-
Notifications
You must be signed in to change notification settings - Fork 197
/
Copy pathUtils_Tensorbox.py
executable file
·427 lines (345 loc) · 15.4 KB
/
Utils_Tensorbox.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
#### Import from Tensorbox Project
import tensorflow as tf
import json
import subprocess
from scipy.misc import imread
import numpy as np
import sys
# Import DET Alg package
# import sys
# sys.path.insert(0, 'TENSORBOX')
sys.path.insert(0, 'TENSORBOX')
# Original
from utils import googlenet_load, train_utils, rect_multiclass
from utils.annolist import AnnotationLib as al
from utils.rect import Rect
#Modified
#### My import
import vid_classes
import frame
import multiclass_rectangle
import utils_image
import utils_video
import progressbar
import os
import cv2
###Best higher_dyn -0.1 | NMS overlap 0.9
# def test(image_path): shit
# im = cv2.imread(image_path,0)
# img_filt = cv2.medianBlur(im, 5)
# img_th = cv2.adaptiveThreshold(img_filt,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY,11,2)
# contours, hierarchy = cv2.findContours(img_th, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
# idx =0
# for cnt in contours:
# idx += 1
# x,y,w,h = cv2.boundingRect(cnt)
# roi=im[y:y+h,x:x+w]
# cv2.imwrite(str(idx) + '.jpg', roi)
# cv2.rectangle(im,(x,y),(x+w,y+h),(200,0,0),2)
# cv2.imshow('img',im)
####### FUNCTIONS DEFINITIONS
def NMS(rects,overlapThresh=0.3):
# if there are no boxes, return an empty list
if len(rects) == 0:
print "WARNING: Passed Empty Boxes Array"
return []
# initialize the list of picked indexes
pick = []
x1, x2, y1, y2, conf=[],[],[],[], []
for rect in rects:
x1.append(rect.x1)
x2.append(rect.x2)
y1.append(rect.y1)
y2.append(rect.y2)
conf.append(rect.true_confidence)
# grab the coordinates of the bounding boxes
x1 = np.array(x1)
y1 = np.array(y1)
x2 = np.array(x2)
y2 = np.array(y2)
conf = np.array(conf)
# compute the area of the bounding boxes and sort the bounding
# boxes by the bottom-right y-coordinate of the bounding box
area = (x2 - x1 + 1) * (y2 - y1 + 1)
idxs = np.argsort(conf)
# keep looping while some indexes still remain in the indexes
# list
while len(idxs) > 0:
# grab the last index in the indexes list, add the index
# value to the list of picked indexes, then initialize
# the suppression list (i.e. indexes that will be deleted)
# using the last index
last = len(idxs) - 1
i = idxs[last]
pick.append(i)
suppress = [last]
# loop over all indexes in the indexes list
for pos in xrange(0, last):
# grab the current index
j = idxs[pos]
# find the largest (x, y) coordinates for the start of
# the bounding box and the smallest (x, y) coordinates
# for the end of the bounding box
xx1 = max(x1[i], x1[j])
yy1 = max(y1[i], y1[j])
xx2 = min(x2[i], x2[j])
yy2 = min(y2[i], y2[j])
# compute the width and height of the bounding box
w = max(0, xx2 - xx1 + 1)
h = max(0, yy2 - yy1 + 1)
# compute the ratio of overlap between the computed
# bounding box and the bounding box in the area list
overlap = float(w * h) / area[j]
# union = area[j] + float(w * h) - overlap
# iou = overlap/union
# if there is sufficient overlap, suppress the
# current bounding box
if (overlap > overlapThresh):
suppress.append(pos)
# delete all indexes from the index list that are in the
# suppression list
idxs = np.delete(idxs, suppress)
# return only the bounding boxes that were picked
picked =[]
for i in pick: picked.append(rects[i])
return picked
def getTextIDL(annotations):
frame = -1
conf=0
silhouette=-1
xmin,ymin,xmax,ymax=0,0,0,0
detections_array=[]
if annotations.frameNr is not -1:
frame=annotations.frameNr
for rect in annotations.rects:
if rect.silhouetteID is not -1:
silhouette=rect.silhouetteID
conf = rect.score
xmin,ymin,xmax,ymax = rect.x1,rect.y1,rect.x2 ,rect.y2
detections_array.append(str(frame)+' '+str(silhouette)+' '+str(conf)+' '+str(xmin)+' '+str(ymin)+' '+str(xmax)+' '+str(ymax))
return detections_array
def writeText(annotations, file):
detections= getTextIDL(annotations)
for detection in detections:
file.write(detection + os.linesep)
def saveTextResults(filename, annotations):
if not os.path.exists(filename):
print "Created File: "+ filename
file = open(filename, 'w')
for annotation in annotations:
writeText(annotation,file)
file.close()
def get_silhouette_confidence(silhouettes_confidence):
higher=0.0
index=0
# print "conf_sil : " + str(silhouettes_confidence)
# print "conf_sil LEN : " + str(len(silhouettes_confidence))
for i in range(0,len(silhouettes_confidence)):
# print "conf_sil I : " + str(silhouettes_confidence[i])
if silhouettes_confidence[i]>higher:
higher = silhouettes_confidence[i]
index = i
# print str(index+1),str(higher)
return index+1 , higher
def get_higher_confidence(rectangles):
higher=0.0
index=0
# print "conf_sil : " + str(silhouettes_confidence)
# print "conf_sil LEN : " + str(len(silhouettes_confidence))
for rect in rectangles:
# print "conf_sil I : " + str(silhouettes_confidence[i])
if rect.true_confidence>higher:
higher = rect.true_confidence
# print str(index+1),str(higher)
# print "higher: %.2f"%higher
higher=higher*10
# print "higher: %.1f"%higher
higher=int(higher)
# print "higher: %.d"%higher
higher=float(higher)/10.0
# print "rounded max: %.1f"%(higher)
if(higher>0.5):
return higher-0.3
if(higher<0.3):
return higher-0.1
else: return higher-0.2
def print_logits(logits):
higher=0.0
index=0
# print "logits_sil shape : " + str(logits.shape)
for i in range(0,len(logits)):
# print "conf_sil I : " + str(logits[i])
for j in range(0,len(logits[i])):
if logits[i][0][j]>higher:
higher = logits[i][0][j]
index = j
print str(index+1),str(higher)
return index+1 , higher
def get_multiclass_rectangles(H, confidences, boxes, rnn_len):
boxes_r = np.reshape(boxes, (-1,
H["grid_height"],
H["grid_width"],
rnn_len,
4))
confidences_r = np.reshape(confidences, (-1,
H["grid_height"],
H["grid_width"],
rnn_len,
H['num_classes']))
# print "boxes_r shape" + str(boxes_r.shape)
# print "confidences" + str(confidences.shape)
cell_pix_size = H['region_size']
all_rects = [[[] for _ in range(H["grid_width"])] for _ in range(H["grid_height"])]
for n in range(rnn_len):
for y in range(H["grid_height"]):
for x in range(H["grid_width"]):
bbox = boxes_r[0, y, x, n, :]
abs_cx = int(bbox[0]) + cell_pix_size/2 + cell_pix_size * x
abs_cy = int(bbox[1]) + cell_pix_size/2 + cell_pix_size * y
w = bbox[2]
h = bbox[3]
# conf = np.max(confidences_r[0, y, x, n, 1:])
index, conf = get_silhouette_confidence(confidences_r[0, y, x, n, 1:])
# print index, conf
# print np.max(confidences_r[0, y, x, n, 1:])
# print "conf" + str(conf)
# print "conf" + str(confidences_r[0, y, x, n, 1:])
new_rect=multiclass_rectangle.Rectangle_Multiclass()
new_rect.set_unlabeled_rect(abs_cx,abs_cy,w,h,conf)
all_rects[y][x].append(new_rect)
# print "confidences_r" + str(confidences_r.shape)
all_rects_r = [r for row in all_rects for cell in row for r in cell]
min_conf = get_higher_confidence(all_rects_r)
acc_rects=[rect for rect in all_rects_r if rect.true_confidence>min_conf]
rects = []
for rect in all_rects_r:
if rect.true_confidence>min_conf:
r = al.AnnoRect()
r.x1 = rect.cx - rect.width/2.
r.x2 = rect.cx + rect.width/2.
r.y1 = rect.cy - rect.height/2.
r.y2 = rect.cy + rect.height/2.
r.score = rect.true_confidence
r.silhouetteID=rect.label
rects.append(r)
print len(rects),len(acc_rects)
return rects, acc_rects
# def still_image_TENSORBOX_multiclass(frames_list,path_video_folder,hypes_file,weights_file,pred_idl):
# from train import build_forward
# print("Starting DET Phase")
# det_frames_list=[]
# #### START TENSORBOX CODE ###
# idl_filename=path_video_folder+'/'+path_video_folder+'.idl'
# ### Opening Hypes file for parameters
# with open(hypes_file, 'r') as f:
# H = json.load(f)
# ### Building Network
# tf.reset_default_graph()
# googlenet = googlenet_load.init(H)
# x_in = tf.placeholder(tf.float32, name='x_in', shape=[H['image_height'], H['image_width'], 3])
# if H['use_rezoom']:
# pred_boxes, pred_logits, pred_confidences, pred_confs_deltas, pred_boxes_deltas = build_forward(H, tf.expand_dims(x_in, 0), googlenet, 'test', reuse=None)
# grid_area = H['grid_height'] * H['grid_width']
# pred_confidences = tf.reshape(tf.nn.softmax(tf.reshape(pred_confs_deltas, [grid_area * H['rnn_len'], H['num_classes']])), [grid_area, H['rnn_len'], H['num_classes']])
# pred_logits = tf.reshape(tf.nn.softmax(tf.reshape(pred_logits, [grid_area * H['rnn_len'], H['num_classes']])), [grid_area, H['rnn_len'], H['num_classes']])
# if H['reregress']:
# pred_boxes = pred_boxes + pred_boxes_deltas
# else:
# pred_boxes, pred_logits, pred_confidences = build_forward(H, tf.expand_dims(x_in, 0), googlenet, 'test', reuse=None)
# saver = tf.train.Saver()
# with tf.Session() as sess:
# sess.run(tf.initialize_all_variables())
# saver.restore(sess, weights_file )##### Restore a Session of the Model to get weights and everything working
# annolist = al.AnnoList()
# #### Starting Evaluating the images
# lenght=int(len(frames_list))
# print("%d Frames to DET"%len(frames_list))
# progress = progressbar.ProgressBar(widgets=[progressbar.Bar('=', '[', ']'), ' ',progressbar.Percentage(), ' ',progressbar.ETA()])
# frameNr=0
# skipped=0
# for i in progress(range(0, len(frames_list))):
# if utils_image.isnotBlack(frames_list[i]) & utils_image.check_image_with_pil(frames_list[i]):
# img = imread(frames_list[i])
# feed = {x_in: img}
# (np_pred_boxes,np_pred_logits, np_pred_confidences) = sess.run([pred_boxes,pred_logits, pred_confidences], feed_dict=feed)
# # print_logits(np_pred_confidences)
# pred_anno = al.Annotation()
# #pred_anno.imageName = test_anno.imageName
# # print "np_pred_confidences shape" + str(np_pred_confidences.shape)
# # print "np_pred_boxes shape" + str(np_pred_boxes.shape)
# # for i in range(0, np_pred_confidences.shape[0]):
# # print np_pred_confidences[i]
# # for j in range(0, np_pred_confidences.shape[2]):
# # print np_pred_confidences[i][0][j]
# rects, _ = get_multiclass_rectangles(H, np_pred_confidences, np_pred_boxes, rnn_len=H['rnn_len'])
# pred_anno.rects = rects
# pred_anno.imageName = frames_list[i]
# pred_anno.frameNr = frameNr
# frameNr=frameNr+1
# det_frames_list.append(frames_list[i])
# pick = NMS(rects)
# # draw_rectangles(frames_list[i],frames_list[i], pick)
# annolist.append(pred_anno)
# else: skipped=skipped+1
# saveTextResults(idl_filename,annolist)
# annolist.save(pred_idl)
# print("Skipped %d Black Frames"%skipped)
# #### END TENSORBOX CODE ###
# return det_frames_list
def bbox_det_TENSORBOX_multiclass(frames_list,path_video_folder,hypes_file,weights_file,pred_idl):
from train import build_forward
print("Starting DET Phase")
#### START TENSORBOX CODE ###
lenght=int(len(frames_list))
video_info = []
### Opening Hypes file for parameters
with open(hypes_file, 'r') as f:
H = json.load(f)
### Building Network
tf.reset_default_graph()
googlenet = googlenet_load.init(H)
x_in = tf.placeholder(tf.float32, name='x_in', shape=[H['image_height'], H['image_width'], 3])
if H['use_rezoom']:
pred_boxes, pred_logits, pred_confidences, pred_confs_deltas, pred_boxes_deltas = build_forward(H, tf.expand_dims(x_in, 0), googlenet, 'test', reuse=None)
grid_area = H['grid_height'] * H['grid_width']
pred_confidences = tf.reshape(tf.nn.softmax(tf.reshape(pred_confs_deltas, [grid_area * H['rnn_len'], H['num_classes']])), [grid_area, H['rnn_len'], H['num_classes']])
pred_logits = tf.reshape(tf.nn.softmax(tf.reshape(pred_logits, [grid_area * H['rnn_len'], H['num_classes']])), [grid_area, H['rnn_len'], H['num_classes']])
if H['reregress']:
pred_boxes = pred_boxes + pred_boxes_deltas
else:
pred_boxes, pred_logits, pred_confidences = build_forward(H, tf.expand_dims(x_in, 0), googlenet, 'test', reuse=None)
saver = tf.train.Saver()
with tf.Session() as sess:
if(int(tf.__version__.split(".")[0])==0 and int(tf.__version__.split(".")[1])<12): ### for tf v<0.12.0
sess.run(tf.initialize_all_variables())
else: ### for tf v>=0.12.0
sess.run(tf.global_variables_initializer())
saver.restore(sess, weights_file )##### Restore a Session of the Model to get weights and everything working
#### Starting Evaluating the images
print("%d Frames to DET"%len(frames_list))
progress = progressbar.ProgressBar(widgets=[progressbar.Bar('=', '[', ']'), ' ',progressbar.Percentage(), ' ',progressbar.ETA()])
frameNr=0
skipped=0
for i in progress(range(0, len(frames_list))):
current_frame = frame.Frame_Info()
current_frame.frame=frameNr
current_frame.filename=frames_list[i]
if utils_image.isnotBlack(frames_list[i]) & utils_image.check_image_with_pil(frames_list[i]):
img = imread(frames_list[i])
# test(frames_list[i])
feed = {x_in: img}
(np_pred_boxes,np_pred_logits, np_pred_confidences) = sess.run([pred_boxes,pred_logits, pred_confidences], feed_dict=feed)
_,rects = get_multiclass_rectangles(H, np_pred_confidences, np_pred_boxes, rnn_len=H['rnn_len'])
if len(rects)>0:
# pick = NMS(rects)
pick = rects
print len(rects),len(pick)
current_frame.rects=pick
frameNr=frameNr+1
video_info.insert(len(video_info), current_frame)
print len(current_frame.rects)
else: skipped=skipped+1
else: skipped=skipped+1
print("Skipped %d Black Frames"%skipped)
#### END TENSORBOX CODE ###
return video_info