forked from dmlc/xgboost
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhiggs-train.R
33 lines (28 loc) · 1.08 KB
/
higgs-train.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# install xgboost package, see R-package in root folder
require(xgboost)
require(methods)
testsize <- 550000
dtrain <- read.csv("data/training.csv", header=TRUE)
dtrain[33] <- dtrain[33] == "s"
label <- as.numeric(dtrain[[33]])
data <- as.matrix(dtrain[2:31])
weight <- as.numeric(dtrain[[32]]) * testsize / length(label)
sumwpos <- sum(weight * (label==1.0))
sumwneg <- sum(weight * (label==0.0))
print(paste("weight statistics: wpos=", sumwpos, "wneg=", sumwneg, "ratio=", sumwneg / sumwpos))
xgmat <- xgb.DMatrix(data, label = label, weight = weight, missing = -999.0)
param <- list("objective" = "binary:logitraw",
"scale_pos_weight" = sumwneg / sumwpos,
"bst:eta" = 0.1,
"bst:max_depth" = 6,
"eval_metric" = "auc",
"eval_metric" = "[email protected]",
"silent" = 1,
"nthread" = 16)
watchlist <- list("train" = xgmat)
nround = 120
print ("loading data end, start to boost trees")
bst = xgb.train(param, xgmat, nround, watchlist );
# save out model
xgb.save(bst, "higgs.model")
print ('finish training')