forked from PTsolvers/Galileo23-MC1-GPU
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathperftest.jl
33 lines (29 loc) · 1.22 KB
/
perftest.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
using CUDA, BenchmarkTools
macro d2_xi(A) esc(:(($A[ix+2, iy+1] - $A[ix+1, iy+1]) - ($A[ix+1, iy+1] - $A[ix, iy+1]))) end
macro d2_yi(A) esc(:(($A[ix+1, iy+2] - $A[ix+1, iy+1]) - ($A[ix+1, iy+1] - $A[ix+1, iy]))) end
macro inn(A) esc(:($A[ix+1, iy+1])) end
function diffusion_step!(C2, C, D, dt, _dx, _dy)
ix = (blockIdx().x - 1) * blockDim().x + threadIdx().x
iy = (blockIdx().y - 1) * blockDim().y + threadIdx().y
if (ix <= size(C, 1) - 2 && iy <= size(C, 2) - 2)
@inn(C2) = @inn(C) + dt * @inn(D) * (@d2_xi(C) * _dx * _dx + @d2_yi(C) * _dy * _dy)
end
return
end
function perftest()
nx = ny = 512 * 32
C = CUDA.rand(Float64, nx, ny)
D = CUDA.rand(Float64, nx, ny)
_dx = _dy = dt = rand()
C2 = copy(C)
nthreads = (16, 16)
nblocks = cld.((nx, ny), nthreads)
t_it = @belapsed begin
CUDA.@sync @cuda threads=$nthreads blocks=$nblocks diffusion_step!($C2, $C, $D, $dt, $_dx, $_dy)
end
T_eff = (2 * 1 + 1) / 1e9 * nx * ny * sizeof(Float64) / t_it
println("T_eff = $(T_eff) GiB/s using CUDA.jl on a Nvidia Titan Xm GPU")
println("So that's cool. We are getting close to hardware limit, running at $(T_eff/310*100) % of memory copy! 🚀")
return
end
perftest()