-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCRT-Lottes.frag
193 lines (157 loc) · 5.19 KB
/
CRT-Lottes.frag
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
//
// PUBLIC DOMAIN CRT STYLED SCAN-LINE SHADER
//
// by Timothy Lottes
//
// This is more along the style of a really good CGA arcade monitor.
// With RGB inputs instead of NTSC.
// The shadow mask example has the mask rotated 90 degrees for less chromatic aberration.
//
// Left it unoptimized to show the theory behind the algorithm.
//
// It is an example what I personally would want as a display option for pixel art games.
// Please take and use, change, or whatever.
//
// ported, tweaked, fast version and bloom by guest.r
#ifdef GL_ES
precision mediump float;
precision mediump int;
#endif
uniform sampler2D sampler0;
in vec2 r_texcoord;
uniform vec2 u_texelDelta;
uniform vec2 u_pixelDelta;
out vec4 o_color;
const vec2 OGLSize = vec2(480.0,272.0);
const vec2 OGLInvSize = vec2(1.0/480.0,1.0/272.0);
// CRT-Lottes settings (editable)
#define shadowMask 1 // 1, 2, 3 or 4 (CRT style)
#define maskDark 0.5
#define maskLight 1.5
#define hardScan -8.0
#define hardPix -3.0
#define warpX 0.045 // x-curvature setting, 0.0 - 0.1
#define warpY 0.041 // y-curvature setting, 0.0 - 0.1
#define shape 2.0
#define brightboost 1.1
#define GAMMA 0.416 // output gamma, 0.5 is default
#define warp vec2(warpX,warpY)
vec3 ToLinear(vec3 c)
{
return c*c;
}
// Linear to sRGB.
// Assuming using sRGB typed textures this should not be needed.
vec3 ToSrgb(vec3 c)
{
return pow(c,vec3(GAMMA));
}
// Nearest emulated sample given floating point position and texel offset.
vec3 Fetch(vec2 pos,vec2 off){
pos=(floor(pos*OGLSize.xy+off)+vec2(0.5,0.5))/OGLSize;
return ToLinear(texture(sampler0,pos.xy).xyz);
}
// Distance in emulated pixels to nearest texel.
vec2 Dist(vec2 pos){pos=pos*OGLSize.xy;return -((pos-floor(pos))-vec2(0.5));}
// 1D Gaussian.
float Gaus(float pos,float scale){return exp2(scale*pow(abs(pos),shape));}
// 3-tap Gaussian filter along horz line.
vec3 Horz3(vec2 pos,float off){
vec3 b=Fetch(pos,vec2(-1.0,off));
vec3 c=Fetch(pos,vec2( 0.0,off));
vec3 d=Fetch(pos,vec2( 1.0,off));
float dst=Dist(pos).x;
// Convert distance to weight.
float scale=hardPix;
float wb=Gaus(dst-1.0,scale);
float wc=Gaus(dst+0.0,scale);
float wd=Gaus(dst+1.0,scale);
// Return filtered sample.
return (b*wb+c*wc+d*wd)/(wb+wc+wd);}
// 5-tap Gaussian filter along horz line.
vec3 Horz5(vec2 pos,float off){
vec3 a=Fetch(pos,vec2(-2.0,off));
vec3 b=Fetch(pos,vec2(-1.0,off));
vec3 c=Fetch(pos,vec2( 0.0,off));
vec3 d=Fetch(pos,vec2( 1.0,off));
vec3 e=Fetch(pos,vec2( 2.0,off));
float dst=Dist(pos).x;
// Convert distance to weight.
float scale=hardPix;
float wa=Gaus(dst-2.0,scale);
float wb=Gaus(dst-1.0,scale);
float wc=Gaus(dst+0.0,scale);
float wd=Gaus(dst+1.0,scale);
float we=Gaus(dst+2.0,scale);
// Return filtered sample.
return (a*wa+b*wb+c*wc+d*wd+e*we)/(wa+wb+wc+wd+we);}
// Return scanline weight.
float Scan(vec2 pos,float off){
float dst=Dist(pos).y;
return Gaus(dst+off,hardScan);}
// Allow nearest three lines to effect pixel.
vec3 Tri(vec2 pos){
vec3 a=Horz3(pos,-1.0);
vec3 b=Horz5(pos, 0.0);
vec3 c=Horz3(pos, 1.0);
float wa=Scan(pos,-1.0);
float wb=Scan(pos, 0.0);
float wc=Scan(pos, 1.0);
return a*wa+b*wb+c*wc;}
// Distortion of scanlines, and end of screen alpha.
vec2 Warp(vec2 pos){
pos=pos*2.0-1.0;
pos*=vec2(1.0+(pos.y*pos.y)*warp.x,1.0+(pos.x*pos.x)*warp.y);
return pos*0.5+0.5;}
// Shadow mask
vec3 Mask(vec2 pos) {
vec3 mask=vec3(maskDark,maskDark,maskDark);
// Very compressed TV style shadow mask.
if (shadowMask == 1) {
float lineM = maskLight;
float oddM = 0.0;
if(fract(pos.x / 6.0) < 0.5) oddM = 1.0;
if(fract((pos.y + oddM) / 2.0) < 0.5) lineM = maskDark;
pos.x= fract(pos.x / 3.0);
if(pos.x < 0.333) mask.r = maskLight;
else if(pos.x < 0.666) mask.g = maskLight;
else mask.b = maskLight;
mask *= lineM;
} else if (shadowMask == 2) {
// Aperture-grille.
pos.x = fract(pos.x / 3.0);
if(pos.x < 0.333) mask.r = maskLight;
else if(pos.x < 0.666) mask.g = maskLight;
else mask.b=maskLight;
} else if (shadowMask == 3) {
// Stretched VGA style shadow mask (same as prior shaders).
pos.x += pos.y * 3.0;
pos.x = fract(pos.x / 6.0);
if(pos.x < 0.333) mask.r = maskLight;
else if(pos.x < 0.666) mask.g = maskLight;
else mask.b = maskLight;
} else if (shadowMask == 4) {
// VGA style shadow mask.
pos.xy = floor(pos.xy * vec2(1.0,0.5));
pos.x += pos.y * 3.0;
pos.x = fract(pos.x / 6.0);
if(pos.x < 0.333) mask.r = maskLight;
else if(pos.x < 0.666) mask.g = maskLight;
else mask.b = maskLight;
}
return mask;
}
void main()
{
vec2 OGL2bPos = (r_texcoord + vec2(0.000001)) * (1.0/u_pixelDelta.xy);
vec2 pos = Warp(r_texcoord);
vec3 color = Tri(pos)*brightboost;
color = min(color,1.0);
color = pow(color, vec3(1.2));
color*= Mask(OGL2bPos); // Tweak by SimoneT
color = ToSrgb(color);
float black = 1.0;
if (pos.x < 0.0 || pos.x > 1.0 || pos.y < 0.0 || pos.y > 1.0) black = 0.0;
o_color.rgb = color*black;
o_color.a= 1.0;
}