-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
39 lines (27 loc) · 965 Bytes
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import numpy as np
from pymoo.algorithms.moo.nsga2 import NSGA2
from pymoo.core.problem import ElementwiseProblem
from pymoo.optimize import minimize
from pymoo.visualization.scatter import Scatter
class MyProblem(ElementwiseProblem):
def __init__(self):
super().__init__(n_var=2,
n_obj=2,
n_ieq_constr=2,
xl=np.array([-2, -2]),
xu=np.array([2, 2]))
def _evaluate(self, x, out, *args, **kwargs):
f1 = 100 * (x[0] ** 2 + x[1] ** 2)
f2 = (x[0] - 1) ** 2 + x[1] ** 2
g1 = 2 * (x[0] - 0.1) * (x[0] - 0.9) / 0.18
g2 = - 20 * (x[0] - 0.4) * (x[0] - 0.6) / 4.8
out["F"] = [f1, f2]
out["G"] = [g1, g2]
problem = MyProblem()
algorithm = NSGA2(pop_size=100)
res = minimize(problem,
algorithm,
("n_gen", 100),
verbose=False,
seed=1)
print()