-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathscript_example_NSGAII.m
197 lines (146 loc) · 5.81 KB
/
script_example_NSGAII.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
% This script illustrates the NSGA-II implementation of the
% WQEISS/WMOSS/FQEISS feature selection techniques described in:
%
% Karakaya, G., Galelli, S., Ahipasaoglu, S.D., Taormina, R., 2015.
% Identifying (Quasi) Equally Informative Subsets in Feature Selection Problems
% for Classification: A Max-Relevance Min-Redundancy Approach.
% IEEE Trans. Cybern. doi:10.1109/TCYB.2015.2444435
%
%
% Copyright 2015 Riccardo Taormina ([email protected]),
% Gulsah Karakaya ([email protected];),
% Stefano Galelli ([email protected]),
% and Selin Damla Ahipasaoglu ([email protected];.
%
% Please refer to README.txt for further information.
%
%
% This file is part of Matlab-Multi-objective-Feature-Selection.
%
% Matlab-Multi-objective-Feature-Selection is free software: you can redistribute
% it and/or modify it under the terms of the GNU General Public License
% as published by the Free Software Foundation, either version 3 of the
% License, or (at your option) any later version.
%
% This code is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with MATLAB_IterativeInputSelection.
% If not, see <http://www.gnu.org/licenses/>.
%
% Environmental Intelligence Lab version
% Matteo Sangiorgio, email: [email protected]
%
clc; clear;
%% include paths
addpath('mi'); % Peng's mutual information
addpath('nsga2_MATLAB_alternative'); % LIN's NPGM (for NSGA-II)
addpath('pareto_front'); % Yi Cao's paretofront toolbox
%% Load and prepare dataset
% load dataset
filePath = 'Heart.csv';
[orig_data,varNames,varTypes] = readData(filePath);
% transform data
transf_data = transformData(orig_data,varTypes);
% normalize data
norm_data = normalizeData(transf_data);
% compute relevance and redundacy
global suRED suREL
[suRED,suREL] = computeRelevanceRedundancy(norm_data);
%% Prepare for launching the algorithms
% specify GO algorithm to use (BORG or NSGA2)
GOalgorithm = 'NSGA2';
% get algorithm options
global objFunOptions
[options,objFunOptions] = ...
getAlgorithmOptions(GOalgorithm,norm_data);
% initialize overall archive and array containing the values of the
% objctive functions (fvals)
global archive fvals ix_solutions
archive = {}; % archive of all solutions explored
fvals = []; % values of the obj function explored
% RELEVANCE - REDUNDACY - ACCURACY - #INPUTS
ix_solutions = []; % this will track which solutions are found by each algorithm
%% launch WQEISS
fprintf ('Launching WQEISS\n')
% define number of obj functions and the matlab function coding them
options.numObj = 4;
options.objfun = @objFunWQEISS;
% launch
nsga2(options);
% get solutions indexes for WQEISS
ixWQEISS = find(ix_solutions);
% compute final pareto front
ixesPF = find(paretofront(fvals(ixWQEISS,:)));
PF_WQEISS.archive = archive(ixWQEISS(ixesPF));
PF_WQEISS.fvals = fvals(ixWQEISS(ixesPF),:);
PF_WQEISS.fvals_ext = fvals(ixWQEISS(ixesPF),:);
%% launch WMOSS
fprintf ('Launching WMOSS\n')
% define number of obj functions and the matlab function coding them
options.numObj = 2;
options.objfun = @objFunWMOSS;
% launch
ix_solutions = zeros(numel(archive),1); % re-initialize ix_solutions.
% at the start of the algorithm, none
% of solutions in the archive has been
% found yet;
nsga2(options);
% get solutions indexes for WMOSS
ixWMOSS = find(ix_solutions);
% compute final pareto front
ixesPF = find(paretofront(fvals(ixWMOSS,3:4)));
PF_WMOSS.archive = archive(ixWMOSS(ixesPF));
PF_WMOSS.fvals = fvals(ixWMOSS(ixesPF),[3,4]);
PF_WMOSS.fvals_ext = fvals(ixWMOSS(ixesPF),:);
%% launch FQEISS
fprintf ('Launching FQEISS\n')
% define number of obj functions and the matlab function coding them
options.numObj = 3;
options.objfun = @objFunFQEISS;
% launch
ix_solutions = zeros(numel(archive),1); % re-initialize ix_solutions.
% at the start of the algorithm, none
% of solutions in the archive has been
% found yet;
nsga2(options);
% get solutions indexes for FQEISS
ixFQEISS = find(ix_solutions);
% compute final pareto front
ixesPF = find(paretofront(fvals(ixFQEISS,[1,2,4])));
PF_FQEISS.archive = archive(ixFQEISS(ixesPF));
PF_FQEISS.fvals = fvals(ixFQEISS(ixesPF),[1,2,4]);
PF_FQEISS.fvals_ext = fvals(ixFQEISS(ixesPF),:);
%% delta elimination for WQEISS and WMOSS
delta = 5;
PFdelta_WQEISS = deltaElimination(PF_WQEISS,delta);
PFdelta_FQEISS = deltaElimination(PF_FQEISS,delta);
%% Plot WMOSS vs PFdeltas
figure;
subplot(1,2,1);
plot(PF_WMOSS.fvals_ext(:,4), -PF_WMOSS.fvals_ext(:,3),'ro');
hold on
plot(PFdelta_WQEISS.fvals_ext(:,4), -PFdelta_WQEISS.fvals_ext(:,3),'k.');
legend({'WMOSS','WQEISS'})
title('WMOSS vs WQEISS')
xlabel('Cardinality')
ylabel('Accuracy')
axis square
subplot(1,2,2);
plot(PF_WMOSS.fvals_ext(:,4), -PF_WMOSS.fvals_ext(:,3),'ro');
hold on
plot(PFdelta_FQEISS.fvals_ext(:,4), -PFdelta_FQEISS.fvals_ext(:,3),'k.');
legend({'WMOSS','FQEISS'})
title('WMOSS vs FQEISS')
xlabel('Cardinality')
ylabel('Accuracy')
axis square
%% Plot Frequency matrices
figure('name','WQEISS (left) and FQEISS (right) frequency matrices');
subplot(1,2,1);
plotFrequencyMatrix(PFdelta_WQEISS,options.numVar,varNames)
subplot(1,2,2);
plotFrequencyMatrix(PFdelta_FQEISS,options.numVar,varNames)