-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathDESCRIPTION
68 lines (68 loc) · 2.16 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
Package: DoubleML
Type: Package
Title: Double Machine Learning in R
Version: 1.0.0.9000
Authors@R: c(
person("Philipp", "Bach", email = "[email protected]", role=c("aut", "cre")),
person("Victor", "Chernozhukov", role="aut"),
person("Malte S.", "Kurz", email = "[email protected]", role="aut"),
person("Martin", "Spindler", email="[email protected]", role="aut"),
person("Klaassen", "Sven", email="[email protected]", role="aut"))
Description: Implementation of the double/debiased machine learning framework of
Chernozhukov et al. (2018) <doi:10.1111/ectj.12097> for partially linear
regression models, partially linear instrumental variable regression models,
interactive regression models and interactive instrumental variable
regression models. 'DoubleML' allows estimation of the nuisance parts in
these models by machine learning methods and computation of the Neyman
orthogonal score functions. 'DoubleML' is built on top of 'mlr3' and the
'mlr3' ecosystem. The object-oriented implementation of 'DoubleML' based on
the 'R6' package is very flexible. More information available in the
publication in the Journal of Statistical Software: <doi:10.18637/jss.v108.i03>.
License: MIT + file LICENSE
URL: https://docs.doubleml.org/stable/index.html, https://github.com/DoubleML/doubleml-for-r/
BugReports: https://github.com/DoubleML/doubleml-for-r/issues
Encoding: UTF-8
Depends:
R (>= 3.5.0)
Imports:
R6 (>= 2.4.1),
data.table (>= 1.12.8),
stats,
checkmate,
mlr3 (>= 0.5.0),
mlr3tuning (>= 0.3.0),
mvtnorm,
utils,
clusterGeneration,
readstata13,
mlr3learners (>= 0.3.0),
mlr3misc
Roxygen: list(markdown = TRUE, r6 = TRUE)
RoxygenNote: 7.3.1
Suggests:
knitr,
rmarkdown,
testthat,
covr,
patrick (>= 0.1.0),
paradox (>= 0.4.0),
dplyr,
glmnet,
lgr,
ranger,
sandwich,
AER,
rpart,
bbotk,
mlr3pipelines
VignetteBuilder: knitr
Collate:
'double_ml.R'
'double_ml_data.R'
'double_ml_iivm.R'
'double_ml_irm.R'
'double_ml_pliv.R'
'double_ml_plr.R'
'helper.R'
'datasets.R'
'zzz.R'