forked from moucheng2017/Med-Noisy-Labels
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRun.py
executable file
·104 lines (101 loc) · 3.89 KB
/
Run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import torch
# import sys
# sys.path.append("..")
# from Train_unet import trainUnet
# from Train_ours import trainModels
from Train_GCM import trainGCMModels
# from Train_punet import train_punet
# torch.manual_seed(0)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# ====================================
if __name__ == '__main__':
# ========================================================
# comment out other train functions when u use one of them
# for noisy labels with learnt confusion matrices:
# input_dim: number of channels of input, e.g. 3 for RGB; 1 for CT
# class_no: class number
# repeat: how many times do you repeat the same experiment
# depth: depth of network, of down-samping stages
# width: number of channels in first encoder in network, the number of channels is doubled in each down-sampling stage
# train_batchsize:
# validate batchsize
# num_epochs: number of epochs
# learning rate
# data_path: path to your training data
# dataset_tag: "mnist" for MNIST digits; "brats" for BRATS; "lidc" for LIDC lung nodule datasets with 4 annotators
# label_mode: "multi" for noisy_labels
# alpha: weight of regularisation, it should be larger than 0.5, default value is 1
# ==========================================
# for training with our model
# ==========================================
# trainModels(input_dim=4,
# class_no=4,
# repeat=1,
# train_batchsize=2,
# validate_batchsize=1,
# num_epochs=20,
# learning_rate=1e-2,
# alpha=0.4,
# width=32,
# depth=4,
# data_path='/home/moucheng/Desktop/All_L0_H10',
# dataset_tag='brats',
# label_mode='multi',
# save_probability_map=True,
# low_rank_mode=True)
#
# ============================================
# for baseline with global confusion matrices
# ============================================
trainGCMModels(input_dim=4,
class_no=4,
repeat=1,
train_batchsize=2,
validate_batchsize=1,
num_epochs=2,
learning_rate=1e-2,
input_height=192,
input_width=192,
alpha=0.4,
width=32,
depth=3,
data_path='/home/moucheng/Desktop/All_L10_H10',
dataset_tag='brats',
label_mode='multi',
loss_f='noisy_label',
save_probability_map=False)
# ============================================
# for baseline without label merging:
# ============================================
# BaselineMode(input_dim=1,
# class_no=4,
# repeat=2,
# train_batchsize=16,
# validate_batchsize=1,
# num_epochs=1,
# learning_rate=1e-4,
# width=16,
# depth=3,
# network='unet',
# dataset_location='/home/moucheng/Desktop/brats',
# dataset_tag='brats',
# loss_f='ce')
# ============================================
# for probabilistic u-net
# ============================================
# train_punet(epochs=80,
# iteration=3,
# train_batch_size=20,
# lr=1e-4,
# num_filters=[32, 64, 128, 256],
# input_channels=3,
# latent_dim=6,
# no_conv_fcomb=2,
# num_classes=2,
# beta=5,
# test_samples_no=10,
# dataset_path='Path',
# dataset_tag='mnist')
# # #
#