This page contains a curated list of examples, tutorials, blogs about XGBoost usecases. It is inspired by awesome-MXNet, awesome-php and awesome-machine-learning.
Please send a pull request if you find things that belongs to here.
- Code Examples
- Machine Learning Challenge Winning Solutions
- Tutorials
- Tools using XGBoost
- Services Powered by XGBoost
- Awards
This is a list of short codes introducing different functionalities of xgboost packages.
- Basic walkthrough of packages python R Julia
- Customize loss function, and evaluation metric python R Julia
- Boosting from existing prediction python R Julia
- Predicting using first n trees python R Julia
- Generalized Linear Model python R Julia
- Cross validation python R Julia
- Predicting leaf indices python R
Most of examples in this section are based on CLI or python version. However, the parameter settings can be applied to all versions
XGBoost is extensively used by machine learning practitioners to create state of art data science solutions, this is a list of machine learning winning solutions with XGBoost. Please send pull requests if you find ones that are missing here.
- Marios Michailidis, Mathias Müller and HJ van Veen, 1st place of the Dato Truely Native? competition. Link to the Kaggle interview.
- Vlad Mironov, Alexander Guschin, 1st place of the CERN LHCb experiment Flavour of Physics competition. Link to the Kaggle interview.
- Josef Slavicek, 3rd place of the CERN LHCb experiment Flavour of Physics competition. Link to the Kaggle interview.
- Mario Filho, Josef Feigl, Lucas, Gilberto, 1st place of the Caterpillar Tube Pricing competition. Link to the Kaggle interview.
- Qingchen Wang, 1st place of the Liberty Mutual Property Inspection. Link to [the Kaggle interview] (http://blog.kaggle.com/2015/09/28/liberty-mutual-property-inspection-winners-interview-qingchen-wang/).
- Chenglong Chen, 1st place of the Crowdflower Search Results Relevance. Link to the winning solution.
- Alexandre Barachant (“Cat”) and Rafał Cycoń (“Dog”), 1st place of the Grasp-and-Lift EEG Detection. Link to the Kaggle interview.
- Halla Yang, 2nd place of the Recruit Coupon Purchase Prediction Challenge. Link to the Kaggle interview.
- Owen Zhang, 1st place of the Avito Context Ad Clicks competition. Link to the Kaggle interview.
- XGBoost Official RMarkdown Tutorials
- Open Source Tools & Data Science Competitions by Owen Zhang - XGBoost parameter tuning tips
- Feature Importance Analysis with XGBoost in Tax audit
- Winning solution of Kaggle Higgs competition: what a single model can do
- XGBoost - eXtreme Gradient Boosting by Tong He
- How to use XGBoost algorithm in R in easy steps by TAVISH SRIVASTAVA (Chinese Translation 中文翻译 by HarryZhu)
- Kaggle Solution: What’s Cooking ? (Text Mining Competition) by MANISH SARASWAT
- Better Optimization with Repeated Cross Validation and the XGBoost model - Machine Learning with R) by Manuel Amunategui (Youtube Link) (Github Link)
- XGBoost Rossman Parameter Tuning by Norbert Kozlowski
- Featurizing log data before XGBoost by Xavier Conort, Owen Zhang etc
- West Nile Virus Competition Benchmarks & Tutorials by Anna Montoya
- Ensemble Decision Tree with XGBoost by Bing Xu
- Notes on eXtreme Gradient Boosting by ARSHAK NAVRUZYAN (iPython Notebook)
- BayesBoost - Bayesian Optimization using xgboost and sklearn API
- John Chambers Award - 2016 Winner: XGBoost R Package, by Tong He (Simon Fraser University) and Tianqi Chen (University of Washington)