forked from hsd1503/resnet1d
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
374 lines (318 loc) · 12.4 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
import numpy as np
import pandas as pd
import scipy.io
from matplotlib import pyplot as plt
import pickle
from sklearn.model_selection import train_test_split
from collections import Counter
from tqdm import tqdm
def preprocess_physionet():
"""
download the raw data from https://physionet.org/content/challenge-2017/1.0.0/,
and put it in ../data/challenge2017/
The preprocessed dataset challenge2017.pkl can also be found at https://drive.google.com/drive/folders/1AuPxvGoyUbKcVaFmeyt3xsqj6ucWZezf
"""
# read label
label_df = pd.read_csv('../data/challenge2017/REFERENCE-v3.csv', header=None)
label = label_df.iloc[:,1].values
print(Counter(label))
# read data
all_data = []
filenames = pd.read_csv('../data/challenge2017/training2017/RECORDS', header=None)
filenames = filenames.iloc[:,0].values
print(filenames)
for filename in tqdm(filenames):
mat = scipy.io.loadmat('../data/challenge2017/training2017/{0}.mat'.format(filename))
mat = np.array(mat['val'])[0]
all_data.append(mat)
all_data = np.array(all_data)
res = {'data':all_data, 'label':label}
with open('../data/challenge2017/challenge2017.pkl', 'wb') as fout:
pickle.dump(res, fout)
def slide_and_cut(X, Y, window_size, stride, output_pid=False, datatype=4):
out_X = []
out_Y = []
out_pid = []
n_sample = X.shape[0]
mode = 0
for i in range(n_sample):
tmp_ts = X[i]
tmp_Y = Y[i]
if tmp_Y == 0:
i_stride = stride
elif tmp_Y == 1:
if datatype == 4:
i_stride = stride//6
elif datatype == 2:
i_stride = stride//10
elif datatype == 2.1:
i_stride = stride//7
elif tmp_Y == 2:
i_stride = stride//2
elif tmp_Y == 3:
i_stride = stride//20
for j in range(0, len(tmp_ts)-window_size, i_stride):
out_X.append(tmp_ts[j:j+window_size])
out_Y.append(tmp_Y)
out_pid.append(i)
if output_pid:
return np.array(out_X), np.array(out_Y), np.array(out_pid)
else:
return np.array(out_X), np.array(out_Y)
def read_data_physionet_2_clean_federated(m_clients, test_ratio=0.2, window_size=3000, stride=500):
"""
- only N A, no O P
- federated dataset, evenly cut the entire dataset into m_clients pieces
"""
# read pkl
with open('../data/challenge2017/challenge2017.pkl', 'rb') as fin:
res = pickle.load(fin)
## scale data
all_data = res['data']
for i in range(len(all_data)):
tmp_data = all_data[i]
tmp_std = np.std(tmp_data)
tmp_mean = np.mean(tmp_data)
all_data[i] = (tmp_data - tmp_mean) / tmp_std
all_data_raw = res['data']
all_data = []
## encode label
all_label = []
for i in range(len(res['label'])):
if res['label'][i] == 'A':
all_label.append(1)
all_data.append(res['data'][i])
elif res['label'][i] == 'N':
all_label.append(0)
all_data.append(res['data'][i])
all_label = np.array(all_label)
all_data = np.array(all_data)
# split into m_clients
shuffle_pid = np.random.permutation(len(all_label))
m_clients_pid = np.array_split(shuffle_pid, m_clients)
all_label_list = [all_label[i] for i in m_clients_pid]
all_data_list = [all_data[i] for i in m_clients_pid]
out_data = []
for i in range(m_clients):
print('clinet {}'.format(i))
tmp_label = all_label_list[i]
tmp_data = all_data_list[i]
# split train test
X_train, X_test, Y_train, Y_test = train_test_split(tmp_data, tmp_label, test_size=test_ratio, random_state=0)
# slide and cut
print('before: ')
print(Counter(Y_train), Counter(Y_test))
X_train, Y_train = slide_and_cut(X_train, Y_train, window_size=window_size, stride=stride, datatype=2.1)
X_test, Y_test, pid_test = slide_and_cut(X_test, Y_test, window_size=window_size, stride=stride, datatype=2.1, output_pid=True)
print('after: ')
print(Counter(Y_train), Counter(Y_test))
# shuffle train
shuffle_pid = np.random.permutation(Y_train.shape[0])
X_train = X_train[shuffle_pid]
Y_train = Y_train[shuffle_pid]
X_train = np.expand_dims(X_train, 1)
X_test = np.expand_dims(X_test, 1)
out_data.append([X_train, X_test, Y_train, Y_test, pid_test])
return out_data
def read_data_physionet_2_clean(window_size=3000, stride=500):
"""
only N A, no O P
"""
# read pkl
with open('../data/challenge2017/challenge2017.pkl', 'rb') as fin:
res = pickle.load(fin)
## scale data
all_data = res['data']
for i in range(len(all_data)):
tmp_data = all_data[i]
tmp_std = np.std(tmp_data)
tmp_mean = np.mean(tmp_data)
all_data[i] = (tmp_data - tmp_mean) / tmp_std
all_data_raw = res['data']
all_data = []
## encode label
all_label = []
for i in range(len(res['label'])):
if res['label'][i] == 'A':
all_label.append(1)
all_data.append(res['data'][i])
elif res['label'][i] == 'N':
all_label.append(0)
all_data.append(res['data'][i])
all_label = np.array(all_label)
all_data = np.array(all_data)
# split train test
X_train, X_test, Y_train, Y_test = train_test_split(all_data, all_label, test_size=0.1, random_state=0)
# slide and cut
print('before: ')
print(Counter(Y_train), Counter(Y_test))
X_train, Y_train = slide_and_cut(X_train, Y_train, window_size=window_size, stride=stride, datatype=2.1)
X_test, Y_test, pid_test = slide_and_cut(X_test, Y_test, window_size=window_size, stride=stride, datatype=2.1, output_pid=True)
print('after: ')
print(Counter(Y_train), Counter(Y_test))
# shuffle train
shuffle_pid = np.random.permutation(Y_train.shape[0])
X_train = X_train[shuffle_pid]
Y_train = Y_train[shuffle_pid]
X_train = np.expand_dims(X_train, 1)
X_test = np.expand_dims(X_test, 1)
return X_train, X_test, Y_train, Y_test, pid_test
def read_data_physionet_2(window_size=3000, stride=500):
# read pkl
with open('../data/challenge2017/challenge2017.pkl', 'rb') as fin:
res = pickle.load(fin)
## scale data
all_data = res['data']
for i in range(len(all_data)):
tmp_data = all_data[i]
tmp_std = np.std(tmp_data)
tmp_mean = np.mean(tmp_data)
all_data[i] = (tmp_data - tmp_mean) / tmp_std
all_data = res['data']
## encode label
all_label = []
for i in res['label']:
if i == 'A':
all_label.append(1)
else:
all_label.append(0)
all_label = np.array(all_label)
# split train test
X_train, X_test, Y_train, Y_test = train_test_split(all_data, all_label, test_size=0.1, random_state=0)
# slide and cut
print('before: ')
print(Counter(Y_train), Counter(Y_test))
X_train, Y_train = slide_and_cut(X_train, Y_train, window_size=window_size, stride=stride, n_class=2)
X_test, Y_test, pid_test = slide_and_cut(X_test, Y_test, window_size=window_size, stride=stride, n_class=2, output_pid=True)
print('after: ')
print(Counter(Y_train), Counter(Y_test))
# shuffle train
shuffle_pid = np.random.permutation(Y_train.shape[0])
X_train = X_train[shuffle_pid]
Y_train = Y_train[shuffle_pid]
X_train = np.expand_dims(X_train, 1)
X_test = np.expand_dims(X_test, 1)
return X_train, X_test, Y_train, Y_test, pid_test
def read_data_physionet_4(window_size=3000, stride=500):
# read pkl
with open('../data/challenge2017/challenge2017.pkl', 'rb') as fin:
res = pickle.load(fin)
## scale data
all_data = res['data']
for i in range(len(all_data)):
tmp_data = all_data[i]
tmp_std = np.std(tmp_data)
tmp_mean = np.mean(tmp_data)
all_data[i] = (tmp_data - tmp_mean) / tmp_std
## encode label
all_label = []
for i in res['label']:
if i == 'N':
all_label.append(0)
elif i == 'A':
all_label.append(1)
elif i == 'O':
all_label.append(2)
elif i == '~':
all_label.append(3)
all_label = np.array(all_label)
# split train test
X_train, X_test, Y_train, Y_test = train_test_split(all_data, all_label, test_size=0.1, random_state=0)
# slide and cut
print('before: ')
print(Counter(Y_train), Counter(Y_test))
X_train, Y_train = slide_and_cut(X_train, Y_train, window_size=window_size, stride=stride)
X_test, Y_test, pid_test = slide_and_cut(X_test, Y_test, window_size=window_size, stride=stride, output_pid=True)
print('after: ')
print(Counter(Y_train), Counter(Y_test))
# shuffle train
shuffle_pid = np.random.permutation(Y_train.shape[0])
X_train = X_train[shuffle_pid]
Y_train = Y_train[shuffle_pid]
X_train = np.expand_dims(X_train, 1)
X_test = np.expand_dims(X_test, 1)
return X_train, X_test, Y_train, Y_test, pid_test
def read_data_physionet_4_with_val(window_size=3000, stride=500):
# read pkl
with open('../data/challenge2017/challenge2017.pkl', 'rb') as fin:
res = pickle.load(fin)
## scale data
all_data = res['data']
for i in range(len(all_data)):
tmp_data = all_data[i]
tmp_std = np.std(tmp_data)
tmp_mean = np.mean(tmp_data)
all_data[i] = (tmp_data - tmp_mean) / tmp_std
## encode label
all_label = []
for i in res['label']:
if i == 'N':
all_label.append(0)
elif i == 'A':
all_label.append(1)
elif i == 'O':
all_label.append(2)
elif i == '~':
all_label.append(3)
all_label = np.array(all_label)
# split train val test
X_train, X_test, Y_train, Y_test = train_test_split(all_data, all_label, test_size=0.2, random_state=0)
X_val, X_test, Y_val, Y_test = train_test_split(X_test, Y_test, test_size=0.5, random_state=0)
# slide and cut
print('before: ')
print(Counter(Y_train), Counter(Y_val), Counter(Y_test))
X_train, Y_train = slide_and_cut(X_train, Y_train, window_size=window_size, stride=stride)
X_val, Y_val, pid_val = slide_and_cut(X_val, Y_val, window_size=window_size, stride=stride, output_pid=True)
X_test, Y_test, pid_test = slide_and_cut(X_test, Y_test, window_size=window_size, stride=stride, output_pid=True)
print('after: ')
print(Counter(Y_train), Counter(Y_val), Counter(Y_test))
# shuffle train
shuffle_pid = np.random.permutation(Y_train.shape[0])
X_train = X_train[shuffle_pid]
Y_train = Y_train[shuffle_pid]
X_train = np.expand_dims(X_train, 1)
X_val = np.expand_dims(X_val, 1)
X_test = np.expand_dims(X_test, 1)
return X_train, X_val, X_test, Y_train, Y_val, Y_test, pid_val, pid_test
def read_data_generated(n_samples, n_length, n_channel, n_classes, verbose=False):
"""
Generated data
This generated data contains one noise channel class, plus unlimited number of sine channel classes which are different on frequency.
"""
all_X = []
all_Y = []
# noise channel class
X_noise = np.random.rand(n_samples, n_channel, n_length)
Y_noise = np.array([0]*n_samples)
all_X.append(X_noise)
all_Y.append(Y_noise)
# sine channel classe
x = np.arange(n_length)
for i_class in range(n_classes-1):
scale = 2**i_class
offset_list = 2*np.pi*np.random.rand(n_samples)
X_sin = []
for i_sample in range(n_samples):
tmp_x = []
for i_channel in range(n_channel):
tmp_x.append(np.sin(x/scale+2*np.pi*np.random.rand()))
X_sin.append(tmp_x)
X_sin = np.array(X_sin)
Y_sin = np.array([i_class+1]*n_samples)
all_X.append(X_sin)
all_Y.append(Y_sin)
# combine and shuffle
all_X = np.concatenate(all_X)
all_Y = np.concatenate(all_Y)
shuffle_idx = np.random.permutation(all_Y.shape[0])
all_X = all_X[shuffle_idx]
all_Y = all_Y[shuffle_idx]
# random pick some and plot
if verbose:
for _ in np.random.permutation(all_Y.shape[0])[:10]:
fig = plt.figure()
plt.plot(all_X[_,0,:])
plt.title('Label: {0}'.format(all_Y[_]))
return all_X, all_Y
if __name__ == "__main__":
read_data_physionet_2_clean_federated(m_clients=4)