-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathutils.py
79 lines (69 loc) · 2.56 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
from datetime import datetime
import random
import string
import numpy as np
import math
from random import uniform, gauss, triangular
def get_name(length):
timestamp = datetime.now().strftime("%H%M%S")
unique = ""
for x in range(length):
unique += random.choice(string.ascii_letters)
return f"{timestamp}{unique}"
def get_random(bits: int, distribution='uniform', samples=1, **kwargs):
'''
Generates samples of integer randomly distributed data.
Parameters
----------
bits: int
Number of bits for the integer data.
distribution: string
Name of the desired random distribution. Could be:
"gaussian" or "normal" for a normal distribution.
"uniform" or "rectangular" for a uniform distribution.
"triangular" for a triangular distribution.
TODO: Add more distributions
samples: int
Number of samples.
**kwargs (optional)
median: int
The center of the distribution (works only for certain distributions)
std: int
Standard deviation of the destribution (only gaussian/normal distribution)
limits: int tuple
Lower and upper limit of the dataset. By default it takes the whole range of numbers: [0,2^n-1]
Returns
-------
data
Randomized data sampled from the specified random distribution
'''
'''Pasing kwargs'''
if not 'low_limit' in kwargs:
low_limit=0 #Lower threshold for generated numbers
else:
low_limit=np.min([kwargs['low_limit'],2**bits])
if not 'high_limit' in kwargs:
high_limit=2**bits #Upper threshold for the generated data
else:
high_limit=np.min([kwargs['high_limit'],2**bits])
if not 'median' in kwargs:
median=(high_limit+low_limit)/2 #by default is centered at the mean
else:
median=kwargs['median']
if not 'variance' in kwargs:
variance=1
else:
variance=kwargs['variance']
'''Distributions case'''
data=[]
if distribution in {'uniform', 'rectangular'}:
data=(int(math.floor(uniform(low_limit,high_limit))) for i in range(samples))
elif distribution=='triangular':
data=(int(math.floor(triangular(low_limit,high_limit,mode=median))) for i in range(samples))
elif distribution in {'normal', 'gaussian'}:
while len(data)<samples:
i=int(math.floor(gauss(median,variance)))
if low_limit<=i<=high_limit: data.append(i)
else:
raise ValueError(f'{distribution} is not a valid distribution name')
return data