-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfew_shot.py
220 lines (180 loc) · 7.01 KB
/
few_shot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import numpy as np
import torch
import torch.optim as optim
import torch.nn.functional as F
from SymQ import SymQ
from utils import fix_seed
from agent import DQNAgent
from wrapper import load_dataset
from symbolic_world import SymbolicWorldEnv
import warnings
warnings.filterwarnings("ignore")
def main(args, cfg, point_set, skeleton):
# Set up the environment
env = SymbolicWorldEnv(cfg=cfg)
# Set up the device for training
device = torch.device(f"cuda:{args.gpu_id}" if torch.cuda.is_available() else "cpu")
# Initialize and load the pretrained model
pretrain_model = SymQ(cfg, device).to(device)
if args.resume_path:
state_dict = torch.load(args.resume_path, map_location=device)
pretrain_model.load_state_dict(state_dict)
# Separate parameters for different parts of the model
model_params = list(pretrain_model.parameters())
encoder_params = (
list(pretrain_model.set_encoder.parameters())
+ list(pretrain_model.tree_encoder.parameters())
+ list(pretrain_model.linear1.parameters())
+ list(pretrain_model.linear2.parameters())
)
q_params = [
p for p in model_params if not any(id(p) == id(e) for e in encoder_params)
]
# Fix the encoder parameters (no training)
for param in encoder_params:
param.requires_grad = False
# Initialize optimizer for training
optimizer = optim.Adam(q_params, lr=args.lr)
else:
optimizer = optim.Adam(pretrain_model.parameters(), lr=args.lr)
# Initialize the DDQN agent
agent = DQNAgent(pretrain_model, optimizer, env.action_space.n)
point_set = point_set.transpose(0, 1).unsqueeze(0)
state, info = env.reset(point_set, skeleton, skeleton, None)
done = False
initial_reward = None
reward_list = [0]
log = {}
# Initial guess
while not done:
action = agent.act(state, explore=False)
next_state, reward, done, _, info = env.step(action.item())
agent.remember(state, action, reward, next_state, done)
state = next_state
if done:
initial_reward = reward.item()
if reward > 0:
reward_list.append(initial_reward)
agent.memory.push_episode()
else:
agent.memory.discard_episode()
# No need for few shot if the inital guess is good enough
if initial_reward > 0.99:
return (
initial_reward,
initial_reward,
info["agent_expr"].expr,
{},
initial_reward,
)
# Start few shot
for e in range(args.num_episodes):
state, _ = env.reset(point_set, skeleton, skeleton, None)
done = False
steps = 0
reward = 0
while not done:
if args.resume_path:
action = agent.act(state, explore=(steps <= 10))
else:
action = agent.act(state, explore=True)
next_state, reward, done, _, info = env.step(action.item())
agent.remember(state, action, reward, next_state, done)
steps += 1
state = next_state
if done:
if (
reward.item() >= 0.6 * max(reward_list)
and reward.item() not in reward_list
):
reward_list.append(reward.item())
agent.memory.push_episode()
else:
agent.memory.discard_episode()
loss = agent.replay(args.batch_size, max(reward_list), 0.99)
log[e] = {
"Reward": reward.item(),
"Expr": str(info["agent_expr"].expr),
"Loss": loss,
}
if len(reward_list) == 1:
return 0, 0, "none", log, max(reward_list)
# Enforce the agent to converge
last_loss = np.Inf
for _ in range(100):
loss = agent.replay(args.batch_size, max(reward_list))
if abs(last_loss - loss) < 1e-4:
break
last_loss = loss
# Final Expression
state, info = env.reset(point_set, skeleton, skeleton, None)
done = False
while not done:
action = agent.act(state, explore=False)
next_state, reward, done, _, info = env.step(action.item())
state = next_state
if done:
log["final"] = {
"Reward": reward.item(),
"Expr": str(info["agent_expr"].expr),
}
return initial_reward, reward.item(), info["agent_expr"].expr, log, max(reward_list)
if __name__ == "__main__":
import os
import yaml
import json
import argparse
from tqdm import tqdm
# Command-line argument parsing
parser = argparse.ArgumentParser(description="SymQ+")
parser.add_argument(
"--num_episodes", type=int, default=50, help="Number of episodes"
)
parser.add_argument("--batch_size", type=int, default=32, help="Batch size")
parser.add_argument("--lr", type=float, default=1e-5, help="Learning rate")
parser.add_argument("--seed", type=int, default=1, help="Random seed")
parser.add_argument(
"--resume_path", type=str, default="", help="Path to resume the model from"
)
parser.add_argument("--gpu_id", type=int, default=0, help="Gpu id")
parser.add_argument("--is_dummy", type=int, default=0, help="Whether training from scratch")
args = parser.parse_args()
folder_path = os.path.dirname(args.resume_path)
# Load configuration from YAML file
cfg = yaml.load(open("cfg.yaml", "r"), Loader=yaml.FullLoader)
# Update config with command-line arguments
cfg.update(vars(args))
# Find unrecovered expressions
r2_result = json.load(open(f"{folder_path}/beam_search_SSDNC_R2.json", "r"))
selected_tests = []
for eq_id, result in r2_result.items():
if "R2" in r2_result[eq_id].keys() and r2_result[eq_id]["R2"] != 1:
selected_tests.append(int(eq_id))
SSDNC_dataset = load_dataset("SSDNC", cfg)
few_shot_result = {}
for eq_id in tqdm(selected_tests):
# Set seeds for reproducibility
fix_seed(args.seed)
point_set, _, _, _, _, skeleton, _, expr = SSDNC_dataset[eq_id]
initial_reward, fewshot_reward, agent_expr, log, explore_max = main(
args, cfg, point_set, skeleton
)
few_shot_result[eq_id] = {}
few_shot_result[eq_id]["expr"] = str(expr)
few_shot_result[eq_id]["initial_reward"] = initial_reward
few_shot_result[eq_id]["fewshot_reward"] = fewshot_reward
few_shot_result[eq_id]["agent_expr"] = str(agent_expr)
few_shot_result[eq_id]["max"] = explore_max
few_shot_result[eq_id]["log"] = log
if args.is_dummy:
json.dump(
few_shot_result,
open(f"{folder_path}/few_shot_result_dummy.json", "w"),
indent=4,
)
else:
json.dump(
few_shot_result,
open(f"{folder_path}/few_shot_result.json", "w"),
indent=4,
)