forked from chineseocr/chineseocr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
101 lines (85 loc) · 3.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sun Aug 4 01:01:37 2019
main
@author: chineseocr
"""
from text.detector.detectors import TextDetector
from apphelper.image import rotate_cut_img,sort_box
import numpy as np
from PIL import Image
class TextOcrModel(object):
def __init__(self,ocrModel,textModel,angleModel):
self.ocrModel = ocrModel
self.textModel = textModel
self.angleModel = angleModel
def detect_angle(self,img):
"""
detect text angle in [0,90,180,270]
@@img:np.array
"""
angle = self.angleModel(img)
if angle==90:
im = Image.fromarray(img).transpose(Image.ROTATE_90)
img = np.array(im)
elif angle==180:
im = Image.fromarray(img).transpose(Image.ROTATE_180)
img = np.array(im)
elif angle==270:
im = Image.fromarray(img).transpose(Image.ROTATE_270)
img = np.array(im)
return img,angle
def detect_box(self,img,scale=600,maxScale=900):
"""
detect text angle in [0,90,180,270]
@@img:np.array
"""
boxes,scores = self.textModel(img,scale,maxScale)
return boxes,scores
def box_cluster(self,img,boxes,scores,**args):
MAX_HORIZONTAL_GAP= args.get('MAX_HORIZONTAL_GAP',100)
MIN_V_OVERLAPS = args.get('MIN_V_OVERLAPS',0.6)
MIN_SIZE_SIM = args.get('MIN_SIZE_SIM',0.6)
textdetector = TextDetector(MAX_HORIZONTAL_GAP,MIN_V_OVERLAPS,MIN_SIZE_SIM)
shape = img.shape[:2]
TEXT_PROPOSALS_MIN_SCORE = args.get('TEXT_PROPOSALS_MIN_SCORE',0.7)
TEXT_PROPOSALS_NMS_THRESH = args.get('TEXT_PROPOSALS_NMS_THRESH',0.3)
TEXT_LINE_NMS_THRESH = args.get('TEXT_LINE_NMS_THRESH',0.3)
LINE_MIN_SCORE = args.get('LINE_MIN_SCORE',0.8)
boxes,scores = textdetector.detect(boxes,
scores[:, np.newaxis],
shape,
TEXT_PROPOSALS_MIN_SCORE,
TEXT_PROPOSALS_NMS_THRESH,
TEXT_LINE_NMS_THRESH,
LINE_MIN_SCORE
)
return boxes,scores
def ocr_batch(self,img,boxes,leftAdjustAlph=0.0,rightAdjustAlph=0.0):
"""
batch for ocr
"""
im = Image.fromarray(img)
newBoxes = []
for index,box in enumerate(boxes):
partImg,box = rotate_cut_img(im,box,leftAdjustAlph,rightAdjustAlph)
box['img'] = partImg.convert('L')
newBoxes.append(box)
res = self.ocrModel(newBoxes)
return res
def model(self,img,**args):
detectAngle = args.get('detectAngle',False)
if detectAngle:
img,angle = self.detect_angle(img)
else:
angle = 0
scale = args.get('scale',608)
maxScale = args.get('maxScale',608)
boxes,scores = self.detect_box(img,scale,maxScale)##文字检测
boxes,scores = self.box_cluster(img,boxes,scores,**args)
boxes = sort_box(boxes)
leftAdjustAlph = args.get('leftAdjustAlph',0)
rightAdjustAlph = args.get('rightAdjustAlph',0)
res = self.ocr_batch(img,boxes,leftAdjustAlph,rightAdjustAlph)
return res,angle