forked from NVIDIA/NeMo-Guardrails
-
Notifications
You must be signed in to change notification settings - Fork 0
/
actions.py
77 lines (62 loc) · 2.47 KB
/
actions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
from typing import Optional
from langchain.llms.base import BaseLLM
from nemoguardrails.actions.actions import ActionResult, action
from nemoguardrails.actions.llm.utils import llm_call
from nemoguardrails.context import llm_call_info_var
from nemoguardrails.llm.params import llm_params
from nemoguardrails.llm.taskmanager import LLMTaskManager
from nemoguardrails.llm.types import Task
from nemoguardrails.logging.explain import LLMCallInfo
from nemoguardrails.utils import new_event_dict
log = logging.getLogger(__name__)
@action(is_system_action=True)
async def self_check_input(
llm_task_manager: LLMTaskManager,
context: Optional[dict] = None,
llm: Optional[BaseLLM] = None,
):
"""Checks the input from the user.
Prompt the LLM, using the `check_input` task prompt, to determine if the input
from the user should be allowed or not.
Returns:
True if the input should be allowed, False otherwise.
"""
user_input = context.get("user_message")
if user_input:
prompt = llm_task_manager.render_task_prompt(
task=Task.SELF_CHECK_INPUT,
context={
"user_input": user_input,
},
)
# Initialize the LLMCallInfo object
llm_call_info_var.set(LLMCallInfo(task=Task.SELF_CHECK_INPUT.value))
with llm_params(llm, temperature=0.0):
check = await llm_call(llm, prompt)
check = check.lower().strip()
log.info(f"Input self-checking result is: `{check}`.")
if "yes" in check:
return ActionResult(
return_value=False,
events=[
new_event_dict(
"mask_prev_user_message", intent="unanswerable message"
)
],
)
return True