
loader['train'] = DataLoader(train_data, shuffle=True, collate_fn=collate_wrapper, **loader_kwargs)
setattr(args, 'curriculum', uncertainty.sort())
s_optimizer = optim.Adam(student.parameters(), lr=args.lr, weight_decay=args.wd)
if args.baseline != Baseline.NoBaseline:
# student.load_state_dict(torch.load(args.s_dir)['student'])
student.load_state_dict(torch.load(args.s_dir)['state_dict'])
if args.ablation in [Ablation.NoAblation, Ablation.NoAnchor] and args.baseline == Baseline.NoBaseline:
# Module 1: Data-Free Learning
d_optimizer = optim.Adam(decoder.parameters(), args.d_lr)
e_optimizer = optim.Adam(encoder.parameters(), args.e_lr)
d_scheduler = CosineAnnealingLR(d_optimizer, T_max=args.g_epoch)
s_scheduler = CosineAnnealingLR(s_optimizer, T_max=args.g_epoch)
e_scheduler = CosineAnnealingLR(e_optimizer, T_max=args.g_epoch)
epoch_offset = 0
if Stage.Df == resume['cur_stage']:
epoch_offset = resume['epoch'] + 1
decoder.load_state_dict(resume['decoder'])
encoder.load_state_dict(resume['encoder'])
student.load_state_dict(resume['student'])
d_scheduler.load_state_dict(resume['sched'][0])
s_scheduler.load_state_dict(resume['sched'][1])
e_scheduler.load_state_dict(resume['sched'][2])
d_optimizer.load_state_dict(resume['optim'][0])
s_optimizer.load_state_dict(resume['optim'][1])
e_optimizer.load_state_dict(resume['optim'][2])
args.best_result = resume['best_result']
logger.info(f'Resume at Stage 1, Epoch {epoch_offset}/{args.g_epoch}')
if resume['cur_stage'] in [Stage.NoResume, Stage.Df]:
decoder, student, encoder = df_train(teacher=teacher,
student=student,
encoder=encoder,
decoder=decoder,
criterion=(DecoderLoss(t=1), KLDivLoss(), CVAELoss()),
optimizer=(d_optimizer, s_optimizer, e_optimizer),
scheduler=(d_scheduler, s_scheduler, e_scheduler),
n_epochs=args.g_epoch,
s_val=(loader['test'], metrics, best_metric),
args=args,
epoch_offset=epoch_offset)
else:
decoder.load_state_dict(torch.load(args.g_dir)['decoder'])
student.load_state_dict(torch.load(args.g_dir)['student'])
encoder.load_state_dict(torch.load(args.g_dir)['encoder'])
# Module 2: Anchor Learning
anchor = AnchorNet(latent_size=args.latent_size, num_classes=config.num_classes)
if args.ablation != Ablation.NoAnchor:
a_optimizer = optim.Adam(anchor.parameters(), lr=args.a_lr)
a_scheduler = CosineAnnealingLR(a_optimizer, T_max=args.a_epoch)
setattr(args, 'model', 'anchor')
setattr(args, 'cur_stage', Stage.Anchor)
epoch_offset = 0
if Stage.Anchor == resume['cur_stage']:
epoch_offset = resume['epoch'] + 1
a_optimizer.load_state_dict(resume['optim'])
# a_scheduler.load_state_dict(resume['sched'])
anchor.load_state_dict(resume['state_dict'])
logger.info(f'Resume at Stage 2, Epoch {epoch_offset}/{args.a_epoch}')
if resume['cur_stage'] in [Stage.NoResume, Stage.Anchor, Stage.Df]:
run(model=anchor,
criterion=AnchorLoss(mode='energy', t=1, invariant=args.invariant),
optimizer=a_optimizer,
scheduler=a_scheduler,
n_epochs=args.a_epoch,
dataloader=loader,
eval_metrics=AnchorLoss(mode='energy', t=1, invariant=args.invariant),
do_train=True,
do_eval=True,
teacher=teacher,
decoder=decoder,
encoder=encoder,
save_best=lambda cur, prev: True if prev is None else (cur['AnchorLoss'] < prev['AnchorLoss']),
args=args,
epoch_offset=epoch_offset)
else:
anchor.load_state_dict(torch.load(args.a_dir)['state_dict'])
else:
logger.info(f'Entering No-Anchor Ablation Mode. Skipping Stage 2...')
# Module 3: Mixup Learning
setattr(args, 'model', args.student)
setattr(args, 'cur_stage', Stage.Distill)
s_optimizer = optim.Adam(student.parameters(), lr=args.lr, weight_decay=args.wd)
s_scheduler = ConstantLR(s_optimizer)
epoch_offset = 0
if Stage.Distill == resume['cur_stage']:
epoch_offset = resume['epoch'] + 1
s_optimizer.load_state_dict(resume['optim'])
s_scheduler.load_state_dict(resume['sched'])
student.load_state_dict(resume['state_dict'])
logger.info(f'Resume at Stage 3, Epoch {epoch_offset}/{args.epoch}')
results = run(model=student,
criterion=DistillLoss(t=10),
optimizer=s_optimizer,
scheduler=s_scheduler,
eval_metrics=metrics,
n_epochs=args.epoch,
dataloader=loader,
do_eval=True,
do_test=True,
save_best=best_metric,
args=args,
teacher=teacher,
encoder=encoder,
decoder=decoder,
anchor=anchor,
epoch_offset=epoch_offset)
elif args.ablation == Ablation.NoKD or args.baseline == Baseline.Finetune:
logger.info(f'Teacher: {validate(teacher, criteria=metrics, loader=loader["test"], args=args)}')
results = run(student,
criterion=CrossEntropy(),
optimizer=s_optimizer,
scheduler=ConstantLR(s_optimizer),
eval_metrics=metrics,
n_epochs=args.epoch,
dataloader=loader,
do_eval=True,
do_test=True,
save_best=best_metric, args=args)
elif args.ablation == Ablation.RawKD or args.baseline == Baseline.KD:
logger.info(f'Teacher: {validate(teacher, criteria=metrics, loader=loader["test"], args=args)}')
results = run(student,
criterion=DistillLoss(t=10),
optimizer=s_optimizer,
scheduler=ConstantLR(s_optimizer),
eval_metrics=metrics,
n_epochs=args.epoch,
dataloader=loader,
do_eval=True,
do_test=True,
save_best=best_metric,
args=args,
teacher=teacher)
elif args.ablation == Ablation.HyperSearch:
res = {}
step_size = 0.1
for a in np.arange(step_size, 1 + step_size / 10, step_size):
res[f'{a}'] = {}
for b in np.arange(0.6, 1 + step_size / 10, step_size):
logger.info(f'----------Hyper Setting: a={a},b={b}----------')
scheduler = scheduler_dict[args.sched_type](epoch=args.epoch, a=a, b=b)
setattr(args, 'scheduler', scheduler)
seed_everything(args.seed)
anchor = AnchorNet(latent_size=args.latent_size, num_classes=config.num_classes)
decoder.load_state_dict(torch.load(args.g_dir)['decoder'])
student.load_state_dict(torch.load(args.g_dir)['student'])
encoder.load_state_dict(torch.load(args.g_dir)['encoder'])
anchor.load_state_dict(torch.load(args.a_dir)['state_dict'])
teacher.load_state_dict(torch.load(args.teacher_dir))
s_optimizer = optim.Adam(student.parameters(), lr=args.lr, weight_decay=args.wd)
s_scheduler = ConstantLR(s_optimizer)
metrics.reset()
results = run(model=student,
criterion=DistillLoss(t=10),
optimizer=s_optimizer,
scheduler=s_scheduler,
eval_metrics=metrics,
n_epochs=args.epoch,
dataloader=loader,
do_eval=True,
do_test=True,
save_best=best_metric,
args=args,
teacher=teacher,
encoder=encoder,
decoder=decoder,
anchor=anchor)
res[f'{a}'][f'{b}'] = results['test']
res_json = json.dumps(res)
with open(os.path.join(args.log_dir, 'hyper_search.json'), 'w') as f:
f.write(res_json)
save_results(results['train'], os.path.join(args.log_dir, 'train.csv'))
if __name__ == '__main__':
main()
# try:
# main()
# except:
# for obj in gc.get_objects():
# try:
# if torch.is_tensor(obj) or (hasattr(obj, 'data') and torch.is_tensor(obj.data)):
# logger.info(f'{mode(obj)}, {obj.size()}')
# except:
# pass