From 3217cc6dc5e486ef2ddee694beac823fc4dc1505 Mon Sep 17 00:00:00 2001 From: Crosslad Date: Tue, 29 Oct 2024 16:51:10 +0200 Subject: [PATCH] adding notebook template --- Notebook_template.ipynb | 2428 +++++++++++++++++++++++++++++++++++++++ 1 file changed, 2428 insertions(+) create mode 100644 Notebook_template.ipynb diff --git a/Notebook_template.ipynb b/Notebook_template.ipynb new file mode 100644 index 0000000..abe1674 --- /dev/null +++ b/Notebook_template.ipynb @@ -0,0 +1,2428 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Final Python Project\n", + "\n", + "### Avocado Data Analysis\n", + "#### Done By: Team WFM\n", + "\n", + "#© ExploreAI 2024\n", + "\n", + "#---\n", + "\n", + "## Table of Contents\n", + "\n", + " Background Context\n", + "\n", + "1. Importing Packages\n", + "\n", + "2. Data Collection and Description\n", + "\n", + "3. Loading Data \n", + "\n", + "4. Data Cleaning and Filtering\n", + "\n", + "5. Exploratory Data Analysis (EDA)\n", + "\n", + "9. Conclusion and Future Work\n", + "\n", + "10. References" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + " \n", + "## **Background Context**\n", + "Back to Table of Contents\n", + "\n", + "* **Purpose:** This project focuses on analyzing avocado sales and pricing data to uncover trends and insights. The analysis includes data cleaning, filtering, and exploratory data analysis (EDA). Insights gained from this analysis can help in understanding the avocado market and predicting future trends.\n", + "* **Details:** Include information about the problem domain, the specific questions or challenges the project aims to address, and any relevant background information that sets the stage for the work.\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "\n", + "## **Importing Packages**\n", + "Back to Table of Contents\n", + "\n", + "* **Purpose:** Set up the Python environment with necessary libraries and tools.\n", + "* **Details:** List and import all the Python packages that will be used throughout the project such as Pandas for data manipulation, Matplotlib/Seaborn for visualization, scikit-learn for modeling, etc.\n", + "---" + ] + }, + { + "cell_type": "code", + "execution_count": 103, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: anyio==4.2.0 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 1)) (4.2.0)\n", + "Requirement already satisfied: appnope==0.1.3 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 2)) (0.1.3)\n", + "Requirement already satisfied: argon2-cffi==21.3.0 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 3)) (21.3.0)\n", + "Requirement already satisfied: argon2-cffi-bindings==21.2.0 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 4)) (21.2.0)\n", + "Requirement already satisfied: asttokens==2.0.5 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 5)) (2.0.5)\n", + "Requirement already satisfied: async-lru==2.0.4 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 6)) (2.0.4)\n", + "Requirement already satisfied: attrs==23.1.0 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 7)) (23.1.0)\n", + "Requirement already satisfied: Babel==2.11.0 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 8)) (2.11.0)\n", + "Requirement already satisfied: beautifulsoup4==4.12.3 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 9)) (4.12.3)\n", + "Requirement already satisfied: bleach==4.1.0 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 10)) (4.1.0)\n", + "Requirement already satisfied: Brotli==1.0.9 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 11)) (1.0.9)\n", + "Requirement already satisfied: certifi==2024.8.30 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 12)) (2024.8.30)\n", + "Requirement already satisfied: cffi==1.16.0 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 13)) (1.16.0)\n", + "Requirement already satisfied: charset-normalizer==3.3.2 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 14)) (3.3.2)\n", + "Requirement already satisfied: comm==0.2.1 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 15)) (0.2.1)\n", + "Requirement already satisfied: contourpy==1.2.1 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 16)) (1.2.1)\n", + "Requirement already satisfied: cryptography==42.0.5 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 17)) (42.0.5)\n", + "Requirement already satisfied: cycler==0.12.1 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 18)) (0.12.1)\n", + "Requirement already satisfied: debugpy==1.6.7 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 19)) (1.6.7)\n", + "Requirement already satisfied: decorator==5.1.1 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 20)) (5.1.1)\n", + "Requirement already satisfied: defusedxml==0.7.1 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 21)) (0.7.1)\n", + "Requirement already satisfied: executing==0.8.3 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 22)) (0.8.3)\n", + "Requirement already satisfied: fastjsonschema==2.16.2 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 23)) (2.16.2)\n", + "Requirement already satisfied: fonttools==4.53.1 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 24)) (4.53.1)\n", + "Requirement already satisfied: greenlet==3.0.1 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 25)) (3.0.1)\n", + "Requirement already satisfied: idna==3.7 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 26)) (3.7)\n", + "Requirement already satisfied: ipykernel==6.28.0 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 27)) (6.28.0)\n", + "Requirement already satisfied: ipython==8.25.0 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 28)) (8.25.0)\n", + "Requirement already satisfied: jedi==0.19.1 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 29)) (0.19.1)\n", + "Requirement already satisfied: Jinja2==3.1.4 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 30)) (3.1.4)\n", + "Requirement already satisfied: json5==0.9.6 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 31)) (0.9.6)\n", + "Requirement already satisfied: jsonschema==4.19.2 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 32)) (4.19.2)\n", + "Requirement already satisfied: jsonschema-specifications==2023.7.1 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 33)) (2023.7.1)\n", + "Requirement already satisfied: jupyter_client==8.6.0 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 34)) (8.6.0)\n", + "Requirement already satisfied: jupyter_core==5.7.2 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 35)) (5.7.2)\n", + "Requirement already satisfied: jupyter-events==0.10.0 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 36)) (0.10.0)\n", + "Requirement already satisfied: jupyter-lsp==2.2.0 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 37)) (2.2.0)\n", + "Requirement already satisfied: jupyter_server==2.14.1 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 38)) (2.14.1)\n", + "Requirement already satisfied: jupyter_server_terminals==0.4.4 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 39)) (0.4.4)\n", + "Requirement already satisfied: jupyterlab==4.0.11 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 40)) (4.0.11)\n", + "Requirement already satisfied: jupyterlab-pygments==0.1.2 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 41)) (0.1.2)\n", + "Requirement already satisfied: jupyterlab_server==2.25.1 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 42)) (2.25.1)\n", + "Requirement already satisfied: kiwisolver==1.4.5 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 43)) (1.4.5)\n", + "Requirement already satisfied: MarkupSafe==2.1.3 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 44)) (2.1.3)\n", + "Requirement already satisfied: matplotlib==3.9.2 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 45)) (3.9.2)\n", + "Requirement already satisfied: matplotlib-inline==0.1.6 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 46)) (0.1.6)\n", + "Requirement already satisfied: mistune==2.0.4 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 47)) (2.0.4)\n", + "Requirement already satisfied: nbclient==0.8.0 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 48)) (0.8.0)\n", + "Requirement already satisfied: nbconvert==7.10.0 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 49)) (7.10.0)\n", + "Requirement already satisfied: nbformat==5.9.2 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 50)) (5.9.2)\n", + "Requirement already satisfied: nest-asyncio==1.6.0 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 51)) (1.6.0)\n", + "Requirement already satisfied: notebook==7.0.8 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 52)) (7.0.8)\n", + "Requirement already satisfied: notebook_shim==0.2.3 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 53)) (0.2.3)\n", + "Requirement already satisfied: numpy==2.1.0 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 54)) (2.1.0)\n", + "Requirement already satisfied: overrides==7.4.0 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 55)) (7.4.0)\n", + "Requirement already satisfied: packaging==24.1 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 56)) (24.1)\n", + "Requirement already satisfied: pandas==2.2.2 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 57)) (2.2.2)\n", + "Requirement already satisfied: pandocfilters==1.5.0 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 58)) (1.5.0)\n", + "Requirement already satisfied: parso==0.8.3 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 59)) (0.8.3)\n", + "Requirement already satisfied: pexpect==4.8.0 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 60)) (4.8.0)\n", + "Requirement already satisfied: pillow==10.4.0 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 61)) (10.4.0)\n", + "Requirement already satisfied: pip==24.2 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 62)) (24.2)\n", + "Requirement already satisfied: platformdirs==3.10.0 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 63)) (3.10.0)\n", + "Requirement already satisfied: prometheus-client==0.14.1 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 64)) (0.14.1)\n", + "Requirement already satisfied: prompt-toolkit==3.0.43 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 65)) (3.0.43)\n", + "Requirement already satisfied: psutil==5.9.0 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 66)) (5.9.0)\n", + "Requirement already satisfied: ptyprocess==0.7.0 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 67)) (0.7.0)\n", + "Requirement already satisfied: pure-eval==0.2.2 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 68)) (0.2.2)\n", + "Requirement already satisfied: pycparser==2.21 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 69)) (2.21)\n", + "Requirement already satisfied: Pygments==2.15.1 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 70)) (2.15.1)\n", + "Requirement already satisfied: PyMySQL==1.0.2 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 71)) (1.0.2)\n", + "Requirement already satisfied: pyparsing==3.1.4 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 72)) (3.1.4)\n", + "Requirement already satisfied: PySocks==1.7.1 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 73)) (1.7.1)\n", + "Requirement already satisfied: python-dateutil==2.9.0.post0 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 74)) (2.9.0.post0)\n", + "Requirement already satisfied: python-json-logger==2.0.7 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 75)) (2.0.7)\n", + "Requirement already satisfied: pytz==2024.1 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 76)) (2024.1)\n", + "Requirement already satisfied: PyYAML==6.0.1 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 77)) (6.0.1)\n", + "Requirement already satisfied: pyzmq==25.1.2 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 78)) (25.1.2)\n", + "Requirement already satisfied: referencing==0.30.2 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 79)) (0.30.2)\n", + "Requirement already satisfied: requests==2.32.3 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 80)) (2.32.3)\n", + "Requirement already satisfied: rfc3339-validator==0.1.4 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 81)) (0.1.4)\n", + "Requirement already satisfied: rfc3986-validator==0.1.1 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 82)) (0.1.1)\n", + "Requirement already satisfied: rpds-py==0.10.6 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 83)) (0.10.6)\n", + "Requirement already satisfied: seaborn==0.13.2 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 84)) (0.13.2)\n", + "Requirement already satisfied: Send2Trash==1.8.2 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 85)) (1.8.2)\n", + "Requirement already satisfied: setuptools==72.1.0 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 86)) (72.1.0)\n", + "Requirement already satisfied: six==1.16.0 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 87)) (1.16.0)\n", + "Requirement already satisfied: sniffio==1.3.0 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 88)) (1.3.0)\n", + "Requirement already satisfied: soupsieve==2.5 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 89)) (2.5)\n", + "Requirement already satisfied: SQLAlchemy==2.0.30 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 90)) (2.0.30)\n", + "Requirement already satisfied: stack-data==0.2.0 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 91)) (0.2.0)\n", + "Requirement already satisfied: terminado==0.17.1 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 92)) (0.17.1)\n", + "Requirement already satisfied: tinycss2==1.2.1 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 93)) (1.2.1)\n", + "Requirement already satisfied: tornado==6.4.1 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 94)) (6.4.1)\n", + "Requirement already satisfied: traitlets==5.14.3 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 95)) (5.14.3)\n", + "Requirement already satisfied: typing_extensions==4.11.0 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 96)) (4.11.0)\n", + "Requirement already satisfied: tzdata==2024.1 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 97)) (2024.1)\n", + "Requirement already satisfied: urllib3==2.2.2 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 98)) (2.2.2)\n", + "Requirement already satisfied: wcwidth==0.2.5 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 99)) (0.2.5)\n", + "Requirement already satisfied: webencodings==0.5.1 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 100)) (0.5.1)\n", + "Requirement already satisfied: websocket-client==1.8.0 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 101)) (1.8.0)\n", + "Requirement already satisfied: wheel==0.43.0 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from -r requirements.txt (line 102)) (0.43.0)\n", + "Requirement already satisfied: colorama in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from ipython==8.25.0->-r requirements.txt (line 28)) (0.4.6)\n", + "Requirement already satisfied: pywin32>=300 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from jupyter_core==5.7.2->-r requirements.txt (line 35)) (305.1)\n", + "Requirement already satisfied: pywinpty>=2.0.1 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from jupyter_server==2.14.1->-r requirements.txt (line 38)) (2.0.10)\n", + "Requirement already satisfied: fqdn in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from jsonschema[format-nongpl]>=4.18.0->jupyter-events==0.10.0->-r requirements.txt (line 36)) (1.5.1)\n", + "Requirement already satisfied: isoduration in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from jsonschema[format-nongpl]>=4.18.0->jupyter-events==0.10.0->-r requirements.txt (line 36)) (20.11.0)\n", + "Requirement already satisfied: jsonpointer>1.13 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from jsonschema[format-nongpl]>=4.18.0->jupyter-events==0.10.0->-r requirements.txt (line 36)) (3.0.0)\n", + "Requirement already satisfied: uri-template in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from jsonschema[format-nongpl]>=4.18.0->jupyter-events==0.10.0->-r requirements.txt (line 36)) (1.3.0)\n", + "Requirement already satisfied: webcolors>=1.11 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from jsonschema[format-nongpl]>=4.18.0->jupyter-events==0.10.0->-r requirements.txt (line 36)) (24.8.0)\n", + "Requirement already satisfied: arrow>=0.15.0 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from isoduration->jsonschema[format-nongpl]>=4.18.0->jupyter-events==0.10.0->-r requirements.txt (line 36)) (1.3.0)\n", + "Requirement already satisfied: types-python-dateutil>=2.8.10 in c:\\users\\johansgr\\appdata\\local\\anaconda3\\envs\\creating_an_environment\\lib\\site-packages (from arrow>=0.15.0->isoduration->jsonschema[format-nongpl]>=4.18.0->jupyter-events==0.10.0->-r requirements.txt (line 36)) (2.9.0.20240906)\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "pip install -r requirements.txt" + ] + }, + { + "cell_type": "code", + "execution_count": 104, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd # Importing the Pandas package with an alias, pd\n", + "from sqlalchemy import create_engine, text # Importing the SQL interface. If this fails, run !pip install sqlalchemy in another cell.\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "import re #this import regex package for Python used in data cleaning" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "These packages are essential for data manipulation, visualization, and statistical analysis." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "\n", + "## **Data Collection and Description**\n", + "Back to Table of Contents\n", + "\n", + "* The dataset used in this project is sourced from [Kaggle's Avocado Prices dataset](https://www.kaggle.com/neuromusic/avocado-prices). It contains data on avocado prices and sales volume from various regions in the U.S. between 2015 and 2018.\n", + " \n", + "* **Data Fields:**\n", + "- `Date`: The date of the observation.\n", + "- `AveragePrice`: The average price of a single avocado.\n", + "- `Total Volume`: The total number of avocados sold.\n", + "- `4046`, `4225`, `4770`: Different avocado types based on PLU codes.\n", + "- `Region`: The geographical region.\n", + "- `Type`: The type of avocado (conventional or organic).\n", + "- `Year`: The year of the observation." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "#Please use code cells to code in and do not forget to comment your code." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "\n", + "## **Loading Data**\n", + "Back to Table of Contents\n", + "\n", + "The data is loaded into a Pandas DataFrame for easy manipulation:" + ] + }, + { + "cell_type": "code", + "execution_count": 125, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DateAveragePriceTotalVolumeplu4046plu4225plu4770TotalBagsSmallBagsLargeBagsXLargeBagstyperegion
02015-01-041.2240873.282819.5028287.4249.909716.469186.93529.530.0conventionalAlbany
12015-01-041.791373.9557.42153.880.001162.651162.650.000.0organicAlbany
22015-01-041.00435021.49364302.3923821.1682.1546815.7916707.1530108.640.0conventionalAtlanta
32015-01-041.763846.691500.15938.350.001408.191071.35336.840.0organicAtlanta
42015-01-041.08788025.0653987.31552906.0439995.03141136.68137146.073990.610.0conventionalBaltimoreWashington
\n", + "
" + ], + "text/plain": [ + " Date AveragePrice TotalVolume plu4046 plu4225 plu4770 \\\n", + "0 2015-01-04 1.22 40873.28 2819.50 28287.42 49.90 \n", + "1 2015-01-04 1.79 1373.95 57.42 153.88 0.00 \n", + "2 2015-01-04 1.00 435021.49 364302.39 23821.16 82.15 \n", + "3 2015-01-04 1.76 3846.69 1500.15 938.35 0.00 \n", + "4 2015-01-04 1.08 788025.06 53987.31 552906.04 39995.03 \n", + "\n", + " TotalBags SmallBags LargeBags XLargeBags type \\\n", + "0 9716.46 9186.93 529.53 0.0 conventional \n", + "1 1162.65 1162.65 0.00 0.0 organic \n", + "2 46815.79 16707.15 30108.64 0.0 conventional \n", + "3 1408.19 1071.35 336.84 0.0 organic \n", + "4 141136.68 137146.07 3990.61 0.0 conventional \n", + "\n", + " region \n", + "0 Albany \n", + "1 Albany \n", + "2 Atlanta \n", + "3 Atlanta \n", + "4 BaltimoreWashington " + ] + }, + "execution_count": 125, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = pd.read_csv(\"Avocado_data.csv\")\n", + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This DataFrame will be used for all subsequent analysis." + ] + }, + { + "cell_type": "code", + "execution_count": 126, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 53415 entries, 0 to 53414\n", + "Data columns (total 12 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 Date 53415 non-null object \n", + " 1 AveragePrice 53415 non-null float64\n", + " 2 TotalVolume 53415 non-null float64\n", + " 3 plu4046 53415 non-null float64\n", + " 4 plu4225 53415 non-null float64\n", + " 5 plu4770 53415 non-null float64\n", + " 6 TotalBags 53415 non-null float64\n", + " 7 SmallBags 41025 non-null float64\n", + " 8 LargeBags 41025 non-null float64\n", + " 9 XLargeBags 41025 non-null float64\n", + " 10 type 53415 non-null object \n", + " 11 region 53415 non-null object \n", + "dtypes: float64(9), object(3)\n", + "memory usage: 4.9+ MB\n" + ] + } + ], + "source": [ + "df.info() # Using this function to provide a concise summary of our data and to check for null entries." + ] + }, + { + "cell_type": "code", + "execution_count": 127, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AveragePriceTotalVolumeplu4046plu4225plu4770TotalBagsSmallBagsLargeBagsXLargeBags
count53415.0000005.341500e+045.341500e+045.341500e+045.341500e+045.341500e+044.102500e+044.102500e+0441025.000000
mean1.4289108.694474e+052.982707e+052.222170e+052.053195e+042.175083e+051.039222e+052.331316e+042731.811796
std0.3931163.545274e+061.307669e+069.554624e+051.040977e+058.676947e+055.692608e+051.496622e+0522589.096454
min0.4400008.456000e+010.000000e+000.000000e+000.000000e+000.000000e+000.000000e+000.000000e+000.000000
25%1.1190911.626465e+046.947250e+022.120800e+030.000000e+007.846520e+030.000000e+000.000000e+000.000000
50%1.4000001.203525e+051.458058e+041.751663e+049.005000e+013.695310e+046.945800e+020.000000e+000.000000
75%1.6900004.542380e+051.287924e+059.351560e+043.599735e+031.110146e+053.795298e+042.814920e+030.000000
max3.4408306.103446e+072.544720e+072.047057e+072.860025e+061.629830e+071.256716e+074.324231e+06679586.800000
\n", + "
" + ], + "text/plain": [ + " AveragePrice TotalVolume plu4046 plu4225 plu4770 \\\n", + "count 53415.000000 5.341500e+04 5.341500e+04 5.341500e+04 5.341500e+04 \n", + "mean 1.428910 8.694474e+05 2.982707e+05 2.222170e+05 2.053195e+04 \n", + "std 0.393116 3.545274e+06 1.307669e+06 9.554624e+05 1.040977e+05 \n", + "min 0.440000 8.456000e+01 0.000000e+00 0.000000e+00 0.000000e+00 \n", + "25% 1.119091 1.626465e+04 6.947250e+02 2.120800e+03 0.000000e+00 \n", + "50% 1.400000 1.203525e+05 1.458058e+04 1.751663e+04 9.005000e+01 \n", + "75% 1.690000 4.542380e+05 1.287924e+05 9.351560e+04 3.599735e+03 \n", + "max 3.440830 6.103446e+07 2.544720e+07 2.047057e+07 2.860025e+06 \n", + "\n", + " TotalBags SmallBags LargeBags XLargeBags \n", + "count 5.341500e+04 4.102500e+04 4.102500e+04 41025.000000 \n", + "mean 2.175083e+05 1.039222e+05 2.331316e+04 2731.811796 \n", + "std 8.676947e+05 5.692608e+05 1.496622e+05 22589.096454 \n", + "min 0.000000e+00 0.000000e+00 0.000000e+00 0.000000 \n", + "25% 7.846520e+03 0.000000e+00 0.000000e+00 0.000000 \n", + "50% 3.695310e+04 6.945800e+02 0.000000e+00 0.000000 \n", + "75% 1.110146e+05 3.795298e+04 2.814920e+03 0.000000 \n", + "max 1.629830e+07 1.256716e+07 4.324231e+06 679586.800000 " + ] + }, + "execution_count": 127, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.describe() # Using the describe function to view summary statistics on our data in order to have an overview." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "#Please use code cells to code in and do not forget to comment your code.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "\n", + "## **Data Cleaning and Filtering**\n", + "Back to Table of Contents\n", + "\n", + "* Data cleaning includes handling missing values, filtering irrelevant data, and creating new features if necessary:\n", + "---" + ] + }, + { + "cell_type": "code", + "execution_count": 128, + "metadata": {}, + "outputs": [], + "source": [ + "#Please use code cells to code in and do not forget to comment your code.\n", + "''' This code will take the headings from dataframe and convert them into PEP 8 compliant headings and then replace the dataframe headings'''\n", + "\n", + "def pep8_compliant_column_names(df):\n", + " \"\"\"\n", + " Convert DataFrame column names to PEP 8 compliant names.\n", + " \n", + " Parameters:\n", + " df (pd.DataFrame): The DataFrame with column names to convert.\n", + " \n", + " Returns:\n", + " pd.DataFrame: DataFrame with updated column names.\n", + " \"\"\"\n", + " def convert_to_pep8(name):\n", + " # Replace spaces with underscores\n", + " name = re.sub(r'\\s+', '_', name)\n", + " # Insert underscores between adjacent capitalized words\n", + " name = re.sub(r'(?<=[a-z])(?=[A-Z])', '_', name)\n", + " # Convert to lowercase\n", + " name = name.lower()\n", + " # Remove any non-alphanumeric characters except underscores\n", + " name = re.sub(r'[^\\w_]', '', name)\n", + " # Replace multiple underscores with a single underscore\n", + " name = re.sub(r'_+', '_', name)\n", + " return name\n", + "\n", + " # Apply PEP 8 compliance to each column name\n", + " new_columns = [convert_to_pep8(col) for col in df.columns]\n", + " \n", + " # Set the new column names\n", + " df.columns = new_columns\n", + " \n", + " return df" + ] + }, + { + "cell_type": "code", + "execution_count": 129, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " date average_price total_volume plu4046 plu4225 plu4770 \\\n", + "0 2015-01-04 1.22 40873.28 2819.50 28287.42 49.90 \n", + "1 2015-01-04 1.79 1373.95 57.42 153.88 0.00 \n", + "2 2015-01-04 1.00 435021.49 364302.39 23821.16 82.15 \n", + "3 2015-01-04 1.76 3846.69 1500.15 938.35 0.00 \n", + "4 2015-01-04 1.08 788025.06 53987.31 552906.04 39995.03 \n", + "\n", + " total_bags small_bags large_bags xlarge_bags type \\\n", + "0 9716.46 9186.93 529.53 0.0 conventional \n", + "1 1162.65 1162.65 0.00 0.0 organic \n", + "2 46815.79 16707.15 30108.64 0.0 conventional \n", + "3 1408.19 1071.35 336.84 0.0 organic \n", + "4 141136.68 137146.07 3990.61 0.0 conventional \n", + "\n", + " region \n", + "0 Albany \n", + "1 Albany \n", + "2 Atlanta \n", + "3 Atlanta \n", + "4 BaltimoreWashington \n" + ] + } + ], + "source": [ + "df = pep8_compliant_column_names(df)\n", + "print(df.head())" + ] + }, + { + "cell_type": "code", + "execution_count": 130, + "metadata": {}, + "outputs": [], + "source": [ + "a = ['BaltimoreWashington', 'BuffaloRochester', 'CincinnatiDayton', 'DallasFtWorth',\n", + " 'GrandRapids', 'GreatLakes', 'HarrisburgScranton', 'HartfordSpringfield',\n", + " 'LasVegas', 'LosAngeles', 'NewOrleans', 'NewYork',\n", + " 'NorthernNewEngland', 'PhoenixTucson', 'RaleighGreensboro', 'RichmondNorfolk',\n", + " 'SanDiego', 'SanFrancisco', 'SouthCarolina', 'SouthCentral',\n", + " 'StLouis', 'TotalUS', 'WestTexNewMexico', 'BirminghamMontgomery',\n", + " 'PeoriaSpringfield', 'MiamiFtLauderdale']\n", + "b = ['Baltimore_Washington', 'Buffalo_Rochester', 'Cincinnati_Dayton', 'Dallas_Ft_Worth',\n", + " 'Grand_Rapids', 'Great_Lakes', 'Harrisburg_Scranton', 'Hartford_Springfield',\n", + " 'Las_Vegas', 'Los_Angeles', 'New_Orleans', 'New_York',\n", + " 'Northern_New_England', 'Phoenix_Tucson', 'Raleigh_Greensboro', 'Richmond_Norfolk',\n", + " 'San_Diego', 'San_Francisco', 'South_Carolina', 'South_Central',\n", + " 'St_Louis', 'Total_US', 'West_Tex_New_Mexico', 'Birmingham_Montgomery',\n", + " 'Peoria_Springfield', 'Miami_Ft_Lauderdale']\n", + "df['region'] = df['region'].replace(a, b, regex = True)" + ] + }, + { + "cell_type": "code", + "execution_count": 131, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 131, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.isnull().sum # Checking for missing values" + ] + }, + { + "cell_type": "code", + "execution_count": 132, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['Albany', 'Atlanta', 'Baltimore_Washington', 'Boise', 'Boston',\n", + " 'Buffalo_Rochester', 'California', 'Charlotte', 'Chicago',\n", + " 'Cincinnati_Dayton', 'Columbus', 'Dallas_Ft_Worth', 'Denver',\n", + " 'Detroit', 'Grand_Rapids', 'Great_Lakes', 'Harrisburg_Scranton',\n", + " 'Hartford_Springfield', 'Houston', 'Indianapolis', 'Jacksonville',\n", + " 'Las_Vegas', 'Los_Angeles', 'Louisville', 'Miami', 'Midsouth',\n", + " 'Nashville', 'New_Orleans', 'New_York', 'Northeast',\n", + " 'Northern_New_England', 'Orlando', 'Philadelphia',\n", + " 'Phoenix_Tucson', 'Pittsburgh', 'Plains', 'Portland',\n", + " 'Raleigh_Greensboro', 'Richmond_Norfolk', 'Roanoke', 'Sacramento',\n", + " 'San_Diego', 'San_Francisco', 'Seattle', 'South_Carolina',\n", + " 'South_Central', 'Southeast', 'Spokane', 'St_Louis', 'Syracuse',\n", + " 'Tampa', 'Total_US', 'West', 'West_Tex_New_Mexico',\n", + " 'Birmingham_Montgomery', 'Peoria_Springfield', 'Providence',\n", + " 'Toledo', 'Wichita', 'Miami_Ft_Lauderdale'], dtype=object)" + ] + }, + "execution_count": 132, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['region'].unique() # Using the unique method to find distinct values in the regions column" + ] + }, + { + "cell_type": "code", + "execution_count": 133, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "region\n", + "Albany 932\n", + "Atlanta 932\n", + "Baltimore_Washington 932\n", + "Boise 932\n", + "Boston 932\n", + "Buffalo_Rochester 932\n", + "California 932\n", + "Charlotte 932\n", + "Chicago 932\n", + "Cincinnati_Dayton 932\n", + "Columbus 932\n", + "Dallas_Ft_Worth 932\n", + "Denver 932\n", + "Detroit 932\n", + "Grand_Rapids 932\n", + "Great_Lakes 932\n", + "Harrisburg_Scranton 932\n", + "Hartford_Springfield 932\n", + "Houston 932\n", + "Indianapolis 932\n", + "Jacksonville 932\n", + "Las_Vegas 932\n", + "Los_Angeles 932\n", + "Louisville 932\n", + "Midsouth 932\n", + "Nashville 932\n", + "New_Orleans 932\n", + "New_York 932\n", + "South_Carolina 932\n", + "Northeast 932\n", + "Northern_New_England 932\n", + "Orlando 932\n", + "Philadelphia 932\n", + "Phoenix_Tucson 932\n", + "Pittsburgh 932\n", + "Plains 932\n", + "Portland 932\n", + "Raleigh_Greensboro 932\n", + "Richmond_Norfolk 932\n", + "Roanoke 932\n", + "Sacramento 932\n", + "San_Diego 932\n", + "San_Francisco 932\n", + "Seattle 932\n", + "West 932\n", + "South_Central 932\n", + "Southeast 932\n", + "Spokane 932\n", + "St_Louis 932\n", + "Syracuse 932\n", + "Tampa 932\n", + "Total_US 932\n", + "West_Tex_New_Mexico 929\n", + "Miami 722\n", + "Birmingham_Montgomery 618\n", + "Peoria_Springfield 618\n", + "Providence 618\n", + "Toledo 618\n", + "Wichita 618\n", + "Miami_Ft_Lauderdale 210\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 133, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['region'].value_counts() # Using the value_counts method to find the frequency of each unique value in the region column " + ] + }, + { + "cell_type": "code", + "execution_count": 134, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
dateaverage_pricetotal_volumeplu4046plu4225plu4770total_bagssmall_bagslarge_bagsxlarge_bagstype
region
Albany932932932932932932932722722722932
Atlanta932932932932932932932722722722932
Baltimore_Washington932932932932932932932722722722932
Birmingham_Montgomery618618618618618618618408408408618
Boise932932932932932932932722722722932
Boston932932932932932932932722722722932
Buffalo_Rochester932932932932932932932722722722932
California932932932932932932932722722722932
Charlotte932932932932932932932722722722932
Chicago932932932932932932932722722722932
Cincinnati_Dayton932932932932932932932722722722932
Columbus932932932932932932932722722722932
Dallas_Ft_Worth932932932932932932932722722722932
Denver932932932932932932932722722722932
Detroit932932932932932932932722722722932
Grand_Rapids932932932932932932932722722722932
Great_Lakes932932932932932932932722722722932
Harrisburg_Scranton932932932932932932932722722722932
Hartford_Springfield932932932932932932932722722722932
Houston932932932932932932932722722722932
Indianapolis932932932932932932932722722722932
Jacksonville932932932932932932932722722722932
Las_Vegas932932932932932932932722722722932
Los_Angeles932932932932932932932722722722932
Louisville932932932932932932932722722722932
Miami722722722722722722722722722722722
Miami_Ft_Lauderdale210210210210210210210000210
Midsouth932932932932932932932722722722932
Nashville932932932932932932932722722722932
New_Orleans932932932932932932932722722722932
New_York932932932932932932932722722722932
Northeast932932932932932932932722722722932
Northern_New_England932932932932932932932722722722932
Orlando932932932932932932932722722722932
Peoria_Springfield618618618618618618618408408408618
Philadelphia932932932932932932932722722722932
Phoenix_Tucson932932932932932932932722722722932
Pittsburgh932932932932932932932722722722932
Plains932932932932932932932722722722932
Portland932932932932932932932722722722932
Providence618618618618618618618408408408618
Raleigh_Greensboro932932932932932932932722722722932
Richmond_Norfolk932932932932932932932722722722932
Roanoke932932932932932932932722722722932
Sacramento932932932932932932932722722722932
San_Diego932932932932932932932722722722932
San_Francisco932932932932932932932722722722932
Seattle932932932932932932932722722722932
South_Carolina932932932932932932932722722722932
South_Central932932932932932932932722722722932
Southeast932932932932932932932722722722932
Spokane932932932932932932932722722722932
St_Louis932932932932932932932722722722932
Syracuse932932932932932932932722722722932
Tampa932932932932932932932722722722932
Toledo618618618618618618618408408408618
Total_US932932932932932932932722722722932
West932932932932932932932722722722932
West_Tex_New_Mexico929929929929929929929719719719929
Wichita618618618618618618618408408408618
\n", + "
" + ], + "text/plain": [ + " date average_price total_volume plu4046 plu4225 \\\n", + "region \n", + "Albany 932 932 932 932 932 \n", + "Atlanta 932 932 932 932 932 \n", + "Baltimore_Washington 932 932 932 932 932 \n", + "Birmingham_Montgomery 618 618 618 618 618 \n", + "Boise 932 932 932 932 932 \n", + "Boston 932 932 932 932 932 \n", + "Buffalo_Rochester 932 932 932 932 932 \n", + "California 932 932 932 932 932 \n", + "Charlotte 932 932 932 932 932 \n", + "Chicago 932 932 932 932 932 \n", + "Cincinnati_Dayton 932 932 932 932 932 \n", + "Columbus 932 932 932 932 932 \n", + "Dallas_Ft_Worth 932 932 932 932 932 \n", + "Denver 932 932 932 932 932 \n", + "Detroit 932 932 932 932 932 \n", + "Grand_Rapids 932 932 932 932 932 \n", + "Great_Lakes 932 932 932 932 932 \n", + "Harrisburg_Scranton 932 932 932 932 932 \n", + "Hartford_Springfield 932 932 932 932 932 \n", + "Houston 932 932 932 932 932 \n", + "Indianapolis 932 932 932 932 932 \n", + "Jacksonville 932 932 932 932 932 \n", + "Las_Vegas 932 932 932 932 932 \n", + "Los_Angeles 932 932 932 932 932 \n", + "Louisville 932 932 932 932 932 \n", + "Miami 722 722 722 722 722 \n", + "Miami_Ft_Lauderdale 210 210 210 210 210 \n", + "Midsouth 932 932 932 932 932 \n", + "Nashville 932 932 932 932 932 \n", + "New_Orleans 932 932 932 932 932 \n", + "New_York 932 932 932 932 932 \n", + "Northeast 932 932 932 932 932 \n", + "Northern_New_England 932 932 932 932 932 \n", + "Orlando 932 932 932 932 932 \n", + "Peoria_Springfield 618 618 618 618 618 \n", + "Philadelphia 932 932 932 932 932 \n", + "Phoenix_Tucson 932 932 932 932 932 \n", + "Pittsburgh 932 932 932 932 932 \n", + "Plains 932 932 932 932 932 \n", + "Portland 932 932 932 932 932 \n", + "Providence 618 618 618 618 618 \n", + "Raleigh_Greensboro 932 932 932 932 932 \n", + "Richmond_Norfolk 932 932 932 932 932 \n", + "Roanoke 932 932 932 932 932 \n", + "Sacramento 932 932 932 932 932 \n", + "San_Diego 932 932 932 932 932 \n", + "San_Francisco 932 932 932 932 932 \n", + "Seattle 932 932 932 932 932 \n", + "South_Carolina 932 932 932 932 932 \n", + "South_Central 932 932 932 932 932 \n", + "Southeast 932 932 932 932 932 \n", + "Spokane 932 932 932 932 932 \n", + "St_Louis 932 932 932 932 932 \n", + "Syracuse 932 932 932 932 932 \n", + "Tampa 932 932 932 932 932 \n", + "Toledo 618 618 618 618 618 \n", + "Total_US 932 932 932 932 932 \n", + "West 932 932 932 932 932 \n", + "West_Tex_New_Mexico 929 929 929 929 929 \n", + "Wichita 618 618 618 618 618 \n", + "\n", + " plu4770 total_bags small_bags large_bags \\\n", + "region \n", + "Albany 932 932 722 722 \n", + "Atlanta 932 932 722 722 \n", + "Baltimore_Washington 932 932 722 722 \n", + "Birmingham_Montgomery 618 618 408 408 \n", + "Boise 932 932 722 722 \n", + "Boston 932 932 722 722 \n", + "Buffalo_Rochester 932 932 722 722 \n", + "California 932 932 722 722 \n", + "Charlotte 932 932 722 722 \n", + "Chicago 932 932 722 722 \n", + "Cincinnati_Dayton 932 932 722 722 \n", + "Columbus 932 932 722 722 \n", + "Dallas_Ft_Worth 932 932 722 722 \n", + "Denver 932 932 722 722 \n", + "Detroit 932 932 722 722 \n", + "Grand_Rapids 932 932 722 722 \n", + "Great_Lakes 932 932 722 722 \n", + "Harrisburg_Scranton 932 932 722 722 \n", + "Hartford_Springfield 932 932 722 722 \n", + "Houston 932 932 722 722 \n", + "Indianapolis 932 932 722 722 \n", + "Jacksonville 932 932 722 722 \n", + "Las_Vegas 932 932 722 722 \n", + "Los_Angeles 932 932 722 722 \n", + "Louisville 932 932 722 722 \n", + "Miami 722 722 722 722 \n", + "Miami_Ft_Lauderdale 210 210 0 0 \n", + "Midsouth 932 932 722 722 \n", + "Nashville 932 932 722 722 \n", + "New_Orleans 932 932 722 722 \n", + "New_York 932 932 722 722 \n", + "Northeast 932 932 722 722 \n", + "Northern_New_England 932 932 722 722 \n", + "Orlando 932 932 722 722 \n", + "Peoria_Springfield 618 618 408 408 \n", + "Philadelphia 932 932 722 722 \n", + "Phoenix_Tucson 932 932 722 722 \n", + "Pittsburgh 932 932 722 722 \n", + "Plains 932 932 722 722 \n", + "Portland 932 932 722 722 \n", + "Providence 618 618 408 408 \n", + "Raleigh_Greensboro 932 932 722 722 \n", + "Richmond_Norfolk 932 932 722 722 \n", + "Roanoke 932 932 722 722 \n", + "Sacramento 932 932 722 722 \n", + "San_Diego 932 932 722 722 \n", + "San_Francisco 932 932 722 722 \n", + "Seattle 932 932 722 722 \n", + "South_Carolina 932 932 722 722 \n", + "South_Central 932 932 722 722 \n", + "Southeast 932 932 722 722 \n", + "Spokane 932 932 722 722 \n", + "St_Louis 932 932 722 722 \n", + "Syracuse 932 932 722 722 \n", + "Tampa 932 932 722 722 \n", + "Toledo 618 618 408 408 \n", + "Total_US 932 932 722 722 \n", + "West 932 932 722 722 \n", + "West_Tex_New_Mexico 929 929 719 719 \n", + "Wichita 618 618 408 408 \n", + "\n", + " xlarge_bags type \n", + "region \n", + "Albany 722 932 \n", + "Atlanta 722 932 \n", + "Baltimore_Washington 722 932 \n", + "Birmingham_Montgomery 408 618 \n", + "Boise 722 932 \n", + "Boston 722 932 \n", + "Buffalo_Rochester 722 932 \n", + "California 722 932 \n", + "Charlotte 722 932 \n", + "Chicago 722 932 \n", + "Cincinnati_Dayton 722 932 \n", + "Columbus 722 932 \n", + "Dallas_Ft_Worth 722 932 \n", + "Denver 722 932 \n", + "Detroit 722 932 \n", + "Grand_Rapids 722 932 \n", + "Great_Lakes 722 932 \n", + "Harrisburg_Scranton 722 932 \n", + "Hartford_Springfield 722 932 \n", + "Houston 722 932 \n", + "Indianapolis 722 932 \n", + "Jacksonville 722 932 \n", + "Las_Vegas 722 932 \n", + "Los_Angeles 722 932 \n", + "Louisville 722 932 \n", + "Miami 722 722 \n", + "Miami_Ft_Lauderdale 0 210 \n", + "Midsouth 722 932 \n", + "Nashville 722 932 \n", + "New_Orleans 722 932 \n", + "New_York 722 932 \n", + "Northeast 722 932 \n", + "Northern_New_England 722 932 \n", + "Orlando 722 932 \n", + "Peoria_Springfield 408 618 \n", + "Philadelphia 722 932 \n", + "Phoenix_Tucson 722 932 \n", + "Pittsburgh 722 932 \n", + "Plains 722 932 \n", + "Portland 722 932 \n", + "Providence 408 618 \n", + "Raleigh_Greensboro 722 932 \n", + "Richmond_Norfolk 722 932 \n", + "Roanoke 722 932 \n", + "Sacramento 722 932 \n", + "San_Diego 722 932 \n", + "San_Francisco 722 932 \n", + "Seattle 722 932 \n", + "South_Carolina 722 932 \n", + "South_Central 722 932 \n", + "Southeast 722 932 \n", + "Spokane 722 932 \n", + "St_Louis 722 932 \n", + "Syracuse 722 932 \n", + "Tampa 722 932 \n", + "Toledo 408 618 \n", + "Total_US 722 932 \n", + "West 722 932 \n", + "West_Tex_New_Mexico 719 929 \n", + "Wichita 408 618 " + ] + }, + "execution_count": 134, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.groupby('region').count() # Grouping by the region column and counting the values in each column to look for any anomalies" + ] + }, + { + "cell_type": "code", + "execution_count": 135, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
dateaverage_pricetotal_volumeplu4046plu4225plu4770total_bagssmall_bagslarge_bagsxlarge_bagstyperegion
122015-01-040.9300005777334.902843648.262267755.26137479.64528451.74477193.3847882.563375.80conventionalCalifornia
132015-01-041.240000142349.77107490.7325711.962.939144.159144.150.000.00organicCalifornia
1202015-01-110.9200006024932.342889591.292485720.10103573.42546047.53510560.4131874.033613.09conventionalCalifornia
1212015-01-111.100000158110.68123712.5125975.271.478421.438421.430.000.00organicCalifornia
2282015-01-181.0200005570915.262780859.662108450.36121614.31559990.93520299.2636501.183190.49conventionalCalifornia
.......................................
531272023-11-191.727136271097.77120937.098513.680.00129489.38NaNNaNNaNorganicCalifornia
531862023-11-261.3049164200357.002391331.83470082.13373369.38834081.63NaNNaNNaNconventionalCalifornia
532452023-11-261.734881268456.70115377.247771.020.00135478.19NaNNaNNaNorganicCalifornia
533042023-12-031.0660075845932.703868487.00591584.26340737.02916388.81NaNNaNNaNconventionalCalifornia
533632023-12-031.663419290944.44114223.148976.701.46154905.12NaNNaNNaNorganicCalifornia
\n", + "

932 rows × 12 columns

\n", + "
" + ], + "text/plain": [ + " date average_price total_volume plu4046 plu4225 \\\n", + "12 2015-01-04 0.930000 5777334.90 2843648.26 2267755.26 \n", + "13 2015-01-04 1.240000 142349.77 107490.73 25711.96 \n", + "120 2015-01-11 0.920000 6024932.34 2889591.29 2485720.10 \n", + "121 2015-01-11 1.100000 158110.68 123712.51 25975.27 \n", + "228 2015-01-18 1.020000 5570915.26 2780859.66 2108450.36 \n", + "... ... ... ... ... ... \n", + "53127 2023-11-19 1.727136 271097.77 120937.09 8513.68 \n", + "53186 2023-11-26 1.304916 4200357.00 2391331.83 470082.13 \n", + "53245 2023-11-26 1.734881 268456.70 115377.24 7771.02 \n", + "53304 2023-12-03 1.066007 5845932.70 3868487.00 591584.26 \n", + "53363 2023-12-03 1.663419 290944.44 114223.14 8976.70 \n", + "\n", + " plu4770 total_bags small_bags large_bags xlarge_bags \\\n", + "12 137479.64 528451.74 477193.38 47882.56 3375.80 \n", + "13 2.93 9144.15 9144.15 0.00 0.00 \n", + "120 103573.42 546047.53 510560.41 31874.03 3613.09 \n", + "121 1.47 8421.43 8421.43 0.00 0.00 \n", + "228 121614.31 559990.93 520299.26 36501.18 3190.49 \n", + "... ... ... ... ... ... \n", + "53127 0.00 129489.38 NaN NaN NaN \n", + "53186 373369.38 834081.63 NaN NaN NaN \n", + "53245 0.00 135478.19 NaN NaN NaN \n", + "53304 340737.02 916388.81 NaN NaN NaN \n", + "53363 1.46 154905.12 NaN NaN NaN \n", + "\n", + " type region \n", + "12 conventional California \n", + "13 organic California \n", + "120 conventional California \n", + "121 organic California \n", + "228 conventional California \n", + "... ... ... \n", + "53127 organic California \n", + "53186 conventional California \n", + "53245 organic California \n", + "53304 conventional California \n", + "53363 organic California \n", + "\n", + "[932 rows x 12 columns]" + ] + }, + "execution_count": 135, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_filtered = df[df['region'] == 'California'] # Filtering data for specific types of analysis\n", + "df_filtered" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This step ensures the dataset is clean and ready for analysis." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "\n", + "## **Exploratory Data Analysis (EDA)**\n", + "Back to Table of Contents\n", + "\n", + "* The EDA involves visualizing trends, distribution, and correlations within the dataset.\n", + "---\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "- **Price Trends Over Time:**" + ] + }, + { + "cell_type": "code", + "execution_count": 136, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAHHCAYAAABEEKc/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOx9d5xdVdX2c865be7UTDKTThJ6AiF0pYMgSBOkiigd9KXJ6wu+oi9N8KOqiCgCCkEFQaqAiNKbSA+9pZGQNskkU2895ftj7XX2PufeO3Nn5k5lP79fMrffc0/Z+9nPWutZhud5HjQ0NDQ0NDQ0NHyYw70BGhoaGhoaGhojDZogaWhoaGhoaGiEoAmShoaGhoaGhkYImiBpaGhoaGhoaISgCZKGhoaGhoaGRgiaIGloaGhoaGhohKAJkoaGhoaGhoZGCJogaWhoaGhoaGiEoAmShoaGhoaGhkYImiBpaIxwzJw5EyeddNJwb4aPpUuXwjAMzJ8/f7g3ZcTBMAxceumlw70ZIxrz58+HYRhYunTpcG+KhkaP0ARJY0zht7/9LQzDwJe+9KXh3pQRi5kzZ8IwDP9fc3Mz9thjDzz44IPDvWlFcemllwa2t9S/vffee7g3teJ4//338e1vfxtTp05FPB7HlClTcPzxx+P9998f7k0LYO+99y7rGGnyqDGaEBnuDdDQqCTuvPNOzJw5E6+++ioWLlyITTfddLg3aURi2223xf/8z/8AAFauXImbb74ZRxxxBG666SZ873vf6/G9M2bMQDqdRjQaHYpNxRFHHBE4jl1dXfiv//ovfOMb38ARRxzhPz5x4sQh2Z6hwgMPPIDjjjsOjY2NOPXUUzFr1iwsXboUf/jDH3Dffffh7rvvxje+8Y3h3kwAwE9+8hOcdtpp/v3XXnsNN9xwA3784x9j9uzZ/uPbbLMNttpqK3zzm99EPB4fjk3V0CgfnobGGMHixYs9AN4DDzzgNTU1eZdeeulwb1JFMGPGDO/EE0+s6OcdfPDBgcdWrVrlVVdXe5tvvnnJ9+XzeS+bzVZsO/qLtWvXegC8Sy65pMfXpdNpz3GcodkogXK2qxwsXLjQSyaT3pZbbum1tLQEnlu7dq235ZZbetXV1d6iRYsG/F19QVdXV1mvu/feez0A3jPPPDO4G6ShMYjQITaNMYM777wT48aNw8EHH4yjjjoKd955p/9cPp9HY2MjTj755IL3dXR0IJFI4Pzzz/cfa2lpwamnnoqJEycikUhg3rx5uOOOOwre67oufvWrX2Hu3LlIJBJoamrC1772Nbz++uv+a26//XZ85StfQXNzM+LxOObMmYObbrqp4LM8z8MVV1yBadOmIZlMYp999ikZSlm8eDGOPvpoNDY2IplM4stf/jL+/ve/92l/qZg0aRJmz56NJUuWAJB5Rtdddx2uv/56bLLJJojH4/jggw9K5iB99NFHOOaYY9DU1ISqqipsscUW+MlPfhJ4zYoVK3DKKadg4sSJiMfj2GqrrXDbbbf1e7sZzz77LAzDwN13343/+7//w9SpU5FMJtHR0QEAeOWVV/C1r30N9fX1SCaT2GuvvfDSSy8FPoNDeQsXLsRJJ52EhoYG1NfX4+STT0YqlQq8NpvN4r//+7/R1NSE2tpafP3rX8fnn39esF2dnZ0477zzMHPmTMTjcTQ3N+OrX/0q3nzzzR5/z7XXXotUKoVbbrkFTU1NgecmTJiAm2++Gd3d3bjmmmsAAPfddx8Mw8Bzzz1X8Fk333wzDMPAe++95z/20Ucf4aijjkJjYyMSiQR23HFHPPzww4H3ca7Qc889hzPPPBPNzc2YNm1aj9tdDorlIM2cOROHHHIInn32Wey4446oqqrC3Llz8eyzzwIgNY2vsR122AFvvfVWweeW85s0NPoCHWLTGDO48847ccQRRyAWi+G4447DTTfdhNdeew077bQTotEovvGNb+CBBx7AzTffjFgs5r/voYceQjabxTe/+U0AQDqdxt57742FCxfi7LPPxqxZs3DvvffipJNOQltbG77//e/77z311FMxf/58HHjggTjttNNg2zZeeOEF/Oc//8GOO+4IALjpppuw1VZb4etf/zoikQgeeeQRnHnmmXBdF2eddZb/WRdffDGuuOIKHHTQQTjooIPw5ptvYv/990culwv8zjVr1mDXXXdFKpXCueeei/Hjx+OOO+7A17/+ddx33339Crvk83ksX74c48ePDzx+++23I5PJ4IwzzkA8HkdjYyNc1y14/zvvvIM99tgD0WgUZ5xxBmbOnIlFixbhkUcewc9+9jN/u7/85S/DMAycffbZaGpqwj/+8Q+ceuqp6OjowHnnndfn7Q7j8ssvRywWw/nnn49sNotYLIann34aBx54IHbYYQdccsklME3TJ60vvPACdt5558BnHHPMMZg1axauvPJKvPnmm/j973+P5uZmXH311f5rTjvtNPz5z3/Gt771Ley66654+umncfDBBxdsz/e+9z3cd999OPvsszFnzhy0trbixRdfxIcffojtt9++5O945JFHMHPmTOyxxx5Fn99zzz0xc+ZMnxQffPDBqKmpwV//+lfstddegdfec8892GqrrbD11lsDoLym3XbbDVOnTsWPfvQjVFdX469//SsOP/xw3H///QXnz5lnnommpiZcfPHF6O7u7mHvDwwLFy7Et771LXz3u9/Ft7/9bVx33XU49NBD8bvf/Q4//vGPceaZZwIArrzyShxzzDH4+OOPYZpmv36ThkZZGG4JS0OjEnj99dc9AN4TTzzheZ7nua7rTZs2zfv+97/vv+af//ynB8B75JFHAu896KCDvI033ti/f/3113sAvD//+c/+Y7lczttll128mpoar6Ojw/M8z3v66ac9AN65555bsD2u6/q3U6lUwfMHHHBA4DtbWlq8WCzmHXzwwYH3/vjHP/YABEJs5513ngfAe+GFF/zHOjs7vVmzZnkzZ87sNaw0Y8YMb//99/fWrl3rrV271nv77be9b37zmx4A75xzzvE8z/OWLFniAfDq6uoKQjz83O233+4/tueee3q1tbXeZ599VnI/nHrqqd7kyZO9devWBV7zzW9+06uvry+6n4qhWIjtmWee8QB4G2+8ceBzXNf1NttsM++AAw4oOCazZs3yvvrVr/qPXXLJJR4A75RTTgl83ze+8Q1v/Pjx/v0FCxZ4ALwzzzwz8LpvfetbBdtVX1/vnXXWWWX9LkZbW5sHwDvssMN6fN3Xv/51D4B/Ph533HFec3OzZ9u2/5pVq1Z5pml6P/3pT/3H9t13X2/u3LleJpPxH3Nd19t11129zTbbzH/s9ttv9wB4u+++e+Azy0FPITb+3CVLlviPzZgxwwPg/fvf//Yf4+u1qqoqcF7dfPPNBZ9d7m/S0OgLdIhNY0zgzjvvxMSJE7HPPvsAoHLrY489FnfffTccxwEAfOUrX8GECRNwzz33+O/bsGEDnnjiCRx77LH+Y4899hgmTZqE4447zn8sGo3i3HPPRVdXlx/GuP/++2EYBi655JKC7TEMw79dVVXl325vb8e6deuw1157YfHixWhvbwcAPPnkk8jlcjjnnHMC7y2mqjz22GPYeeedsfvuu/uP1dTU4IwzzsDSpUvxwQcf9Lq//vWvf6GpqQlNTU2YN28e7r33XnznO98JqCQAcOSRRxaEeMJYu3Ytnn/+eZxyyinYaKONiu4Hz/Nw//3349BDD4XneVi3bp3/74ADDkB7e3uvYadycOKJJwb294IFC/Dpp5/iW9/6FlpbW/3v7O7uxr777ovnn3++QBELJ6nvscceaG1t9cN1jz32GADg3HPPDbyu2LFqaGjAK6+8gpUrV5b9Gzo7OwEAtbW1Pb6On+ftOvbYY9HS0uKHpQAKvbmu65/f69evx9NPP41jjjkGnZ2d/v5obW3FAQccgE8//RQrVqwIfM/pp58Oy7LK3v7+Ys6cOdhll138+1yJ+pWvfCVwXvHjixcvBtC/36ShUQ50iE1j1MNxHNx9993YZ599/BwagAbSn//853jqqaew//77IxKJ4Mgjj8Rdd92FbDaLeDyOBx54APl8PkCQPvvsM2y22Wa+fM/gapzPPvsMALBo0SJMmTIFjY2NPW7fSy+9hEsuuQQvv/xyQS5Le3s76uvr/c/cbLPNAs83NTVh3Lhxgcc+++yzojYG6vZxOKUUvvSlL+GKK66AYRhIJpOYPXs2GhoaCl43a9asHj8HkBNVT9+5du1atLW14ZZbbsEtt9xS9DUtLS29fldvCG/vp59+CoCIUym0t7cH9nGY5PFzGzZsQF1dHT777DOYpolNNtkk8Lotttii4LOvueYanHjiiZg+fTp22GEHHHTQQTjhhBOw8cYbl9weJj5MlEohTKQ4x+qee+7BvvvuC4DCa9tuuy0233xzABTG8jwPF110ES666KKin9vS0oKpU6f698s5ByqB8H6vr68HAEyfPr3o4xs2bADQv9+koVEONEHSGPV4+umnsWrVKtx99924++67C56/8847sf/++wMAvvnNb+Lmm2/GP/7xDxx++OH461//ii233BLz5s0blG1btGgR9t13X2y55Zb4xS9+genTpyMWi+Gxxx7DL3/5y6L5PEOBCRMmYL/99uv1daoaMxDw7/z2t79dkqxss802A/6e8Pby91577bXYdttti76npqYmcL+UWuJ5Xp+355hjjvE9pv71r3/h2muvxdVXX40HHngABx54YNH31NfXY/LkyXjnnXd6/Ox33nkHU6dORV1dHQAgHo/j8MMPx4MPPojf/va3WLNmDV566SX8v//3//z38P44//zzccABBxT93LA1RqXOgd5Qar/3djz685s0NMqBJkgaox533nknmpub8Zvf/KbguQceeAAPPvggfve736Gqqgp77rknJk+ejHvuuQe77747nn766YJKqxkzZuCdd96B67oBFemjjz7ynweATTbZBP/85z+xfv36kirSI488gmw2i4cffjiwQn7mmWcKvhMgxUNVF9auXeuvlNXXfvzxxwXfFd6+oQJvr1olFQZXezmOUxYxqxRY5amrq6vY986YMQOu62LRokUB1ajYMQGAyZMn48wzz8SZZ56JlpYWbL/99vjZz35WkiABwCGHHIJbb70VL774YiCUynjhhRewdOlSfPe73w08fuyxx+KOO+7AU089hQ8//BCe5wXUUT5W0Wh0SI/DYGIs/iaNkQGdg6QxqpFOp/HAAw/gkEMOwVFHHVXw7+yzz0ZnZ6df7muaJo466ig88sgj+NOf/gTbtgMTCAAcdNBBWL16dSBXybZt/PrXv0ZNTY1fJXTkkUfC8zxcdtllBdvFq1te/arqQ3t7O26//fbA6/fbbz9Eo1H8+te/Drz2+uuvL/jsgw46CK+++ipefvll/7Hu7m7ccsstmDlzJubMmVPWvqsUmpqasOeee+K2227DsmXLAs+p++HII4/E/fffX5RIrV27dlC2bYcddsAmm2yC6667Dl1dXRX5XiY2N9xwQ+Dx8LFyHMfPMWM0NzdjypQpyGazPX7HBRdcgKqqKnz3u99Fa2tr4Ln169fje9/7HpLJJC644ILAc/vttx8aGxtxzz334J577sHOO+8cCJE1Nzdj7733xs0334xVq1YVfO9gHYfBxFj8TRojA1pB0hjVePjhh9HZ2Ymvf/3rRZ//8pe/jKamJtx5550+ETr22GPx61//Gpdccgnmzp0bcPoFgDPOOAM333wzTjrpJLzxxhuYOXMm7rvvPrz00ku4/vrr/ZyPffbZB9/5zndwww034NNPP8XXvvY1uK6LF154Afvssw/OPvts7L///ojFYjj00EPx3e9+F11dXbj11lvR3NwcGMybmppw/vnn48orr8QhhxyCgw46CG+99Rb+8Y9/YMKECYHt+9GPfoS//OUvOPDAA3HuueeisbERd9xxB5YsWYL777+/IHdqKHDDDTdg9913x/bbb48zzjjDd33++9//jgULFgAArrrqKjzzzDP40pe+hNNPPx1z5szB+vXr8eabb+LJJ5/E+vXrK75dpmni97//PQ488EBstdVWOPnkkzF16lSsWLECzzzzDOrq6vDII4/06TO33XZbHHfccfjtb3+L9vZ27LrrrnjqqaewcOHCwOs6Ozsxbdo0HHXUUZg3bx5qamrw5JNP4rXXXsPPf/7zHr9js802wx133IHjjz8ec+fOLXDSXrduHf7yl78U5EFFo1EcccQRuPvuu9Hd3Y3rrruu4LN/85vfYPfdd8fcuXNx+umnY+ONN8aaNWvw8ssv4/PPP8fbb7/dp/0xEjAWf5PGCMDwFM9paFQGhx56qJdIJLzu7u6SrznppJO8aDTql5e7rutNnz7dA+BdccUVRd+zZs0a7+STT/YmTJjgxWIxb+7cuYGydoZt2961117rbbnlll4sFvOampq8Aw880HvjjTf81zz88MPeNtts4yUSCW/mzJne1Vdf7d12220Fpc6O43iXXXaZN3nyZK+qqsrbe++9vffee6+ok/aiRYu8o446ymtoaPASiYS38847e48++mhZ+6yYk3YYXMp/7bXXlnwuvD/ee+897xvf+Ia/TVtssYV30UUXBV6zZs0a76yzzvKmT5/uRaNRb9KkSd6+++7r3XLLLWVtu+f1XOZ/7733Fn3PW2+95R1xxBHe+PHjvXg87s2YMcM75phjvKeeesp/DZf5r127NvDeYmXp6XTaO/fcc73x48d71dXV3qGHHuotX748sF3ZbNa74IILvHnz5nm1tbVedXW1N2/ePO+3v/1t2b/1nXfe8Y477jhv8uTJ/v467rjjvHfffbfke5544gkPgGcYhrd8+fKir1m0aJF3wgkneJMmTfKi0ag3depU75BDDvHuu+++gt/92muvlb29jP6U+Rc7JwEU2CSUOjfL+U0aGn2B4Xn9yDzU0NDQ0NDQ0BjD0DlIGhoaGhoaGhohaIKkoaGhoaGhoRGCJkgaGhoaGhoaGiFogqShoaGhoaGhEYImSBoaGhoaGhoaIWiCpKGhoaGhoaERwhfSKNJ1XaxcuRK1tbWBzukaGhoaGhoaIxee56GzsxNTpkwZdFPcLyRBWrlyZUGHaA0NDQ0NDY3RgeXLl2PatGmD+h1fSILErSKWL1/ud8LW0NDQ0NDQGNno6OjA9OnT/Xl8MPGFJEgcVqurq9MESUNDQ0NDY5RhKNJjdJK2hoaGhoaGhkYImiBpaGhoaGhoaISgCZKGhoaGhoaGRghfyBykcuA4DvL5/HBvhsYIRTQahWVZw70ZGhoaGhqDBE2QQvA8D6tXr0ZbW9twb4rGCEdDQwMmTZqkvbQ0NDQ0xiA0QQqByVFzczOSyaSe/DQK4HkeUqkUWlpaAACTJ08e5i3S0NDQ0Kg0NEFS4DiOT47Gjx8/3JujMYJRVVUFAGhpaUFzc7MOt2loaGiMMegkbQWcc5RMJod5SzRGA/g80blqGhoaGmMPmiAVgQ6raZQDfZ5oaGhojF1ogqShoaGhoaGhEYImSBoaGhoaGhoaIWiC9AXD3nvvjfPOO2+4N0NDQ0NDQ2NEQxMkDQ0NDQ0NDY0QNEH6AuGkk07Cc889h1/96lcwDAOGYSASieC6664LvG7BggUwDAMLFy4EQMnIN910Ew488EBUVVVh4403xn333Rd4z/Lly3HMMcegoaEBjY2NOOyww7B06dKh+mkaGr3DdQE7O9xboaGhMUqgCdIXCL/61a+wyy674PTTT8eqVauwatUqXHbZZbj99tsDr7v99tux5557YtNNN/Ufu+iii3DkkUfi7bffxvHHH49vfvOb+PDDDwFQmfsBBxyA2tpavPDCC3jppZdQU1ODr33ta8jlckP6GzU0isLOASveAFa8CTj2cG+NhobGKIAmSF8g1NfXIxaLIZlMYtKkSZg0aRJOPvlkfPzxx3j11VcBENm56667cMoppwTee/TRR+O0007D5ptvjssvvxw77rgjfv3rXwMA7rnnHriui9///veYO3cuZs+ejdtvvx3Lli3Ds88+O9Q/U0OjENlOoGs1/bXTw701GhoaowCaIH3BMWXKFBx88MG47bbbAACPPPIIstksjj766MDrdtlll4L7rCC9/fbbWLhwIWpra1FTU4Oamho0NjYik8lg0aJFQ/NDNDR6gpMFPABODshnhntrNDQ0RgF0qxENnHbaafjOd76DX/7yl7j99ttx7LHH9slNvKurCzvssAPuvPPOgueampoquakaGv2DkwPY2FMrSBoaGmVAE6QvGGKxGBzHCTx20EEHobq6GjfddBMef/xxPP/88wXv+89//oMTTjghcH+77bYDAGy//fa455570NzcjLq6usH9ARoa/UEuBZhCMM90Du+2aGhojAroENsXDDNnzsQrr7yCpUuXYt26dXBdF5Zl4aSTTsKFF16IzTbbrCCcBgD33nsvbrvtNnzyySe45JJL8Oqrr+Lss88GABx//PGYMGECDjvsMLzwwgtYsmQJnn32WZx77rn4/PPPh/onamhI5NPAuoVAtgMwo0AkAWTahnurNDQ0RgE0QfqC4fzzz4dlWZgzZw6ampqwbNkyAMCpp56KXC6Hk08+uej7LrvsMtx9993YZptt8Mc//hF/+ctfMGfOHADUtPX555/HRhtthCOOOAKzZ8/GqaeeikwmoxUlAHAdoKtluLfiiwfPAzYsBdYvohCbFQXMCODaupJNQ0OjV+gQ2xcMm2++OV5++eWCx1esWIFoNBoIo6mYMmUK/vWvf5X83EmTJuGOO+6o2HaOKXSvBdo/B6JJIF4z3FvzxUGum/Z7ph0wTNr/ACVsuzZg6eFPQ0OjNPQI8QVHNpvF2rVrcemll+Loo4/GxIkTh3uTxh4MiwwKHe0JNaRwcvSvqoFIUqIe8FzAc4ggaWhoaPQAHWL7guMvf/kLZsyYgba2NlxzzTXDvTljE4YpCFJ+uLfkiwUnR2G26iagfqoIsVlEjjRB0tDQ6AVaQfqC46STTsJJJ53U42s8zxuajRmz8ARB0m0uhhRqW5FIgv4aFilInjs826ShoTFqMKwK0pVXXomddtoJtbW1aG5uxuGHH46PP/64x/fceuut2GOPPTBu3DiMGzcO++23n+8CraExIuG5gJunUnONoYOdld5HDMMgw0itIGloaPSCYSVIzz33HM466yz85z//wRNPPIF8Po/9998f3d3dJd/z7LPP4rjjjsMzzzyDl19+GdOnT8f++++PFStWDOGWa2j0AZ5L/3Jdw70lXyzkuimsVgyaIGloaPSCYQ2xPf7444H78+fPR3NzM9544w3sueeeRd8Tdmv+/e9/j/vvvx9PPfVUyQosDY1hhedSLkyum0r+TWu4t2jsw/OAfDd5HxWDJkgaGhq9YETlILW3twMAGhsby35PKpVCPp/v8T3ZbBbZrMxH6Ojo6P9Gamj0FZ4LQITZnBxgVg33Fo19OHn6V6qUXxMkDQ2NXjBiqthc18V5552H3XbbDVtvvXXZ7/vf//1fTJkyBfvtt1/J11x55ZWor6/3/02fPr0Sm6yhUR48l5KDnXwwcVhj8ODmiQSZRQiSaQJ5fRw0NDR6xoghSGeddRbee+893H333WW/56qrrsLdd9+NBx98EIlEouTrLrzwQrS3t/v/li9fXolN1tAoD54rHJwd7YU0VPA8+geRpL3iTeDZq4BP/iXIqiZIGhoaPWNEEKSzzz4bjz76KJ555hlMmzatrPdcd911uOqqq/Cvf/0L22yzTY+vjcfjqKurC/zTGF2YOXMmrr/++iH9zqVLl8IwDCxYsGBgH6SWlGsFaWjAifGGCXStAf7+A+CTx4EXf0GP6+OgoaHRC4aVIHmeh7PPPhsPPvggnn76acyaNaus911zzTW4/PLL8fjjj2PHHXcc5K3UGErMnz8fDQ0NBY+/9tprOOOMM4Z+gyoB16XycgN6Yh4qeC4Aj/b7+sXycTsDtC4C8ikgnxm2zdPQ0Bj5GNYk7bPOOgt33XUX/va3v6G2tharV68GANTX16OqihJZTzjhBEydOhVXXnklAODqq6/GxRdfjLvuugszZ87031NTU4OaGt3naqyiqalpuDeh/3BtQZAiQLZzuLfmCwIlxNaxMvjUmveBcTOAVCs5bGtoaGgUwbAqSDfddBPa29ux9957Y/Lkyf6/e+65x3/NsmXLsGrVqsB7crkcjjrqqMB7rrvuuuH4CSMKruvimmuuwaabbop4PI6NNtoIP/vZzwAA7777Lr7yla+gqqoK48ePxxlnnIGuLunLc9JJJ+Hwww/Hddddh8mTJ2P8+PE466yzkM9Te4wf//jH+NKXvlTwnfPmzcNPf/pT//7vf/97zJ49G4lEAltuuSV++9vf+s9xyOqBBx7APvvsg2QyiXnz5vnNc5999lmcfPLJaG9vh2EYMAwDl156KYDCENuyZctw2GGHoaamBnV1dTjmmGOwZs0a//lLL70U2267Lf70pz9h5syZqK+vxze/+U10dkqC8vjjj2P33XdHQ0MDxo8fj0MOOQSLFi0awBEoAdehUI8VJeVCd5IffHgeABFiY4KUHE9/V74JWDGgc/WwbZ6GhsbIx7AqSOW0sHj22WcD95cuXTo4G1MCnuchnXeG9DsZVVELRtgJuAdceOGFuPXWW/HLX/4Su+++O1atWoWPPvoI3d3dOOCAA7DLLrvgtddeQ0tLC0477TScffbZmD9/vv/+Z555BpMnT8YzzzyDhQsX4thjj8W2226L008/HccffzyuvPJKLFq0CJtssgkA4P3338c777yD+++/HwB5VF188cW48cYbsd122+Gtt97C6aefjurqapx44on+9/zkJz/Bddddh8022ww/+clPcNxxx2HhwoXYddddcf311+Piiy/2HdWLqYKu6/rk6LnnnoNt2zjrrLNw7LHHBs6XRYsW4aGHHsKjjz6KDRs24JhjjsFVV13lk8bu7m784Ac/wDbbbIOuri5cfPHF+MY3voEFCxbANCu4dvBsAAYQqwa6WoC1HwOTtqrc52sUwnPJMdswgA5hIjtzd+CDv9ExiMSIrGpoaGiUwIjyQRqJSOcdzLn4n8Py3R/89AAkY+Udos7OTvzqV7/CjTfe6JORTTbZBLvvvjtuvfVWZDIZ/PGPf0R1dTUA4MYbb8Shhx6Kq6++GhMnTgQAjBs3DjfeeCMsy8KWW26Jgw8+GE899RROP/10bLXVVpg3bx7uuusuXHTRRQCIEH3pS1/CpptuCgC45JJL8POf/xxHHHEEAGDWrFn44IMPcPPNNwcI0vnnn4+DDz4YAHDZZZdhq622wsKFC7Hllluivr4ehmFg0qRJJX/rU089hXfffRdLlizxLRv++Mc/YquttsJrr72GnXbaCQARqfnz56O2thYA8J3vfAdPPfWUT5COPPLIwOfedtttaGpqwgcffNAnq4le4To0UVsxIF4HpNZpw8jBhpoY3y4I0oQt6G+uU/Rkc/Vx0NDQKIkRUcWmMXB8+OGHyGaz2HfffYs+N2/ePJ8cAcBuu+0G13UDve+22morWJacLCZPnoyWlhb//vHHH4+77roLAClrf/nLX3D88ccDIDVm0aJFOPXUU/18sJqaGlxxxRUFYSu16nDy5MkAEPiecn7r9OnTA35Wc+bMQUNDAz788EP/sZkzZ/rkqNjv+fTTT3Hcccdh4403Rl1dHWbOnAmAwncVhWtTqAdQyv3zlf0OjSA8j0KZ//410C5sPZq3pL9sIukKgqShoaFRBFpB6gVVUQsf/PSAYfvusl9bNXB35mg02JbBMAy4rlyJH3fccfjf//1fvPnmm0in01i+fDmOPfZYAPDzmW699daCXCWVdIW/h0OI6vdUCr39nkMPPRQzZszArbfeiilTpsB1XWy99dbI5SrsVeQ68P14TNFNPp+if8nyXeM1+gDPBV7/A7D0ebpvRoGGjYioei5gp4FIQjhqx4Z1UzU0NEYmNEHqBYZhlB3mGk5sttlmqKqqwlNPPYXTTjst8Nzs2bMxf/58dHd3+yrSSy+9BNM0scUWW5T9HdOmTcNee+2FO++8E+l0Gl/96lfR3NwMAJg4cSKmTJmCxYsX+6pSfxCLxeA4Pa/qZ8+ejeXLl2P58uW+ivTBBx+gra0Nc+bMKet7Wltb8fHHH+PWW2/FHnvsAQB48cUX+73dPcJTFSSLlI3utUC2SxOkwUL3WkmO6qcDc48i9S5WA2Q7qC+eGSOyqqGhoVEEI3/m1ygLiUQC//u//4sf/vCHiMVi2G233bB27Vq8//77OP7443HJJZfgxBNPxKWXXoq1a9finHPOwXe+8x0//6hc8Gflcjn88pe/DDx32WWX4dxzz0V9fT2+9rWvIZvN4vXXX8eGDRvwgx/8oKzPnzlzJrq6uvDUU09h3rx5SCaTSCaTgdfst99+mDt3Lo4//nhcf/31sG0bZ555Jvbaa6+yfbHGjRuH8ePH45ZbbsHkyZOxbNky/OhHPypvJ/QF7OjMyfaGRYQpnyZPHtel1hcalQVXrlVPAI79k3w8XisJUqxOh9g0Bo6Wj4D6aUBc28yMNeiReQzhoosuwv/8z//g4osvxuzZs3HssceipaUFyWQS//znP7F+/XrstNNOOOqoo7Dvvvvixhtv7PN3HHXUUWhtbUUqlcLhhx8eeO60007D73//e9x+++2YO3cu9tprL8yfP79sA1AA2HXXXfG9730Pxx57LJqamnDNNdcUvMYwDPztb3/DuHHjsOeee2K//fbDxhtvHLCH6A2maeLuu+/GG2+8ga233hr//d//jWuvvbbs95cNzxUEyeSNB2AQMXJyumnqYKFTWINUh/yz4iInLZcC4ASTuTU0+grXAXJdtODRGHMwvHJq7ccYOjo6UF9fj/b29kDbkUwmgyVLlmDWrFk99nbT0ADKPF+cPLD0ReoqHxMrzPaVQE0TmUbO2BWIDjx/TCOEZ6+k3muz9gS+Kn268PfzgRWvA3tfCEzcGpj+JToWGhr9gZMHPn8daJwF1JauvNWoHErN34MBrSBpaAwmWEEKXGqeqKJytII0WOgUpqGlFCR2NNf7X2Mg8FwKmetQ7ZiEJkgaGoMJzwU5OiuGn4ZB4TXP0QPrYKFLuGQXECSh4mU7ARg6SVujd7gOhcSLwXMBRy90xio0QdLQGEyEc5AAqmSzMzQ56xyYwUFvClKuC4CnCapG71j9HrDm3eLPeS7g5jXRHqPQBElDYzDhuUC6LZjEaUaok7zr6ZXnYKGrBEGKcYhNECQ9sWn0BjsDpNaLxP4QPFeoSPo6HovQBElDYzCRaQcePAP46wnyMUv47xiGVjAGA55HPkhAzzlIhgXYFTYF1Rh7MACk1xdvbuwTJH0ejUVogqShMZhoXUwDaLaDVqEATdKNwvpAK0iVR7ZTTljJccHnYqLdTq6T/Kd0yxeN3uDkSfXd8JlQHhVwCF0TpDEJTZA0NAYViovGeqUnHeck6RBP5WFn5G0rLm+nNwB2lm53ryMFydUESaMHuKKQItFAeWuZtuDzngdAK0hjFZogaWgMJtTJujXYtBcGdO7CYID3uRWT1YNOnvLANt4LgEFGkpl2SZg0NIqBK9hMS1Sf5guf94RtxxfPUnDMQxMkDY3BhJrY2bow+Jxh6ZXnYCDPBElpVpzvBuJ1QNOW1LQWANZ+LCqQ9MSmUQKuDcARBMksJNQcYuNcJI0xBU2QNIYEl156Kbbddtvh3oyhh61UrxUQJFMTpMGAqiAxHJscy80I0DybHmv5QJt1avQM9iozTGnPEXheECPX1efRGIQmSBpDgvPPPx9PPfXUcG/G0EMt79/wmXRwBmjA1QSp8ihGkNw8EE3SPm8SBKn1UzEB6olNowRcm8iPYfVAkDwA2vR1LEITpC8oPM+DbQ/dxFBTU4Px48cP2feNGASaWHrAasVwzrRIstchnsoiJ/Z5gCC5QCxJEx33Xst0aAVJo2e4opWIaZH66OSC16vnUi6h6+iCizEITZDGELLZLM4991w0NzcjkUhg9913x2uvvQYAePbZZ2EYBv7xj39ghx12QDwex4svvojOzk4cf/zxqK6uxuTJk/HLX/4Se++9N8477zz/c//0pz9hxx13RG1tLSZNmoRvfetbaGlp8Z/nz37qqaew4447IplMYtddd8XHH3/sv6ZYiO22227DVltthXg8jsmTJ+Pss8/u+48e6eTCDnX5XrVA3jYjYoWqJ+iKwi5CkPi+YVIuEkBqniZIGj3BtUEMCOJ6dSh3bdnLQHerIEimDrGNUWiC1Bs8D8h1D8+/Pk7+P/zhD3H//ffjjjvuwJtvvolNN90UBxxwANavX++/5kc/+hGuuuoqfPjhh9hmm23wgx/8AC+99BIefvhhPPHEE3jhhRfw5ptvBj43n8/j8ssvx9tvv42HHnoIS5cuxUknnVTw/T/5yU/w85//HK+//joikQhOOeWUktt600034ayzzsIZZ5yBd999Fw8//DA23XTTPv1eACR5j+SBiROGuax/1dvyOSZI2ounsmDVLiIIEl9HVoyUACZIuS7KTdKhEY1SUFUh06LrtWsN0PY5eZt5LgBTNKzVSdpjDZHh3oARj3wK+H9Thue7f7xSGtv1gu7ubtx0002YP38+DjzwQADArbfeiieeeAJ/+MMfsNNOOwEAfvrTn+KrX/0qAKCzsxN33HEH7rrrLuy7774AgNtvvx1TpgR/r0p0Nt54Y9xwww3Yaaed0NXVhZqaGv+5n/3sZ9hrr70AEBE7+OCDkclkkEgkCrb3iiuuwP/8z//g+9//vv8Yb2Of4OcAjFDwZD1tZ2D5f4B1nxL5jVXLFan24qksfAUpTvvaztK+ZgUpUSdfm+8e2QRbY3ihnht8vXoZIFZFvlrRJJDvohY2+jwac9AK0hjBokWLkM/nsdtuu/mPRaNR7Lzzzvjwww/9x3bccUf/9uLFi5HP57Hzzjv7j9XX12OLLbYIfPYbb7yBQw89FBtttBFqa2t9ErRs2bLA67bZZhv/9uTJkwEgEIpjtLS0YOXKlT4p6zdGMjFicFJn/VSgdgoRutXv0WOGRStP7YVUWTApNS3KMzJMqmBjX6RIgu4DRKD0xKYRRq6bXLNVdZGv13yaVMhMB3DvScCD36PWNjoHacxBK0i9IZokJWe4vrvCqK4uT5FidHd344ADDsABBxyAO++8E01NTVi2bBkOOOAA5HLBCqxoVPrOGMKgzy0iO1dVVfVjy0cpmCBFEsDkeUDnSspD2uhLNFl70BN0pcEEyYqSUjd1BwqnRRPK4zX0ulyX3v8ahWj5AIAFxGuk2ahhAHaeErUjCSDVCqwVi8/PXwM2HeCCT2PEQStIvcEwaJAdjn98YZaBTTbZBLFYDC+99JL/WD6fx2uvvYY5c+YUfc/GG2+MaDTqJ3IDQHt7Oz755BP//kcffYTW1lZcddVV2GOPPbDlllsWVYX6gtraWsycObMyZf8jXUXy82HiwGShsK1+J/gaHWKrLPLCnNOM0n6P1wC1k+TzZoQIEiBCcHr/ayhw8mTw6tkUrjUVHSFWReeSFQ0qv55O0h6L0ArSGEF1dTX+67/+CxdccAEaGxux0UYb4ZprrkEqlcKpp56Kt99+u+A9tbW1OPHEE/33NDc345JLLoFpmr4CtNFGGyEWi+HXv/41vve97+G9997D5ZdfPuDtvfTSS/G9730Pzc3NOPDAA9HZ2YmXXnoJ55xzTj8+bQSTJNWTZ8JmdLt9hXzegE7SrjRUBSlaRDE1ozK3L58CHN1uRENBtpOIsxWjc8m05HM1E+Xt8AJWX8djDlpBGkO46qqrcOSRR+I73/kOtt9+eyxcuBD//Oc/MW7cuJLv+cUvfoFddtkFhxxyCPbbbz/stttumD17tp9Y3dTUhPnz5+Pee+/FnDlzcNVVV+G6664b8LaeeOKJuP766/Hb3/4WW221FQ455BB8+umn/fuwEcyPAiG25AS6nWkDXroB+Px1AEXaF2gMDH4OUoS8j8KwwgRJm3VqKMh2yuR9JxdUkFSoxAkeYOvzaKxBK0hjCIlEAjfccANuuOGGguf23ntveEXCUbW1tbjzzjv9+93d3bjssstwxhln+I8dd9xxOO644wLvUz+r2Gdvu+22gccuvfRSXHrppYHXfPe738V3v/vd8n5cUXgY2ewIwRBbok4kejrA+w/Qv2/9NWQmqTFgqKqd2o+NYUUkQcp1a4KkEQQ3nnVtGl4iRc6hMDxPK5FjEJogfcHx1ltv4aOPPsLOO++M9vZ2/PSnPwUAHHbYYcO8ZWMErA5xiXmykSpeGKaojNGoHGwlxBY2iwSIpKo5SDp3REOFk6Pzhs8Ls0RRiVqAYme0gjQGoQmSBq677jp8/PHHiMVi2GGHHfDCCy9gwoQJw71ZfcAIVpHUEBsAJMcHCRIMbVTYH3SuAeK1xUNobM5pRSnfKAzDVAhSl/TS6kNRhMYYhp0VBMkB4IVCaQocpS9bPiPNIk2duTJWoAnSFxzbbbcd3njjjeHejP5hFETYJEGK099kuB+dpx14+4MNS2kSm7pd4XP+Pq8qHmIzFQUp2yXCKQ6F3jQ03Dy5sNsZYMMy4K07gR1PKrx21dB4PqX0Y9MEaaxAH0mNUY4RzpA4xMZtL8KDrJ0GoBWkPsPNi0mpCLlU876KJdgalsxBynaKhqSapGoIOFmRKwjg1ZuBjx4BHv3vwtcFCFKayJEO144paIJUBMWSmTVGIob3OJV1nvgEiUNsjcHnsylSMPQ5Vz54f2U7qR9WGH6Sdlz2wFNhWrLdSKYdgKtdkDUIriPCZCKs1r6c/rYtAz59IkikCxQk7YU01qAJkgJ2gk6lUsO8JRp9w/CQCz5PVAfxAqiTNVA4YeeZIGkFo2zw/rKzxS0SeiNIVkwqeZk2kYOk978GJEEyTPIoq5smn3vmZ8DiZ+X9sIKkG0+POQxr0P3KK6/EAw88gI8++ghVVVXYddddcfXVVxf0Agvj3nvvxUUXXYSlS5dis802w9VXX42DDjpowNtjWRYaGhp8p+hkMukbJmqMQLgOkM8BeQ8ooxK3UvA8D6lUCi0tLWhoaIBllUjiBGQJOYfYwu1jct1aQeorOKnaE8pP+woKi9RNpbCaGtYsdv1Gq4DqJrptZwRJ1QRJA0IBcgBT+Jblu4PPr18CbCJu2wpBynXTuagtO8YUhpUgPffcczjrrLOw0047wbZt/PjHP8b++++PDz74oGTPsH//+9847rjjcOWVV+KQQw7BXXfdhcMPPxxvvvkmtt566wFv06RJ1JJgoO00NIYArCKYkeLJuIOMhoYG/3wpCtdVCJIIsW15EPDZv4GVb9L9fDcArSD1CZ4L2mcO7d8Nn1E1WqKB1CE1Mb6oghQlBcmK0fvTbbqSUIPgOXQuGCZVQGZECHfLQykXqUuZFwIKUjeR8VyIUGmMagwrQXr88ccD9+fPn4/m5ma88cYb2HPPPYu+51e/+hW+9rWv4YILLgAAXH755XjiiSdw44034ne/+92At8kwDEyePBnNzc3I57VcOqKR6wZWvAXUTgYmzBrSr45Goz0rR4DsCQbIEFs0CRzyC+AfPwKW/0f0fBoN5XgjCZ4SZsvJJGvPpcmNwxylCBIAVI2jjuypdTLMpqHhilJ9wyKFiBc43Cbo038Caz8CvnZVkCDlUkS40+uHfps1Bg0jqq61vb0dANDY2FjyNS+//DJ+8IMfBB474IAD8NBDD5V8TzabRTYrcxU6OookdoZgWVbvE6DGMCMHWA6dxaI1yoiCOoBGQoaFccWoEDoHpk/wXAAiT8QW/jMeZMhNDWuWCpHHkpSonVpHCpLe/xqAINs2JWl30XwEKwY0bCRf0/YZ8O8bgPrpyhs9OgdzKfJEio7A8UijzxgxSdqu6+K8887Dbrvt1mOobPXq1Zg4cWLgsYkTJ2L16tUl33PllVeivr7e/zd9+vSSr9UYTVCUhJEIv6t8pLDcPGBUqHOQ+gTOQTIjRIY8N/jPdy8v4YAMUMgzLirZsp0j9xzSGFq4Nig7G6QsAhS6rWkOvm7dp4X5Rp5NuXB2BhpjAyOGIJ111ll47733cPfdd1f8sy+88EK0t7f7/5YvX17x79AYBvihqWGe3HIl/HhygiBZMaBtebAEWFWQRjLJG4lgQmlaMqxmGJIgcYgtGi/9GaZFEx9Apf56/2sAQbsHJkhVDUB1qLNAah2wfmHwsZyoZNP5bGMGIyLEdvbZZ+PRRx/F888/j2nTpvX42kmTJmHNmjWBx9asWdNjsmw8Hkc83sNgqTFKIWTt4XSi9jxgzXukCE2cE3yOFSQrShNyar1cicZr6W+uCzpJu49gImRGhHuxCLexssQhtmgPCpIZpYkPIC8lPalpAMFFTEaE2BL1xXv6tXwYvJ/tACJNZGKqMSYwrAqS53k4++yz8eCDD+Lpp5/GrFm9J9russsueOqppwKPPfHEE9hll10GazM1RjSGmVy4orS3cxWFalT4TVPjRIjsrNxWtVkqV2VplIdXbgb+/gOh/CjExhNVg/xYpCeCFKFEbUArSBoSruNH2JBuo7+J+uBrolVkKREGJ2hrs8gxg2ElSGeddRb+/Oc/46677kJtbS1Wr16N1atXI52Wsd0TTjgBF154oX//+9//Ph5//HH8/Oc/x0cffYRLL70Ur7/+Os4+++zh+Akaw4mREGLzhLFcLlWYk8Alv5wsHK+TJMrPf+mQCcYa5eGZK4COFcB/bgruN8+Vq35A7uNisEIKknbS1gCkkphpUxSkBvq7zTEADODAa4GdTpXvMUQxT2o9kSttFjlmMKwhtptuugkAsPfeewcev/3223HSSScBAJYtWwZT6Y6866674q677sL//d//4cc//jE222wzPPTQQxXxQNIYjfCGNzziuQAcktU5tMNgwmTFKKRTPRFY9wmtSNmosHsdqIpNK0h9xqoFoiRbyT/iSS2SKB4WYagNa/MZTVA1CE4eWPQM8Nrv5WNMpL/0X8B23yE1WL3W66YC7cuEgmQWd3fXGJUYVoJUTi+rZ599tuCxo48+GkcfffQgbJHGqAIn6w4nuXAdqWSFCRIrSFaMQjrVE4DWhSTBcy5SqpXIlSZI5cOwpOLDNgmGCTgOkBYEKZaU/bRKgUMnTo7eq6Hh2kFyBEgFyTBk7qAVAw77DbD6XVKO3l1Gf02LKtk0xgRGTBWbhkZZWPkWNY4E4OftDOfqn513rRhVsajwk7RFV/lYDeUv2BlalVpR2vbUBugcpD6gdrK83fIBTUqGQZMbVx5Fq3snSByCs7M6sVaDUOw8qKovfAwAJm4FzDlMNqBOC4KUT0sHbo1RDU2QNEYXXIdUF0BRXYaTIInQjhUr7NvEIbZIlEJskRiRpHyGFA8Os6VadYinL1CVukwbKUqGSWSVE2tj1TI3pBRYQbIzOrFWg1Csl1o4SVuF51HPNkAoSBEK0637WJOkMQBNkDRGFzwXfpnJ89cCj/6ABqLhClG5wtU5InqAqZYDvlFkTKoZyUYpwdcIw9PuVh1i6wvUHI9sl9i3Bk1MWRFiiyYBs5fhjcMltjb30xBoL+KRxyG2YvAc6usHyBCbawtypK/p0Q5NkDRGD1zFFBAAXr0Z6G4BPnp0+AiG59A4aMYAxw5K9KoPEjfTjVUDrthWzkNKjzIFqeUjoHXx8O1zVUHKCRds7qbu5yBVQ9Zrl0BChNicLL3f0SrSFxquC2xYWvh4jwTJkyG2TJtoN9IlwrY6r220Y0QYRWpolAXPITv/cANSdxh9hFjRsiI0MDo5apIKBKvYeJsjIh/JtRUFaR1GzWrT84DutWRXEKsGaif2/p5KQyVI7SuAh/4LyHQCx/xRUZCqSzeqZcRq5e1sJ/lWWbWlX68xtuE55HgfBrveF32PK6rcRCVlPk3EyMToWvRoFIVWkDRGDzxXlHWbhY8P12DkOgA8yndRO8kDUkFSu8qbUSJTrhOsZBstg6mTo9+YTwliN9Tfbwc9i5b/h7bDyZI3UkapYivVqJahTnzZTl2e/UWH61ALkTB6ItqeS+ox5yml1gHjZgAwtII0BqAJksbogSsqxgoI0jCW+jOxMUXpuUp0fAUpKrfZigGGUJC4iiqfHj05SHaWSFLVOApvDjWp6KmEOp+RRpyxmt4VpEhcqn06D0nDcymPqK/vMQygXjhrr1+sPKcJ0miHJkgaoweeQ/8KJj521B4GBAbB0KoxYBQpkrStKGCJRE5LTM5OdnQpSK5NK+ZcN5DeMLTf3xMhs9NKmX+yd4JkRshQEgCcTKFNg8YXA92tRGw8p+fzudgixnPp2q7fiO6vXxJ8TmNUQxMkjdED1xHl2KHQCTcpHQ5wiM3fFpUgKT5IPFkbBk3KqVbK5QEAO4dhI3h9BRMU06JQYfuKod33PRKkrNLKpYwkbTMqCZLrSnKl8cVCpo3CtG4vBKl9ubQYYbCC1CAI0gZFQdIhtlEPTZA0Rg8416ggt2SQk7TbV5TOt3GdoN9OQEESIRs1xAZQE1UnL1tdjCoFKSt5R6KBwmxDSSx6CrHZWek9U46CZEXIuBMQlXBdgqxqfKGQaafwqmOXPpftDF23+VAY1nMpZD5uJt0PKEiaII12aIKkMXrgOsXVosHOQeKqrWJw8kHCphoO2ipBUkhUtIoei1eLz8gJC4NRQJJyaQpNAZS/4zpDm4fUE4Gx0/I4RWt6T9IGJEGCS8eLVb/hgueNjvNgrMCx6ZxxHKB7jbx+t/s2/f3yf1Ej6u510haiczWRaYDGo0hcJmanN5BZqWFq24gxAE2QxjJGS+JvufAcmjzCaovnDa4Cw+X7xeDklPAZpILkupIgRRLBydqKksIRTdJ9O0fKx9oPB2XzKwpbIUiMUvtmUL6/h0RqOysnrlhV7woSEDwGjj38BKn9c6B10fBuwxcJdprOG88GOlbSY/FaYMdTgW/eBcw9hhK3q8aLogpPMYIEyOIjRudR1Th6qGsNmZQ6un3NaIcmSGMV+TSw4i1yGh4r8BWkkIrkDWKStpOnf6pK0rFSKhWeIxOwDVOSBdeWt9Uyf4AIUqwGiIjJ2cnRxN+5Wja4Hamwc4XEYygnAt6nbLypItctFYBoAr3mIAEyzGlniMRmh3n/d6+lUvGxtrgZqcgLguQqBCk5ns6Fuin01zCA8ZsADdMpnzBWIyreWul8tCJ0TbBhZKo1OBZojFpogjRWYWfJZXioq4wGE1zFFlaMBjNJm6u2OPfFzlHFC+9XJw9/IjYs6aTtKaGnSCLYODWSICNDP7zjkcFhpmNkHy/XLTTqtCKFeRmDCd6n8SL9sXLKYsCKlxdii4kwZz5DpGuoSv09rzCJ186SE3g+rS0Hhgr5tFB+bVqgAJLoADLn0RIJ/VZMhMjj8to3Ra9FdtxmgqQbII96aII0VuE6NGGMdEWiL/DVIzekWgxikjYbI/LEnGknEpPrFpOcLcmPaSkKUoggqaSiahwwaWsKAzFSG4hspEYwQeIQp0r2zEhhk97BBBOHWLLwuawS9jBjZYbYBEGyRYn/UDWtTbUCq98LkqRsF2B307YUa5qqUXmovfzYJLJKIUhOXpi7in+xJDWZTtQC1RNJqTQt+lvFZpGsIGmCNNqhW42MVbgiNNS9FlgfBxpm9N68c6SDQ2xwgxOZh0FUkPL0XWxSmWqlpM1MuyBPNhAR4R7DBGwxKAZCbCGCZBjU3DaalG1Hsh1AbXPPVVrDDZd9qJTwlmmJHA6vPMVmoOB9ahYJsXE42YrSud4nBSlNx2ioqglz3UDXaqCjkRy9q8YR0fRA25Bpp1yYYqFEjcoh20FqkJsG0sIkMqGok64tCFKM7jduTApScjwdJ1uofVa8UEFitXsorguNQcEonzE1SoLl3+4WYP2ikT3xlgtekbluUL72BllBcvNCkeumBMx4DU2ouW4KOXHSsmHSfQ6flCJIjEhcDrx1UyhEN5LbXbBTuFqRZ0YFGRyi1TLvH5U48IqfQ2xWTOSOlDG8MUHiHKShUpCyXVTt1LoQWPsxPebkKdxjWfTY+qVDsy1fVNhZCq2ymzonXnNeGkDXvhWR12n1BDpnqhqI1FY10PkXTUhn/NR6EWJztRfSKIcmSGMBvIJX4eaFw+s0xWBxlIMnYS888LgU9hqMslqekD1HlvsnxwtTwg4hwSsEiQdFNW8pnKTNsBSCZGfoeLFaNRLB26b+FlbAhiohVSVIu34fmLwtsM0x9FiAIJkoL0lbhOqGWkHKdlDZeHq9PN75DO3PmkmkgKVadbL2YMLO0DVqxWh/M0FSe/S5DilGxVQgwwAmbkXH0YzIKrbUOlpEeC6wYYm2bRjF0ARptMPzgNXvU6NOFXkx4XIT1bFAkHzVKBxi84C1nyg5KBWELQZQ16YJy7SE/4/wT1n9LvDuvdIw0hPbZiv91UoqSDG5enVy4li5I/dYuQ6w4k3gHz8EnriEfr9pETEdqoRUJp1mFJh7FLDn+XLlnlUJklVoR1AMUYUgwSAFcLDBykW8VoRqRCiGLRQMg3Kj8t06WXswkc+Ilj+iqpTz0OK18jVOngwie4MVlUrm2o+B568lhbBtmT6GoxiaII12uA5NGpkQOcinaLA1rSKKyygF92FzQ0naZlSGtioNHkA9EWLjkAw/9+z/A175HfDOPUrDWieYHB8tQZDMiAwVsYLk2SOXIHku8P4DwMq3gCXPAR8+Qr/Bc4bOFM9XkGKCABmSZPqtXaK0L8shSGz+l+0gYjLYpqN2jryOnIxUFjkka6dlAnw0Qfdzw+zLNJahkvp4rVRBYyEFKVYGQTIjwdylxc/QMXRH8PWs0Ss0QRrt8Fzh4xFawduZ4AQxFioqOLzjhVQWNy+TWysNJy+VnXxKKg5WNOjq/OYf4TerdW1Zrm9GS5ecmxHZsNbOihDbCFb7XJtysBgf/0MmoQ7VNqshNj6/wy0dzAiFTNRqu1KYsDn9Xb8YpCANsuloph1Y+xHdNiPy3HKy5ObM+V2GCbierBB0h7Hf4FhFeExkBTJWQ+ooLzqLFQSEoYbY/M8XDvm65ciohSZIox2sWKiTtZOnFb06QYzUSbcv4JL6sCLGtwdjYnPzYrJyhCon9mkkETQVtDNAx+f0+lwK6FhFj1fVU5JnMZhRCrPx+w2hQI1UtS/TEQxjti8n92+2OxgKBAiSOBZh9SoSL98HqXkOHd9MO+UDsY3EYMHN0/6qnUT3DQOAI92c1UVNJAZ0raXXt3xAxGqknhujCbwP7Wywspdz2OK14lwXZrDlKJFmhI7X7v8tH3PEMdU5SKMWmiCNdvi+QEr1k2sLh+dI8LHRDF7ZGyYoB0lZ/blK8nal4eZpEI3GgyvEaEL6pjDWL5GTbXcLPZYYV3qAjcRkN3k7K0I8GLnHqn0Z/Y3XAZvuR7cXP0t/hzoHyYqJ0KcrvYwYkYQMu/WGWDUVMgB0/AZLiWSEVQsOGXOzVPVcidcSaetYSf/WLQwqeBp9R7oNWPMejSd5pW2O50kFSU3SBspTIlnR3Gx/oH46PZZLgVTlEXo9a/QKTZBGO9gbyMnL1SZ79vg9wsaAaRm7ZRsmTWLq7/EVhAqHIPwGsiZQO5kSahlWLOjcDFBCZrSKiBNPZFX1wbJ4FVZcIUhKIudIHVA3fEZ/6yYDs/ak24ufI2LXUxPZSoJdu82oTGgO54hYURm67A2GBTRuQrdbFwIYZAWJS/kZnLdmZwoVpGgVPb5hqUjiN3T7ioHCzhJxcfLBNAS28wDo3DEjMnxcloIUlRWdfmWkyB/TIbZRC02QRjvY3djOkgyf3iDDbqrD80j21ykHnlhlt68QhDCUg8Svqeh3CvJZymCzqiF4v3055Shx92+AzONKKkhx2W7EDimAIxHty+lv7RRg+s5E7rrWUNLxUFXqOKEkbcOUeWEMNXTZGwyTzP8AykMarLY12S5Kbs91B88HTtK2c8Tvw2HBqkbat7UTBUEaoefGaIEriJGdFmTTAD75J6mHAB0PrlQ1IKohy1GQIvQeJxeqjMTIvZ41eoV20h7t8DxQqw2DDMrsLF2orLYAohR7DBCkJy8DWt4H9voRsMk+8jnXBiXYVpggsTpXynAw3MalbRnteztNxwKgcFSpAZbLuQGqgtvkKwCGMJ+nr2hjgjSJyNGEzYHV71APq6EiSAVJ2kUIkhUrL7EWoGM7flO63bpw8JK0M+3Sr6yAIDml918sKRUJ09Il4wMFK0f5NF3fHz4MvHG7vMZjNURyIknAzJRfDQnQtZ5erxAkoSCNhbwx15WNe79A0ArSaIcrPFRqJ8tmm5yX5IfYxsDA6rlEjgBg4RMhBckGMAgTWzHnaBUcYuMBsW05vd6KAam19FiivucVKHuupDcAj3yf1KqhClf1Fey1VTuZ/tZMpL+pdTTxDEWVld/fLiYmL1OW6jMisfInNdOkTu2AMALtGByCZEWBXFoWGgQgqudSrcALvxAVdUUwFq7j4YadpbEj103H4tN/0uN8zH2CFJdVhuWeS7FqaSwJEEEyjNGf3gBQdKLlg+HeiiGHJkijHepgbkVogHcdYOGTwAd/o8f98vFRvJJRf2ckAbihqr3wayqBchWk8ZvSIOpkaZJNNlIyKCAIUg8DrOqr1LmKBu38CPS+8TxpXcDJ6lyJ1b1u6PxenJCCZJhAvD74GqsPBAmgY8Skj8NslYbnAXZKEKQIsOxloHWRfN7OAs/8jBSNF35e/DPMyOgPlfcFGz6TqmWlkBckNZ+mcFvYPy5eQ2pJvEaG18o9l6JVAAy5YMqlZANrrogbrch2UqEAjwFfEGiCNNqhJgBacTqRU+tJNn7xlzTpjgU37TBBCitIBipfTuu5UlouBlaQEnXUowkgsmDFpMFfor7nnmCxUAXWmg+JIPWmxnStlQnLQwEnLwd5rvKpFQpSV4swiyyxUq7kcWGCYAq3bMMqzAWz4uXljTDMCDBuJt0eNIIkrDicHLDqHeDxC4H7TwUW/IWeX/ysTOxf877MiQls5whvRVNpZLsqf47bGSJGbp7Oy3ChBZ/b0SpBjsrMQQKk6sSFF/kUXfu5LnLXHqnKcDnwXCDTVkgoxzg0QRrtCChIMboIOz6Xj614S1bKjGaCpE4KkUTwtzg5AGblq0U8F4DTQ4hNKEixaqmqcEdwtTN4TwQpnBu2aoHwsepFlm//nAasoYKTU3xiREirhhWktaUJeD5NeUqVSi72c5AECbKiZLlgKUnZ0XjfFCTDkgSp/fMeX9pvuOywnqJkbcZrvwc6VwIbQmG1+04mp/Lwdo72hU4YnWtojCoGJ1vZqj21gbSdk3mCKthFO1IljFzLTPYHaFyy4kFnd7Zx4JDeaASfc54rE8+/INAEabRDJQ5WlAYAdZBf8bo0OhzNK0817MTVIgwnL9ycK/z7XKd4ZRHDJ0g1sg9TagMNIpwrEu+FIHWGfG06V6PX5q/smzOUx9POBo30ABli61oj+rEVmQCcnFA9KpSH4TcAjhJh4IRszvsAhElkH4Y2MyKVvHx68BQkwyRLgtXvBB9//yHKPwKAcbPkc+/dH1QSeaGjkudcanQbEabWAfmu4qHDfLqyBMnJS/uTTBvQvbrwNTWTxHklqtLK9dMC6FyMRCWp8kNsWRnaG41g1TISH5nh/0GEJkijHepgzj4c3WvlY5+/LhqnjuAmqOWAc3oAIoJuOMRmVp4weA7w+WvAPd+W7SFUMGGI1SgK0gbFgTcq+22Vwg4n0++ZuBXdT7UKBakngiQIx1D6q3BuGyDDEDXN9NfOANn24sSCz7tKHRsmB2ZUGHgKU8jqJvma3vZ5GKpSYGcHyXDUoeTxWA2w7lN6bNdz6W9XiyRIWx8JHH8vbdOGpcKbibeTQ2zi3M92UbNk9XofbYgkgq7VDFYtKqogiX0XTdJ3rl9a+JrxmxI5smKkIpXrpwWIqtSktJhgtSXXNboVfDYejlTRovAL1PJGE6TRDteRCgf/ZQ8egCa2F381+C0UBhtqcqBrh3KQnMHpB+Y6wEvXkyL37NWFzxcNsW0I5uoYRs+T9ZR5wJG3A7v/gO6n1knjz1Lg5rBDqSDxJGxYsru5FZPmmd2tJQiSJ8NLlQAfYw6hNc2mfc9J1kDfFSRLWfU7g0SQHNGyZvGz9Pl1U4FxM+g5OyPP72Qjkb2Zu9P9Tx6nvxuWAu/eR5OtK45/66ek3o1mI0InT9dRpj34OJPqSjq0u3n63Jom2vfriix6xm8sevkJVTKa6Nt3xGqkxUQ+RbfzaWE6O0oJkiP2G+d+foHMSjVBGu1gh10VHFtvnkN/Fz8DuCPYX6ccFBCkXPA+jEHKQRIoVl7tK0ihHCTuV8ahqJ68QwyTFI+kCNHluikxtVcFaYgJEiscibrg7+HQYra9+PawglQp0sHEkfvbRWK0PRzuA/qhIJmDryA5Iin4zT/S/TmHBQ0FmSDwebDFQfT3k8dJBb73JOCV3wHLX6P9uX4RVXiN9pwkJqThfCAnL/sSViqE6Ijz0IyQGtfyMT3OOXUAEX4zQqS5YSOgblrfviMSDyZpx6qBxllD29C50uBzLBKn6uEvUCXlsBKk559/HoceeiimTJkCwzDw0EMP9fqeO++8E/PmzUMymcTkyZNxyimnoLW1dfA3dqSiczX1aGIYhuwRNnN3+AaKuQ7pmTQaoSYkh1cxrj04A5BKuDjHRQ1VqgoST2zpDUpPJyZIPVxmhiWk+Sr5Hen1ZRAkZ+hWcvm0bDMSq6FzqGMlEcSEKLHPdvUQYnMrN8mFFSSGqiBFymxUy2CSCtA+DV8j2c5CU9C+ws1ThVzXGtpncw6TBpB2WlYHMeGctiOpTLlu4LHz5eekN9Bnda8jhdKKjnyfnZ6qt/JpIhT5VJBgs0rsuZVXHwEil/lu+m5umwNIHyPDEKG2PnopqwSpdSHw2h/EuTqaCZJYgFoxOvfC55vnkUnuGCROw0qQuru7MW/ePPzmN78p6/UvvfQSTjjhBJx66ql4//33ce+99+LVV1/F6aefPshbOkKQbiusIrjnW8ATFwEtH9J9MyIJUnWTnKSzndRAdeWCkUmSOBRTCmoOUoGCJMIXrk37oVKlwern8KD3n98Btx1Ik10gSVsoSKn1MsQWqwXg9UKQTCJJnivzaDLtPf8G16G+XUPVILbtcyJEgOh03kbqR7o9RJBKKEheBRUknmTC1UV1U+XtvipIhiVzTdhoVcXaT+i6SW+gcCsT4L7AyZPKBlAz00hc8cvplvuOzyPDBOYeVfg5+W6Z+M4+PSN5Ysp2AavfK06SPI/2S7SKflO4HyGfNz0RC8+jqsDuMhbJ6uewGef4TYCdTiPF7rDfCKWkqvj7y4EVk8QXAN76kzg+o1jB53GGm2mHK2+zHRQCLlYVOMoxrATpwAMPxBVXXIFvfOMbZb3+5ZdfxsyZM3Huuedi1qxZ2H333fHd734Xr7766iBv6QjB+iUyvyjXTRMlE6alL9JfM0KVVADJxTzgsoTvZEdmNVvn6qBxXhiqguTawYuUf4/nETmxK1SKyqQAoP2aSwHv/pUGjHfvkxNlOAcpp+YgmT1P1qZQkDxXeill2npuDcNhh6FSDuyU3J54Lf3ummaaoJmAs0IZBvfNq7QKUECQpsjbkUQfCZJJ1gCAUJBCBMm0yEV8xRvkYZTqh2Lt5oGMOC/Yt4nbzDAS9aQIMWYfKok5I9dNE67rSo+ekeyu7eREub5yPqfbgM/foGvVtQVByhf2I2SjVla+V79PvRgDny8UjXIsL1SCwjYc1U10PPb6IRVKuHbf845UWLFgyA6g3zmSHfJ7Q5jYhe+nN1CO4hg0kRxVOUi77LILli9fjsceewye52HNmjW47777cNBBB/X4vmw2i46OjsC/UQcnLyqJ8hTu+Pz1YDI2s3crKi/+ZKMcjHNd8JvajsSkTjtDq+NSUJM4XadwsPE8AJ4ggBVSK1S7hFw38NmL8n5qXXEFKZ+Sq9lYDQCz9xwkbliaZAWprWdVgHN6hmrAdXKSiMdraVKumUgTOk/g2c7SITZvEKrYeiJIVqxvITYrSsaTAO33TFtwsPdcuo4iCaEw9fG3uGKSZ2UxIc6VaALkcCrA4TWGGSFVY8tDgO2+TY/lU9SyBI50eR7J3jROTuTUKWQ+00YhmbUf07lsRcX5XKRhM1dQpVrpPa0Lg7+XCVg5vld2VhJnHi/D+xxGkKT2FdEqoD6Ut5TtHN1tYux88HpSCZKdBdpXgnqBrhuZi+8BYFQRpN122w133nknjj32WMRiMUyaNAn19fW9huiuvPJK1NfX+/+mT58+RFtcQbC3Tj5LykaqNThQpMWk7LnSq6JqHHWTB2jVb2dFefgIrGbLZ3qe8AMEyS5UWHiVaVew/L1TUZCyncCSF+T9Ne9LQherJjLEA2vbUvpbThWbT5AcqSCl1sN3+i0GP/xgD1H/s5wkg9EkEZBoFVA3WebuZLuKK1q+AlCpEJs4tuFJTM1B6ut3ReLSB8m1SSlUy+vZRiJWTaSmryFcT5ybHGKrEmFJwwz6N3FFoIrxmwB7ng80iIq3XEqcG8LPh609RurE5ORkixVGpoN4YaZN/A5hxNq5Glj1Np3/XPXH50/7cgAuvTdQsJGna57drlmdKnaMnKx8XUpZRIbRF5PRgvdawPQvAZPmysdynSNf6WNwSyE1jJzrkvvECClh6xYSMaqbTOdm2Jl8lGNUEaQPPvgA3//+93HxxRfjjTfewOOPP46lS5fie9/7Xo/vu/DCC9He3u7/W768wv19hgK2IBD5lMxByCpK2PJXqUJGHYhi1YqC1CFWv73k+gwX7F6M1AoIUjhR0JWr0Er8Ps+jAZuR6wqGANWk3Vi1qKQSKkaLKB+OlRFiMwwafDxP5iClNwBOD9VJniMTnwf7WLoiSdYnSFVUumzF6dziHKRcV/Ht5STbSpFWr0SILVoFTNuJVu8TNu/bZ0YSMlQIUK6erZxfTEYA0Q+tjxMdE0Q/EXucfE7NVyk2WTP8UKYIrTOxYHftTIkqwuEGh844Z9B16PyuGify1mzRU8+gDgDrF5NCnu0SypKYsLvX0Xs411D9fCcLSoJ2KAcxta54iNpWCFK6lIIEWabfX1hRYP+fAeM3o/vZLmEYOUQNnQeCztVUKcljnesQweOFEBtfAhQ6T62jccCKSTI7hjAAqjz0uPLKK7HbbrvhggsuAABss802qK6uxh577IErrrgCkydPLvq+eDyOeLwPhl8jEfk04GSEg7JNJ2oqFPN9/Ta50uSGnawgZTpoJWdERqiCJMwsPa94eEQ1kitmIMcKkpOrzGTs5IMGfPmUVOZqp0h1ic0gAaBhOtD2mSSusTIUJIAqZfJKDlKqVUnCLtLqwM7Re/wKn0G8jLnUOq8oSJE4fX+8nkJtAB2fUgoSVyNVAux/FZ7EDIO8pMKqTDmwYkJBMgB4NBknGuh3mxYdCz4n+xPScvPAKzcBS4UCydckIBO1geKTNcMnSF0ABOHiHCTXJkUzEgcmbTOwHJpKI5cKLmhy3TSGJeopLyefpn1b00yvs7M0IRsW/Z5cisaufEZcH+uDk7CTlzludpbO02KKmucFCVIxBYkbU/elj18x8KKIDVWzHaKZtdgPkSLX9EhBPkXkMVpFi6N8mvYb/xa1KMAWdiTxWjHGuSOfAPYRo0pBSqVSMM3gJlsWnczeGDswBch20snHrQYicZkMrIIdn3ngZQUp20mDDH/GSAK3qejJzFK1uC9GkDwxSLK6NlC4dvHS7ngdhT0YarPZ+lDolpWl3giSEaEB3W9X0ooe/W3stCCUzhAoSOK4cGJyvFb2qzLNIEEqVlXnuqDcsApV8PA+iYQJkimT3fs6wRkG/S4murFqEboR+WyeB3+o7E9I6/M3gE//Je+rzXXVRO1iITYGT1C57mDo1YzQdnauJkfukdY1Pt+NQA+vXBddo5E4qX0NG9Hj3OTVitHzrYuAl39DyfG5TiAu9pNhBIk45yB5rihBLzGOMEl7515yx08XIUi88BxIDhJvo9q+Jtspfle+uLI1kpDPEMHmnFA7Q9u/bpG8tnwFSex73l+e/9+YwbASpK6uLixYsAALFiwAACxZsgQLFizAsmXLAFBo7IQTTvBff+ihh+KBBx7ATTfdhMWLF+Oll17Cueeei5133hlTpkwp9hVjA55H8fpYkkIvnk2DSbF4LxMklu5Zzs92kskfRqAXEjvc9iTRqqv2Yrb9rlItVQnS4NrFQymNs4IKQLxGtgcJE6RoFZGf3nIazIjwtxG/Kb1BEL0Sv+OJS4C/nSU6zw8ySeLwUMcqul89QU5WgAwrZjuLkyA12bYi21NCQYIhc7lKNRfuCfFaGbYzDAqx+ROvqyhIVvEQb08I96/i8yfVGlRLewyx1cnPUnNATIv6u43bSKgkw5Sw7bqkYuVSwcecHE2gfC2lNsjjY5iFodJInAjfkxcDC58EXvoV5RXx7w+HquysHDscW4Zgw9eEawPLXwEW3Ak8doHMY1JVO9cRJpIVUGQtlSB10fnqjAKTRTtNi2s7S8cyn6bUjYfPop6BhkXHlSuqPQQXgCMxOjEADCtBev3117Hddtthu+22AwD84Ac/wHbbbYeLL74YALBq1SqfLAHASSedhF/84he48cYbsfXWW+Poo4/GFltsgQceeGBYtn/IYGfohI0mhVICGiiKKRzshxRN0vOcI5JpFzkug9DUdaBwFIJUUkFSBv6iErojFYxKlL+z3B9GwwyZZAuQApDpoJVuQ4ggRRKijUUvK1IrSoNMskkmpqbbipMK1wGWPEe3P3qMXrNyQWH5c6XgOUTE/bLoicH+VLXN8nXZjkLyzcepUp5Npcr81WT3vpT4M6JVilmkSPS3c0rYN6wg9eH3qB5eAClIdjYYugDoWm1fQSaG6Q1BYqXmSLFy/PptwMPniJ5hMTEmDFMzUSdH360uKpwckZZIQqQI5ClnhRdvrg28fbc0IQVkRScTmI4V9HpTIVVOFljxFlWZ8j5yxDHxgKKu+uEelZ5Lr6tqoPO7ey2kt1QFCJIRkSp+tkMS4RFPkLJy8ZHrpn2z+Bm6//KNYoHgUL5YtjNQhAlgzBGkYc1B2nvvvXsMjc2fP7/gsXPOOQfnnHPOIG7VCATHgZONcuBgXx6AJu1dzgL+8UM5QEXiQOcqebGzT4jnjbyTmCccnuCKQV0Zu04hCXIdAGJlXRGC5BRXkMbNDO6/WFI0cewqTpDUHJNSMCMi6bmWVrSpdURIihEkNbTI4YZcF00WtZMp7FVJuI5MVo/XSvdmRrxOlr9n2kQeh5jMPA94/H9pUP3KRRXaHiZIRUJsAK1u+zPBVY2TBoG2EkLwXACqghTpu4LE5JKRqAc619B1G1fItmFSn7B4PalL2S4KeSQbZQjKztBiZ+1Hsm3JqgXAjF0pt4Ur5YYabr7QhZyV4UhceBW1E6HhXLtFT1P7lFd+B5z+tDyG4RxENfRoWIK45oHOFpkbpzbxBYorSOHHEvW0XzMiPGxFK6ggRYMhNl/xGsGVbJzqYFp0LrGSzeBr23OAnC1TNlSMtLllgBhVOUhfWLC7rxUTqxzQicqrp2hCNr5kRKpo8uKL3W8FMQg9ywYKJy9Chz0pSCGX3fAK/tHv0wDI+SMDRSkFaeZuoRwSsbqNJmh/T96WHh+/GeXqqDlKPSESB6I18rPTG4pPwqqqYFgyFNfdQl3iK60Oug5N5gCF0/jcY1hRmZMUrqRa8z4lJi9+tjIrZ09xI+5JQepPkm20Sqo5doZ+J3uGcfIuf4+6HeUgTFryaVIeG2dKsgDQ91c3A81b0nnWtCUtgngS4nMp0w58+Ih8H+eHWTHySBqO1iMOEyTl+HOTYq5w4nAYj0ltSjXxZy/L21zNWQymKfLDbCo6yXbRfguT1vAY53lAJlTUwukHniNCYPm+t6kpuZ2KgrTwSeBf/0fXykgug3dVgiRSOMIFCVxtbGdpjAqMb4YmSBrDAD5JDYNYPq9y+GKLJGhgVUMfkQSpG/5jnphcR6iCxNtVaoIPtCFwCsOLXAUXTVamR5lbIqGyZmIwBylWTYN2NEkk7pBfAif9HTjiZjpekXjhZwhk8g7Wd+doe6NVRI7UliXFJuHOFnlbncSjSWpgGu6KPlC4NvUPA8jrhNtbMCJxWTWWSwXPLXWSUi0p+r0tyucVKEgGADMYDusreLC3MzL5mUNsdi5o82BnyAOmnKRotdp0zmF07lZPEIqcyK2xYkAkGSR+1RMovygvkvJ5wu1cTaEnBhvGcoKznRn6MDoTFE84vK9+Vy7szIgsoFBjMipZ+OQf8rZ6bMNqDrfl8WzZooUXjnZWKKhFxji2QlDRtAV/KH1nPjOwNiMqrGjQwuGzl+i3ZLtGXg4og/21WK3Mp8UxUo7ZuoUi/JwBxm8atKwYiXPLAKEJ0mhALiWbJlbVSzdjNvOKiOaKqhQdTcg4OA842S563UjLQeIVOitI2a7gYBZuTgvIgbN5jnzMTtMAWQm/EdeWybCzv06T1eG/pfsJJSwSTQIQBCkn9m+sWk7SYaVDwadrurBkHVf1JOhz+RiWUpC6FG8mzuvwXFpFe27lJXzPoeooAKiZVBiCUHtP5VMhBUEheNkuDNjhXP08s5iCZICStfupADAByWek8zGfk6/eAtx/KqlhpkVu6d1rg15ZpcBh8W2OBXb/b1GxKM6hhCBIyUbabvV8iVVTyDXXKbyDGujxtR8GP59za5ggZTqoP9lQ9cbikDcntdsZMbl203VoWpI4BbZ7nbzduljeVq/dcMI9+z45eRoXE3XSGymfFp5KVnGftEyIpE//klRM2N+qXMW3N5gWKcKBbTdon1RisTAY4FxQQ1TyuSIsqlamrXhDqPkl7Fg0QdIoG5VaKahW+lXjaCDnZEVAruDV0A+v7KsaZClxrmtk5iBxYi2v1ls/pQahjLAsrU7CU3YAxs2i23ZWWWEO8DeqpGzO14Hj75NkLBBiE32/aicGw0jc+qQHgpS1HeQdj8qdk41CCRQhl2yJ3mas5gCiZFqUojMhqzRBch1g/UK6PW4j6d7MsKLK+dUd3GY1YTjbOfDQrho6DXdZNyNEjsuxVSgFJkh2Rjof2xlqxPnRo/Tcs1eJ1XWX7Abf4za7MsQWEyTWMOQ+4/BkVWPxEvPqJpFz40m1ac17wddwc2qesDJtRJoGI+QahutSM9ruFpHDopAlJimGSa8Lh75VgtS5Sp67algnHC41TRn2bJwpPXgcWyp/pllYUem5hQrS1B2Ep1hc5AHG+u6hVQrsvK6C1b2R2tSVK1b9hHirkMwteQ5ITpD2DGGMVHWsn9AEabCQ7aLqop7aEuRSVHXWuqTnz+KJPwxeufMgrcqdVpwG34bp8qIfyQoSAAqRiBL+fEoxlwsRJDXh0rRkGMvOKIPxQCdjJQcpPAmqCpLn0YBcNU6WKPP7zWjhRC6QzjnoztnE5ZLjgQmb0fu57DjTUTxUyOX2gKLKiNJ2KwJke+hn1x+kWmWVUfNWxat8Ah49ysSkhkGzHQPPjQkoSEVCbNyktiIESSRj//tGSjRn2Bn6XfkM7eve1Co3H2xqbGdk+BuQpHv8JkSOwiHZRJ1shcLXNxOL6V8O3ve3UZSTc1L0YMLOCIsKT1aisvrKITXDAlCksEKtKoNHvdaAQtd8FbwACjxmyBCeGRGEKeyT5gQb2s7Yjfatk6OE5GgVjZmVMtlUGzkzMh10HDtWjLwxGBAEVjmfayfJ+/XTiEB2rARSa4unDhgYeYvvAUITpMFCqpUGpx7bZ7RRW4rOVaVfw4aBnisHEAaTL76oVU8PLjFPNARdeMNGayMBvs+MkoeUT8kJNhsiSFyGDRQnSOjBZLFcsAkaUEiQVFXIEZJ0vJ4GWV4FcxPOEgpSV9ZGOufAhQfH9eRv8Y0XO4orLillUuEcDA8yPFOs1L4/8Dw6Lp+9DMCT9gbs3qwixudXd1DBUolttnPguWE95SABIn9kIAoSV7FlZCjnvfsLX7fmXdFapQevKoaTk/shXkPEIRKT59SMXYDDfwdsf4Ig1KHzJSbylJLjQ/keAKZuT39VgmQJvx3Tou0b7IbGdkZ4M4n8MzaytUXCtgEZ+lRDNa4tq/vYP2zxc4W5QmHvIMMs3OdMmty8JEhhtcp1ZIjtGzcD+14sPj9L+zdaTeNIpXKQDLFo2vOH8rFcF5GyTHuh9cNww/NI2VL5vmHI8HDdFGDyPLrNrZQKYA583B1h0ARpsJDrlknRpeDk4TtAF5vUMh3CD8cB/v1r4K8nAJ+/Lp/3S/rFYJtUBtBolcwX8atfOjAiT2LXlitx7jOVz8iBMpyQrZoosjQOiNwRoSANNJzDSd9Aj4nWcHNS1o8k5L5lw8ISJcO268J2PLieB1c99HVT6W+mvTiRVRN+c10h0hBTVu6g/bHq7f4R4nWfAKveAZb/h+5P2Y72qxUtVE0SgiA5mWBYLUCQugZOzNWQTTESFK0aWIiNr5M3/yhNOBs3KXxdaj0RFiPS+3nmuXKfxGpEUrFSKWVYFFblCqpiIaVxM+m8UIsDAOnonu2QJMKKiZzFGA09g+3czB5t2U4Angyl8TnI45oHUpkMgxaPj/5A5h5O2ZZes+BO4OkrgkoPELz+2YdHPcbsoG6LUv1iOUjZDkmaxs1QPK9sUoSjQtXr6VrvC/g4bnkQMHFrup0RLUfgybDoSEF6AylbYRKu9qzj/MhShSAjMToxQGiCNFjItMucmlLgBNtSbSXWLaTwhpuXZl3v3COf9xUksepRB9BIlfT14DyH568B/n1DZcrgKwnulg4orUI8YO3H5O9TNMTGjsqWrNTj3BHOURgI1O8slmey6X60zZvtL9WMSJXcLu7jVYogOR5slwmSco7UiX6CpQiS6qkTDmlZMZoQmThnO2li6GvvMIDCR/kuqW42biwn9zA4N8bOBSc3dWLjJssDAf9Wwyoe2rI4pNnPJG31OH/wkAj1it+w8T7A3GPodnqDaE0SI3uKHrfZkZ8Rq6H76iRsWtKuQW07oqJuMlA9Ppj7BhBp4uPxzj1Stcx1yUXDYBsTci81vl5YPXJFocTbf6H2HsTWaBsfvxBY/Q693nOBCVvIz1v8DO17FQXXfz4UumbrBVaQRMhNLQroEsprNCmPM1930SQdz9pJlSnxB0RYUXy+r+CLisdYLYXKe0q/GGpkO+i4hXOw1J51XFBQymurmLo3yqEJ0mAgnxYVPS56VJDyaRrgirXOAAC4pFCo5cWqRwibJ3JCsdqqIJoQyoYlCRJA5aYjTUFylNg3E6TaiQBcWm3yRMsDG6tMgDQ1AwQxMMRgOcALlcN6XNERxj4/AU58lEJinA8TS8rkUNcprrYIZPIOopZJm6oSpGrhTO3mC5OegZA07wVdeq2omNQ52bWbTPD6Q0w8h85PltiTjYWTO4MnACcbVIoqTpDE55byObKiVN3WXwVp8lx5e/1imQsHECGuVioMAbFi7mWx4XmKglQtzgtlH7IaxgpST1Bz3/h+wzS6/fptwN/OESF0MdENhbN2poO+q24qbY9rC68chxZ4Hz0K/Oc34pp1gaUvkjrJmLg1sNlXgd3OA2btSY8t+0/wO8IKcvUEuS+WvQy89SdS4vn8UlVknuA530lVSJysLGapnkBKXaVgGDL0x9dHRhCkeC1dt90tpd8/1Mh0FvY3BIANIj+2dnKwK0MpjLS5ZYAYMEHKZEYQCx4pyKdFiTB6VjLsNE3u6oSvwvcUeVs+tvYjajFhZxVlwKPkOfXij9XI1RQzf/97Bzkvoa/IdgDv/JXUIjuLgBdHpl1WUnAyMBvQAdKFGhDJ7CYw0K7Sqot2JCFyLEIrccMgQuQ5UiVS80fYn6UE0nkHMcssDLEl6iQRTG8oPH/YFND/oLbC38qTemqDbGnRV3ArGyZkycbSv8lXkLI06fB5qeaOcYPdgUAlxcWIpxmlf/0lSFscBOx7Cd3uWkPXL29zNCGvL1bxDKv3CcFz5fFgKwa1m7uqhvXW5T1QhCHymPa9FNj2W/TY2g+p+nP8xjTxW9HiDa0riXyXrP7iPnX5NAAvWHGZaaPj9+kTdH/HU4CdzwB2O5e2davDgblHF/+OXBfwwcPAXceSfYHaN+/xC0mlWv6afD0Tk0wH9QzLpSQZUfchJ8yX43bfV/A5qhIkPhY8drQtGxmKi+eRKtS9Hnjk+8DdxwPLXqG5Z80H9JpJc6Xre9gugdFTJ4RRin6NJK7r4vLLL8fUqVNRU1ODxYvJw+Kiiy7CH/7wh4pu4KiEv/LvYaL2PJpQLCZIRQZaLplVFaT1iylU9sDp0qQuXitW7crhjCXlxB0PrTxV63vXpVXWhqX9+KEVwiu/A967D/jXT6TdvWHJqjAO27ASpipuhiUJBcv9vRHTYsh1077tXBOc1CJxSoINt4tgeK5UmKxYMJeqhxLwrO0iahlwPcgkbYCOGRNanlT87/JClT8gAqkSAisqKsZsmXfRnzwUR+Qy8WqxqpH2a7GqPF5Z5jPSURkIhkbymYFXVPk5SBaKhtFMC4hE+h9eNSygeTZ9NvvVqJWMXATBeWDsv9MT8mn5Gs5xUsOupin+ldHiQg2xJeroXGuYTkRjo13p8fWKn5AVE6R1kFb1nkf//HwqkxRvJ0e3VTPL9HoyMt2whLZrzuFE7CZsLl8zftPi5DbbRT5UXWuAR/9bqkLqvk+1SmWRrQA4P8rNy+tGVdmdvDR6rTQMUyb6M0FSTUUT9SJZe0Px9w8leD8te4lyFjtWAO/eQ0ofJ7E3zOhdQdI5SIQrrrgC8+fPxzXXXINYTK56tt56a/z+97+v2MaNWmQ7ZTJeKYLEplyROCg2X0xB8miwKeab0bZMxvGjycLkVDXUEM5dyLTRd3etpXYQ6TZpBjgcWPkW/XVtEKl0ZW6RnQXS7COj5GjwxGVGQiE2gb6uZNIbyJaha01QQYomQIntPXweD8xMlLiap0TIxHE95G0XEcsUp4hyjnDlIW+T+jtUssiTdXpDcICPxGiFl+ui3xCt6l/pv5un93IIiVfexSZxngDy3ZL4AyGCJDqDD0jZU/LOiipIFp33/V3FGiLRvkaEOTtWBpVEX0FSQmy9hQ399haG3HfhfWhGe0zo96FWqfJk1dVC+5sTttcriykzEkyYrjTCjXzZj8gVSqNKkDJtkrw1bVmoagN0vqk5MJzcvGFp8FziEFx4scCqEhMTnvgdW46h6j507cFRj3hbYtV0fDi3TCVIPD+ELRqGA9zrU1WGVr0LLH+Vbk+aKyIR4pxr+QBYcJccE5+7BrjvVLEY0AQJf/zjH3HLLbfg+OOPh2XJfIB58+bho49KlQB+QeB5RDiiCZF+VGJC4EaOZkRUeOSLnFxCQSqlXjAiCSITtZPkY9Xj5cQdrkzItMsE1PR6qqiws8Nj8qVOqLxtvlIgJkHVaI+hEiQ1xOZ/bh9VBDbQ5PAdh1YiCUFASiRveggSJO7p5KHkhJd3XORdUpAcNxRiMxWCxM1fGe1iwrFi0lAy1xkkxmrjWEeQnLxCkNScmFLgfBEeMGM1cvIplqTNA2dO+AI5xQhSOphc3x+4vShIVkx0te+FaJQC5wPVi0rC1LriITa+fsoJsfEEGK+h3mOeV7h9VkyqSD0hEEKvFaFfsYBigqQ6UpsRqcgOBnyCxAqSIdMCIsIzh5FuA9pF77X6aaU/U01U5/HszTuCr+GQO/cIBGj/RaupqMUwKScpn6bKSjcvj4O6D123clVrYUTiwORtiCSxDUu4LU00WRgyHw6wY7xaYOHmgXf/SrcnCq8uldS+egtVey59Afj4MSLmy18BoAkSVqxYgU033bTgcdd1kc+PsAqpoYYtqoh4Iik1UTsKQQKoWqhFaSHgisHHTvXumRGvpQsyUQ8cej3w9RvpNk+c4eTOTAdNgplO2ZCwrx3KKwXPDYaA0usRIJWGAeRYzVFWe7yyD/ggKTkufV3JcEK9ZwcVJCtWaEqYaQ95s1jB16pKRxHYrod0zsFfXl2GT9Z0BENsVlRpWNsW/B0dn9Pf5HjpPZTtpOP2r/8DHjiDdh2bBPI2qWGW9YtJNeyp7Qc76vrhtXHwu50Xm1CY0OVTQbNKVbnKd0uPnP6itxykaBX111IbwPYF/Lm1U+h+ekMwxOZfU54MbXpuz/uSvctqmqnKsRgRMiNkGdAbQVLDQ6ZF13GykT6zcWN6fMOS4H4qWQBSAXCIzServD9E6xy1DUt6gyRM7HtUDHv/iK7zr1xEYZ1i4Nw2VfV2HeDv/w3ceyJw/2mCGObFuZ+Xql94sVisAKNSiFTR2BAroiAB0ox0sEKg5SLTQYeQ95EfMhfjacPM4OOMN+8A/nWRvL/6Pfj+aWME/SJIc+bMwQsvvFDw+H333YfttttuwBs1qqF2RAZKqzJcos2TKzcF5YoNHng54bGnwbNqHMWJrQiQbKLKFtUrJrwN2U4aPLgEnLtsD0f5v+cGk8YbNw7a2JsRpUxaJUhi4jIUgtS+Qk5Ifc5D8WT1m+fKSrBIPEiQ2HBOVfXUvmuRiFJtVUJBsl3c8e/P8NCClfjVUwuDITbDkGGAbHtxBSk5HoiLQffd+8gfi6uDWhfS447wlmLjQCdHj3WuEQ7cPRxrT6hovKJMNtL7OTE4DH9ATdG+YuVIVZByqdK5duWitxwkIHiO9BUcpub939UCn6xHRBIy/1ZOoHfdns81nyBNosaz4Wa/gKw27Y0gqSaGHM6KJmmfcsm/nQE+eZz80gwufx9EBYl7ci19AfjgQZEWIGw7uhWFJ7VBWkaoClK2k4ozGFO3B05+DNh0X2CTrwCH3SSvP78psiAaal/C1HoZwtuwRCozfO7z9aqSTKDHQooBg01VeWFXQJCs4Rt3GZ5H53KkSi7EZ+4efE3DdHpNb8UPqxb0fj2MMvRLi7744otx4oknYsWKFXBdFw888AA+/vhj/PGPf8Sjjz5a6W0cXeA2GD5BKnKypDdQNRon9XoeEZVMBz0Xq4ZvHsmTQvWE0o0xE+OoLN4waRL1PCJLvMqeukPw9bkOmrDsLPwGitGEXM2EK20GE64THCAMMzj3WVGZ3GvF5aqdZfZYEsgyQVpOZOGw3/YzxCYmE8+VapQVAywL4E3Mp0SZrjL5+72LDJL5OTeixISXcxy8vJgGcDscYgOCSc/q7yimIIUTnztXklrBXjj+KjUnQ29mRLRYKBFe8ENsbXS/qlF4pCSLnxeseHEVIa/a1dAeFy4MKMTWszJXEZgRWS2pXm+ROB2LqnF0jT5xCU0oh/xS5DyVGErbPqO/NZOASBLwukuE2MpQkAITlEHXuBWRYd7GWTSuPH8tveRbwjNt0JRhD4Awe2QlYcJsoLaZjrf6ven1CkGaKh/vXkuTcz5dvA9aog449k/Aomdo/792KxmYvnd/8PiEuwxku+RiR63GZAWJTSr7G44tB7xA4fMptV5+LyDU5i4ZCh8O5NN0nUarJImc/iXgo7/TbcMkF+3O1aUJ0qy9qEebrxIOQ6rGIKFfCtJhhx2GRx55BE8++SSqq6tx8cUX48MPP8QjjzyCr371q5XextEF11ZKv4W9fjjvI5+h1cTiZ4FnrwRa3qNwhGnKC9lzAThyJVTdRF4sgPQLAaRhXf1GNGkaCBI0AKhporAbvz/bJZJ4s+RvUT1ehD9sSqwcyoq23oiMGQlWlPFqkkNgsRrACqkaXav7kSzo0T/uJcWJrZxXZEAQ2RR9Z1Tk+sCTKiBvj5MrrhQIfLhKriSTMQtOWOHzQ1bpEEEqoiAxuKdX52oa7DIdYn9FZDUkk3c33/OkyQqSWuLv5GQ5fxiq9O7miVyueCNY1s/NdweSxNlbknYloBqrskJhxeg72z+Xv7VjBU0sS57t+Te1ibybmibR2DdRJMRmlacgqeeTAfo8tXCBw2yMpS/R38FSKDgHSR3bMm10bMImiBuWiPPBkG7xAC16kuN77nBfOwnY9jjpQ7VhCXUW+Pgx+ZqCNkzdUpnOdhUWN3B6w2CG2AD6fVXjxaIkGwwLchL9cHoHcV9BmDJ6MWkb+Twn4XN+WRgbfRn46mVKi6ROrSABwB577IEnnniiktsyNhA42QU5yrRT+GP8pnKyWfMe8J/f0svaltNziXo5MfMqXiVIe/0Q2PZ4usiWPE+PJxqIWBmmkiScC4aFTIs6MLNVPLdB8Ry5csmIkvB8Bfxq+oLw5KImfQJCQcrI26YVzAOM1wLRkBLCiaJ92g5Xfr+TV5LAY6K03ZI5NDXN9DfXLQcPRjQhyofjJSe8xWuDVWVuWELi1h1suMfgFXhVQ+Fqbsp2VF3SsVKsBjcEV6XsbMyKZU/7J5cCVrwpQx/VTUSew6SMwZ47Tl5WMGXag+cRWyc4OZqweFXdF/jWDgNwy+4NqoLEORmRhAgxxoG6abLqEgCiNT1PCP4+bBZVcsnC88IwaZFTorGxfJ3ymxtm0DUeq4E/znCiNmPJ8zSBDVqZvyBIaSXR2BFu1mGCxJNv9fhC5TISKzwfPQ/h9m2+aloM4dYdrJCzFxSPq4k6Efpla4VBJkiRBP2O+mm08GxbJpPP2ZKEf/v6xTQOTSjM7x00cBicCaoZCeUaibHCjBUncnxM/D6GqTFFkPqlIL322mt45ZVXCh5/5ZVX8Prrrw94o0Y11JOIWbdrk1HZ+iWyakst3c+nScZUu1BzuwyVIFkxktGrlBO4qoG+xzSFYiCScgNeKxF6nlfGYet+hpMXk9ggtydQEV45hkuSzYiSkF2kQileW9hgsrcmwcXA0rffjZx7W0VpYjS51N+gVXskDr9FSsCHSBCjaFXJxpctnXLyyOSdQoLESk0+g0DJuuoornYK5/MCIBJlRiiPS80/cXJBJUHdz26IUL74C/La+kwoELVTRJVQD/k9PKh2t9AioKa58BhkOyiksvbD/oV9hkRBihZ2YY9W0YQbq5b72d+mfPAYqb/LyUuzxJpmulabZxfJQbIAq8wQy8G/BLY8mIwVo1VSVXXtQgVp9Tty0TMY4MpPtVQ910nbUyopuhjJSdTTOZ3rCo5/CB3n8HHpCfluqmCLJOT2RZO0PzpX0xhnWoObgwTQ4s11SeEHZMhVBbvmb1g29FVt3WvpHPJ7rjXQPudGyJt8RRRoxOh1O51GahH7V807lv7y2JDTBAlnnXUWli9fXvD4ihUrcNZZZw14o0Y1eBD/9AlgyQvwGbidl9VPdrqw03k0GSwb9tzg4MPeLECw51qiQayoQQOTacqKI4bfckQoALluWlWGJXs3L1f5Q1XyH/YBsUMrT5UgWSFJ3LSIhIRXpLl+ECQOSzKp8KuXROk4k1crKvKSIpIgqfuRX18zqaQi0NIhf6Prkat2AJzTo4bYVEds0wqafybqKVQKUI8ngLb1rycAD3wXgAh52HnFyFKZyLtbgHWfkjL5+RvA6yGz19pm4ZbcA0Fqmi1+nFKJGVYRMh0AhA0GJ6xyY+JywOTD7CFJe6BQrxNGJE7krqpB/k4GJ58DdE2teU+pslojw+2JBhG+K7IP43WitU4ZmLIdsMNJdN6x/QKfi2GCxOOHM0jdDlhBUtWbaBXw9/8BHv8R3VdbIwHBfctFKokG+i0dq2VIkr3QADkW9UV1zHXT9RKrkaHSeC0dq2i1GHNFVeFgghd0DaJyLxwKBKTXXXr9oJ3WRZFLybmHw+kJQWj3uwzY5Sxgj/+RbXAiMWDaTsBRtwGH/gr41l8p8gHIsYHHrMFucTNE6NfZ8cEHH2D77bcveHy77bbDBx98MOCNGtWwc3TSPfMz4JWbhJqRB+DBN23LpYJJvtl2Gevl0JrrAlAIkjrQqBKo2gHcNEUX71DVm2GJclNWkLqJpAVWTyblQXGYZKji4mFpPEyQAEXNCYWtojWAaRQmOOa6+5F3IfY/XKmkATSYWlEioXaGVCx11V5MQapqAJLjin0JAGBdV1Al68yEttVv3aGE2Fa/L0mFEQmqiIl6UiABWhE6OWo50bmK/Em4/YedkWQ5p6gKTo4IQKaDquCqFTIO0KDZW0uGSXPpL7cm8DyZ6J5kz6Yu6fCdU0iE2purJ/TWrLYSYPUvYLoaIQLasFFh+IPNMQFxfStVSXy8olVC5S2RXJ6ok02Ke4PvvO8Kt3wRVs920nkz53BKmm3akl7fuVr43AzCgsdzSWV84efyse610u8IoHNTHWdULzMnT/2/2JyzplmYk4pcNdMEWQeIa6CYghQOKzI4xzISl9dQrIbOoVg1Pcfn5WDCjNDvZNuXpS8FLUJMUzjQ54QL/RDmI6lmsn7PRTFuxWup9UusWqQM1AA1kym0mxNJ3eqi3a8w7Cay1/Jh6ZYkowj9IkjxeBxr1qwpeHzVqlWIRAaxKmA0wM4GmxDmM0SarKhIYBUXg9ojyckLyVeEeDyHDM/e/DPllQBBgqQSgnAlRiQOcu1VBmMzIlacLIMK7yNVeeEu4JxkPmQEKWSC2bESePH6oAsvD5CRUIgtVg3AKFSQ8sqqvlz4ITYveHxitTJEmc/QgO5XhzmyNJwRrQLGzSoMLfDXeB7WdwcJUUcmtK/VJG0OQTpZqaBYUUr89F9fT++JJAB4VMqvTlK5LmEqmBZhhSjlCjBcR3onxWuCzuvclbyqsefV9hRh78Hnq5uX6hcncPJ2uI4k/rkUDc7lTAyBKrZBIkicYKxO5FacCGiinggzJ8QDwTAoh2c5n40XQRxqrUTFFFfTAVI9atyYSFKmHdj9PEqaZQ+hztWAM8Dk+J7w8q+D9zeEFJJYTVA1CitIprieaibS74gk6Fz3XFHoYMrfW4wgTd8leJ8tQnLdwLgZMj8OoHPbdYR5Y1XfQnb9BS9ImFin1wOPXSCPByvk+Qyde+r5M9jIdcu8RFZ+ayYVvo5bskzYVDatDsNXkFL0G/PdYyLU1i+CtP/+++PCCy9Ee7vsydLW1oYf//jHuorNCeUX2Rma6KwoJeQxCQnn3mQ6lBwYB3jsB8An/4CfpVjdRN2xw/b6YTLEzs+BFbApV8YAncTtnwP3nwosuJMeiyVF3D4vq56GAuGY+0u/Aj54iBomMnhiDCtIsWoEerEx2GOqL6tmj0NsrlBURL5PvFoSTDtDEySrAS7nSSj72jAoXBJSC/KOizUdGWRtF22poILUlQ0TJKEO2WmSvm32MVIq65IhgmQYMszWuSrYk4vNJO2srJbKp+VA7DrSBiCSCJIVT0yuiV4mk0lbC++btfRPzXvhpNRcl8jlqRFeXMJrycmVl/c2FDlIkQRNsmo4JxKXxzgSJxKy+dfovqrycYUgEyZWyaIJ+N3dBwoOAwNSmWmYTp3o1bA9ew11rpaVhZVGwViEwhybWDJINlWClE/TNW2JxPj6aUQmuWE1q7P+7w0thLb7DrD9t4OPjZtJf7mKE5BENVYj1HWLFgH9KRToK7jp9oQtKGRlRik37CNhh2NFRdFMFy0AeYHM4NYtg4H0BllcsfhZekytkFbBbuBWtDjx4bnFEaa0uS8wQbruuuuwfPlyzJgxA/vssw/22WcfzJo1C6tXr8bPf/7z3j9gLMPOBP05OOeIJ3b2BwnLj9kO+F2oPSdYKWOIBNl4TWFzw4lzZA4SIAbzIiXmkZgcMPIp4P0HaTtfvVU8X0WrGJa3h0pBCieMqxYD/Fv9EFsRBamYlwlfnHyBcnJzT3CVJG3PldsVq5EVgp4n7fZV76MyJr7urI2FLV1YvLYLbel86LnQAMgyt+fReZJpC5bmR+JBeZtXwhxm49Aag6sWXUeWNrNqCUh537WlsSSDy6KLtRhREauV39+6UCYnx+uks3W2k5SrWLXMd8t1C3JWBkHyc5D6VsXmuh42dJfZj6xuCk2yqrqgEiQrQiR50tZ0X80T8xxSa9hAcv0Sepwnj0r4N5kRRV1RPq96vOxdCCgEaSU9Nhg5Ies+LXysgCBVF1eQcinaR+NmyOcMg4gL+3+ZIjWACYNKipvnADudKtosKXmJ40QSfVYu3uW1LL47Wk3ViEPhPcRjhmkBWxwIfPm/6PG3/0LPWaKCzxZVkqxCMla9Lc1fKwmeg6JVwIrXaf5JjpdKsPo6M1K80bIKjk64eRq3+7pAHaHoF0GaOnUq3nnnHVxzzTWYM2cOdthhB/zqV7/Cu+++i+nTp1d6G0cPmFyoDq/5lMz9MEyhBuRLK0j8GdzuAKBYeT5FibkRcSIe80dgn59Q0pw6UPq+PaFDa8XlhWdnC/tz+aEi9gIapFVLGGHyog52i56hv37CdDyUz5AU2xyaLHNdssIm0w60fNT7BMyTDrtpc/5IvDaoHjDJ5NVtOMRWAq5HJGn5hpSvGDXV0md1FeQg1cvflGknFcnJy9yWSCLUdkIMWn6i9kqgVSFImTaZC2eIyh07J/O9nBx8R18zEiSt+14kCWJPMC1ZqdO6SLaVqJkow425FKldsWSwaMHJF889C6OfOUidWRuftXYjE06GLwZDhGxVzydLIUi8r7lnWD4tJ3DXhd9TMdcpw8SRqsJctf6Clcuwb1K8TilhhyRI7Z/TqVSqcnUgKEaQwigWYuPq3PGbFOZeJerh90M0LLloCUNVjVVfpYlb0d9MDwQpUV9YjThY4PxA06LzY4sD6bh1rqbzw4pJ1YXzpXjstbM0DoXNYCuBXBct3CMJuRifsWshieccpahKkIq1+RHzkpMXPSS9oBI2StHvoHh1dTXOOOOMSm7L6AerD1xJBFCoxkqI3JUInZSGJTvU10yk1XZWCbF5DoUlOsUkE4nRiVo9AUiLk7NhI/rXsbKwpN+KFKoaVowSjBlqGDDbQRdyTRNdnKnW4VOQ1NAeJ+/y5BkNrRZj1TIfZc8LgPcfAlo/JUmdj0U+HUzYLAmxYmXjtrCCZEZooON8Gh68TbOsShhXrKY6Rb5RxDTQXBvH2s4sunOhfW2aoslsiiqQsiIsy8pOJBEMW/CgxpPN2o+CE0RqPR3/pS8RMZ6xm8h9YM8tUTxgR4FEVIYkjvsLKUjZzt6behoWMG4jYNm/iSAxGeDydkCuUgE6xzPtwrMrUh5BYkWxjwqS7bjI2C5yjotEtAwVx4oVFkLw9cR/ecWsdjD3lBCb58rtjSaE4lOBHCS/LUno8wyDzs3Va4EkpJqXaYfvp6YmNDt5OsdL5MqVhVZBkLY8mM6Tt/5U+JpoMkhmolU0ZlVPCLYUYlQ1UEuWbBd9ppMrnpOjLhD2vZgWQdN2lMdCVeh5ERargW+wOVSwhOVG23LAzQLROiJxq94mM9U5hwnCa8vwIhMLrvZUm5BXAnaWrlFWjDn/aOLWooI3JwsL8mkq2uCKXDMCFHPKZoJkZymXrLM/Zr0jD2VfsQ8//DAOPPBARKNRPPzwwz2+9utf//qAN2xUo1MhSPkUkPLkBd3dKio1BBGon04EKdMB2VzSDa6asl2gZOSEVJnUElh1gjYjsixdBSc4R4WtvxrK6lpDE4La7mCoCFJPq6OuNdI3CqABRB3cokkhwwPYeC8aiB4+R5AboYLlUihoe1AMvlEkaCL3E0NraKBoniPDU4BUrozyLiHX8+ABMMTE3pCMokpM1qmcC8/zYKiqSKxamHl6IjfMVkJsIaIYVpBWvR388vQGOq9e+iXdX/gU8NWfyhCbLRQkz0ageTC7gnMibU9QFaT1iySBq5kok87DTZeZoKkNbkvBycvQdR9zkBzXQybvIGeXmRNhxaicf+GTYjsz8vvCClJBDpLyj0k293GrRIiNE5eLEa54HT3HlVp8rdviGrBzslVM9zpSMKbt2P9tYZVy0tzS50eYzBoWkbLJ82Rei4pYNZHo7nW0oDOt4LW723mUo7izsjhv3FhaHHAoUc2pY8IfraLrdTBb1ZRCJCbzwKbuSNfo568TQQLo+q6KC0Lr0LXS+qkYAyqcy5Npp2updhKdK2s/pseb51BemRWjMaN+Ku17tWjDjNDhzLTR+MvHXc1v9eemLxBBOvzww7F69Wo0Nzfj8MMPL/k6wzDgOKN/x/QbqdZg+Cy9HnjsChq8jrsbgEH5PwBdvFyd9uIvqBN5rIZOLLWxoRUF4IkTUpSXBzyMwgQpWjgIcGglWl1oHNe5Whp/AfRdQ6Yg9TAxcoIpr1iiVbTKWfEG3Wd1Bwb1oFOTMlmm5yTgVCvQvgyYNK+44qP2SGL1JZKggU2tAGTwhNeb+zF/vDAG3iAStMclY76qlM7ZBQbiiFXLJFhuLssTBRNDBiemsmoQRnp9qG/VZ6JgQOSBeI5MvvSPhzDEzLSTAtrbqtsw5Xa0fy7zD6qbpErB7R7Ex1MPKDFJ9paknW6ThKOPBMnuM0GKUhL2qzfTuTNuphJiE8qhPyGk5XHh/BH+61tFiIVNpZK0UURBAoSrvLi+47VENNo/J7U6OSE4YeVTSl5aP7eLUwlqJpVWACOxwoT3aLLQa0pFwwyRzJ+k5GX1s7c6nP6VQrRKhK1ywPJXaQHK53SUieoQKkgMtmcAgGk7kNfYyjdlJSy3PuEQf2Y9jVmJusopMdkuqm7l8LEZIXLk5Oh8qZ9G6l7teFKdVZsKBp/HqfVA3Jb5hapRJCB+0+jnAWUHxV3XRXNzs3+71L8vNDkCgkZ5AMXpnTyd7OkNFDbjyjE7E6wOeuwC+svJq4w9z5eJcmaUzMbU0FSYIJnRwgnEjNDgpIZmGE9cTKaWuRTw3gMy52Uo0FPyaFdLUGGKVskVFxDMA1IHXHbk5Z53bl70ZsqWXtV4LgJ5P4AYSEpcIn7+UXmTi+OSgrRBlPiPS0aRjNEEl847PlnywcfJzlI+C9svADJR/PCbgblHUY89LtlVwYNXan0wpOraomFxl1Qsq5sol8Ov+BH5XU6+dIsRFaZFIZEJm9O+ZJuBmma5CODcBECUpbeJ32n0TshTrdJQso8Tuu14FGKz+zA2JWqBw28Cdj2XOsurOUiGKcNG+bRUg7mHHecZskIWqSpU/foLn5jHCq/xSIzODW58zeHM9AaRH6Xs40y7qJAawEKIF1rRRHEDTECEKxuUbYwXVp2GkWykhqnjZkhfN4BUpa6WQkXFzsrXGIb83U9cDNx3shLqrAqq5EMJMyqv3wliIZzrBtZ9LPaH8ps8R9qwmFblFqu5bpH3pxBOtuVoni3GM4PIdMMM2m+GGVQHef+xKzlDDTkDYyYHqc9Zg/l8Hvvuuy8+/bSMBL0vItZ+FLyvqklrPwLWL5X3p2wfHCyyHTQIZDulHHvk74HJ28rwmBUFkk1AiqvZjEKCZEULJ24uNy012T17FfDyjcC/bwCeu2boFaSCVZ1BF1i7SHQ1TBowJs6VL6lplhd1vE4ZiD1hxtkh2664nqyOKQbPlZEAzl9I1KJg//qbJ8hZmatR1/MCClJtIorahEqQQm9ggpRPiR5+Slk/rwBnfBmY8w2RGNlOhKheKZLgfcUuvSpS62R4iCuGTCuYewXQIBgtgyAZQk3b5yfBvJaaiTJvy8nLATSWBByXwtFqAnopqApTHye4nONQXnCuDwN2tJom/i0PVpRKyBwgViu5Gg+ANHkVxMN3gI/SMauENQF7chULTwG077OddMz90OaGYPIvFyFwb8H+QjVwLWUiasVCCe+J0tseeB/nWill5blU0NQQoOfalgUVd/VaAai1DSAsUCKVIap9hepfZVo09gMUZks2Bq9b15GVz4ZJoe9KgC1n1IIVNnZlby82GU6IxWEkFpyjeJuiyWBumOqDBIjF1RCaXg4S+kyQotEo3nnnncHYlrGBsIKk+vy0fCire6qbgd2+X9h77PNXg4NrNEn3DaEM1U0Bkg3BSVu9zWG78IBlCr+gUh3Z892UmwJQCGao5FG+oNSk2HitTDhma35OlLUiwMG/APb8ITB5O3mxcsd1HvxYhXNz9Hy+W6zwiyQYeh4gMoQABBWkUlVqhgnALFvN8Dz6xwSpJhGRBClXREGKKwSp/XPgrT8XPsckOL2ezot4vXS0BuTtTBuZR6roWkcDXNdqyk1a/R6dnw/9V/A7PMi8lZ7AoaeaZlJepm4PzNydJul4rVyFrvuYflOsBuheA9x7EvD8tSK04AoSVSRcw6EI9XeXiawIrXX3hSBZURBJdxFwwTYtuhZV2wM+X1wHUB3zfYIUL0+FKwfsil/KdoH7BNZMkNdUegMAQZDyaWD1u0rl4gAmMf59kXhpEh1NSsUTECpOHwgK2064IgwcrQpus5OncU0l2GoCtwozJsjuIHlo9QTTCuY2T9uB/q5cQH/VbeJWR1yAUqmxmMlRPiPHtJYQQQLEfk6KophiBMkqzDlTc5D49wxVFGIQ0a+6029/+9v4wx/+UOltGf1wbZn8zCsCtdfY2o8kQZp3LA1mcw4Dpn+ZyvUB8rzgTtSAJEiWyDlonEXJsAbkiiRsCjluRmFuDCtIasLdxvsE5e9AHkgv+RodqyrjrcKKgjqIJhqkoyvvTysuJ+raycDmB0jy0jxbrtDYtdgR4TQPdMFnu+BbGITB7AVCjWLVzydIRQZUv4KtfAUJUAhSPIJqEWLL5J1C3qa2hbn/VOBDpTDCd2a26De5LtlCJOooR4sxaS6dP54LrHk3+Pnda2jgffZq6vr+jx8CL/xC+Y6kVPd680ACgiXZtZOIxH71csA0glVhj/438Mh5dPu9++jvitdlYcK6T6ifWRjqpNhHBSlrO4hHTGRtF7bThzwk/7xQSvRZwTGg5LyJ84UXO2xb4F/DiZKNi/sMVvpKkdZoklzWI9XSyynVSteBa9N10LFSVHo6/Z98A8UTcao8Y0yep2xPVTCHRU3sLQc1zeSx1bVaKOPRoHLh5ARBUn5HqRYiHIIcDoRJ/YTN6G+x3mx2VuYkGWbv6mq5yHbIMLBp0cKJrSiaZ4tFiDi/uPowmgwVAXGINy631fNKKEhleo+NYPQrGGvbNm677TY8+eST2GGHHVBdHVw9/OIXvyjxzjGOztXwm1PWT6M8DFVBal0oww21k2lCSE4AdjtXVDW8RpNS++fyPdEqeiyWkCdqVOQ08ABVjr9Koh5o2kw2IwTI7G6/S4A/H1noaN3TwOnkibgkGymxfCDgC0oNyyTqZWkrO0Jzk1jDgGCH4sWGzM3yXNo32Q7pCM7vTbUCVkMJgsREU3wu5+GwB1Kx/cuKiVWempF3XJiG4ecg1SWiiEfpc9N5t4iCJCY3tcM5QL/TN6kU3irRhJiEPNlM1bDoHGzYiIg5E82mLel+5xo6V9uWys9WQxeZDRT+4sKA3sC5Cepg7rkATEmQOOl83SfSG4zhiBwrJwdkOmmVq4Zi+Hn+rjLheR5ytodoxITrerBdD5FyDpn/HW7wHOAJgiuk7CydL2s/pmNlGLQPbCOoAvdmk1AuOP+opGFfNZXzOzlJSrvXwQ9Zs41IwzQ6B/qrIDk5+Ncgd3pnTNpGVlImGoL5b7Gq8s4nRrIRaJxJY2OslpS4DpUg5ek8UXMywyE2BueC9RFdWRumAT9nsF8IH6864VOVWkeLRCaRhim9tUxB/FhdHUhjXVYP2QTYtMgaARDO8bVBp33TpDE5TGYNQ5zPQrFv/5yOkeqDxJ9fqdDgMKJfR/y9997zm9V+8skngeeM4ZAvRwqY2CTHywFDzf3IdspVed1UYYamkB5AqCCKGaEVA9z2Qi8RnyC55REkw6CLQG1yyk1J66cVIUg9nNzZTvqnujn3B64rJ5EZu8nqtLZlwGZfBT5+jAZGQEwKIuyhnmJ8vnEVFu8nX6Y2Sf6vniCSZou5uwplyXc7F/kM8VqFkIVgmBRqKdP876G3VhBBEgpSXVUECTFTZ/JO4VaxAql6agHC40qdrE341g6eQ+fGsX8WA1kVfY6aFzdxK7rftYZIh6qAqedqxyoKSZRT4g/QdiTqgtVy3ADYigRDqIDwYVEmupRIvrXiNNll2oMEad3HwIePiH1Q/gTrCFIUs0y4nldIREv+noisxAmHWSMJIpNRUeWXSxH5e/NPROi/8hOhsIhzO17Xr4m5JKLJ0solt7pJb5BKSqoVsjJVnM++nUc/1Qm1eCL82yZvA0y/UbbmUdWucLugchCrERWl8cJz0bXpOs0Ia44NS0u3EIn1j6h+uqYTOcfF3Kn1/SdJ4VB8oo7Oi2wHqTjjZlG4q6pR+J/ZiirrycVGf8E9QH0TTrMwvMbKEp9bDRsVV8/rp9HrOleJ7VXMUgG6HgyTzGBHOfp1tJ955pmKfPnzzz+Pa6+9Fm+88QZWrVqFBx98sEcLAQDIZrP46U9/ij//+c9YvXo1Jk+ejIsvvhinnHJKRbZpQGC5srpJXshhxYKrpWon0eqBY7oswdvZIGniQVodhJjFZ9egz74e6kRVI6qL6qcXeufYPcijuS4iEQO1kvccmW9SOwXYZF9g0VPA7K+Tq+uLv5SvZRdrLusPfze3YPDLxvOU6MiqU6wGyK/rIcQG+lyYQQWppyRtyyqLIH3W2o0bn1kUeKyuKoqoRe/NOUUUpMaZ9FdtOgsEKxS55NZPPPVEPkgdnR92trCceuJWwHv30+Dm2UGyoe6b7Y6XpLRcQpKoJ0M8ht9PywoqlwApLmpT545VMpE4nyLVo1aora4LPHpecB+UCdv18PRHa9BUncDmk2vgFGTDlwBfl5zjoh7nRAMRPL9tRheQ7gDeuZvur/mQQhZ5RUGqZOVU46zeCVc0KcPUqXUgguQUTnj9VZD4txmCbNlpYJvjqMXH1B1FqLqTjt2m+9E+a9qCyHJfk6Rj1cIaoKZwrHPy8nxw8qLTgPIbq5vleRar6RdByjse1rRnMLWhqv8EybCE8K34edRPBVo6gNbFwPM/p2TyOYcBO5xM16YaYhuoF1JeECTTlKE0P0FbqM7ciojP1VLhyNqJROCsGB2btnZp4uvkRcQjKXM+R7FoMuCrdvlyGhD702Kku7sb8+bNwymnnIIjjjiirPccc8wxWLNmDf7whz9g0003xapVq+AOVffj3sAVVzVNPQ/i1RNEzgxkcrHfJ61bVrAVU5UY3PU6Wt23pEc1mVJVkMJQexmpaFsObPgsWJHUX7hOMNFzx1OA2YdQGChaRRcuJ73zfvJzgvjCYwM/kQQZUQhSPq0kpRv0fNGBxqN9/uk/yTiP93+8FoH8ExWGSNYtI2G4LVW4kmqsjvmbkrfdws1q3IT+hvsw8aAJKGE+sW/Axno2EAXt2/rQdck5SukNQTLOmLUnuZJ3t9LK34qUnzPCMrs/KHpSfQknzq79WPZrA8j+wnNpMojE6bncLDHQhnZOHxYEH6/uwG0vLgUA3PqdHfpGkKwITSpGdXCQj9fQ+ekTpG7y62E4WQQaxMar+7aI6Q3ldKG3YkD9FBmyYesOtqcARCJtPwkS/zZegDg2sNVhYhEjPt8TYaHkeODrN0rn+776EEUSoqdbsvj1xofGtem1qrK970XAu/dSSoMV7bOSZzsu8o4LxyW7iH6Duxt4Dnxz2bppNL69eYdcXLctE9W2kGOd2leyv8h2iDCdJRLeI3JsZQWJE+HL8XazIvJ4RuIUjqsaT7liXaup8pZbVpXpFTcS0e8cpMsuuww33HADurpoYKipqcE555yDSy65BNFoeRfAgQceiAMPPLDs73388cfx3HPPYfHixWhspAF35syZfd7+QUOHCLFVNwfLTsNQLfa5Oosv3FxK8RdRJpzwqiuaIJUnVte3FZla4hlLUohg/KaFr8u0F7J/J08hBDtNF8RAO4S7eZkYHknQfpg0V65gpmwXJEiGqOpgBYkHEaAwVOkKgsReQIYBwC1dxfbGfCJIH02XnxEXrQlKJmmXpyCli/QAS0YtPxxdXEGahWCulYAVgT8jcEIle5Dw5OMI0unkpMMwQOGN6ibhwdJFKk2Y5HKj1nS7MBatKn8FGElIkz7uK8UKZ5ggrXg9eI1w/p6To/2e6yLlI7ZRMIcF6NP5vmy9/H3tmXz/FKQwuYnV0D5nopLvDrqEuw6FK32jyOry92GlYBi0z2sn0+TbsUJp9qtU5NlZOgfy6dLVX8XAChKTZ9eG32wVkLkzfE5GRaVZuRNw+Lc0zBDnlC2/z28gHJdKu2UFe7PVTyfX+Ey7VFv7gLzjwXZcxCImsn3x0QojkqDttHMAq1C8MGVyBNAx8jgUCgTaT61+n4ps6qeiz+heS8fAc2jM7W6h8zaSkH3pPAeIlAhPFsPErWnbsl1ESuunETn67GU6L2pFGsnAdZhhQ7+Cmueccw5uueUWXHPNNXjrrbfw1ltv4ZprrsEf/vAHnHvuuZXeRh8PP/wwdtxxR1xzzTWYOnUqNt98c5x//vlIp3ueqLPZLDo6OgL/BgWcg1Q9ofBCVFUadhwGiihIKWVg5cQ9o7CSiBvSFnPU7QlqyCXTQZNPsUTrdHvhqiXTThNXcrywzs8WJxzlINMOrFLsInjlqX6e6gzN7VMCVWVKaT4P+hyqdB3a50w8/YGmGEFygaUv0O325bJsO9ZTkrYZVHN6QJggzZ5Ui4hloiZO25yzixAkzpsq+F4lxMYETa2QiioVPU6eEna3OZYUqblH03t5v3a1FPbCq5smJjZRfVbK36YYYsI7iImzkxc9CGOFlUXhnLeu1bLM37ToczpX07awj42/D8o/39e0S8uA1q4cnHLPV3aj535VKqJJslRgYprtCi48uluAZ66UhGS4KqditcFJ2MnSPz5nDYuOVfc6YEORaqqe4CtI7Adl05jgOnIhlU/L/cihov56ENVNJgJniMrN9Usp3yiaEGkDIjnejNJkPftQOu+5apdzDPtIVHOOi7zjISGqIPsNTmRXK4WLEZ1cl1TKAfiLwVQrjU3rPqXwbk8L8ILPTNHro0lJ+rloY8JmSj6aTT5V5YINQuunUTiXx5V3/wr87SxqcVPpNilDjH5Ru7vuugt33313QP3ZZpttMH36dBx33HG46aabKraBKhYvXowXX3wRiUQCDz74INatW4czzzwTra2tuP3220u+78orr8Rll102KNsUgO9x1FSYXNu4iSRQDTPk4zzxR5SVmN/qoko28wyX9VpRmZzbF/l+3jepl9FGX5b5FcUmwWxHIZlIrQfgyTg1O/H2Z9BLb5BVTWqfOfWCqlUIkpp/BMBXVsIKEhMiW6kMYZTqDA4vqKRw2bbvmVJiUK2e0HPLBIGM8N/ZfGItztt3MwAeYhET1XHab3nHKzSKNC1a/fv7iB9XBnleEavhV0tZZXsenR/bHAN8+b/ofq6bPnfdJzSRZ0MEqWEa/E7q0aq+Te6mRQNl6yeUc+Lk6C8njDPGzQI2LAm+N5eSuRaGBcQTkpBzMqm6D8qA63r4vE0mE7d258pXkAxBEIspSKYJNG9JCaqAMF1Uzis7E/x9pbzHBhuROE1ey1+h0LiTE6owK0gRmbyb7+xbpRRfL76ClBcKUqfs3+dk5VjBxoF9KfEvBu5DF0vSNsRqSMljNaxqPH3HtscHm7x6br/GqZztwnFdVMUi5beqKQY2s+1U1KJiRS7ZLlnpDIjUAZcWM65NodzV7wHTdyov1ArQ+ZkXqr+To/3E/ULVELydDxbxlAtWoMLhfI5CjGL0S0GKx+NFQ1uzZs1CLDbAC6AHuK4LwzBw5513Yuedd8ZBBx2EX/ziF7jjjjt6VJEuvPBCtLe3+/84b6ri8BWkpsJYueo31DgTfnMuv3eacvGqq+v1S4UsHVaQIkHlqVzEa4G9L6QqMf6cYpbwmZCClM8QAWR/HjNCF2x/zcC61orkUdBKhCuy1JASm0UCUjnx4/JKmT8gcoIMmaRdLD/KrwYp8rj6vfzeuGiDUWrSGDejdMWMAnZwjkdMTG9MIhmLIGaZSIgy/7xDzWoDMKwgkWawgSEgj3+ggW8ieDzNiFSUsh10XHlg7V5b2AuvbpokKY2ziuen9YSqcbQruZyYCaS6n2buJm9zTlQ+I0qERVVmJCFzZ7gcmREmdSWQsR2s7ZQr9vVdfSBIgLzmijUkjtdK8hj2JVIXR5vsUxaJHhREEnLSal8mHctNixY7bOaX7QRsu28VbRxii8Rpss1nRY6NK9UkTqDmaiwnN3CCxJ9lCnfy6iapUtlZka+ULLQp4fyaPiJnO2jP5GEZBvK2B7cv508YiVoiIaw2VhcjSJ0h1VqMdXaOru26qXLsLRfpDXLcjNeQEseLeVax7KzwieoHQWKMC41XPTUiHyXoF0E6++yzcfnllyOblYNPNpvFz372M5x99tkV27gwJk+ejKlTp6K+Xh7E2bNnw/M8fP755yXfF4/HUVdXF/hXcdg5SiqubhYXrUKQDFNW5AA08XkOAEEKOIbOq2w2l2QXU/YAUsErs76WD/PFZ2el+uTawPYnBl/HHe07VpFfSvdaekxtdOj2YVB1XZlLkk/TQJBWlDLTAhBSeNQBJN+tKEhKbo4ablJDaMXcmAGgVJl/GNyQtMwy/p6QytFgFo/QZzmuh0TURCIqQmzFcpBMk/qshREOsXFug/98hH6Ok5d5NGreRlWjXKF2r6X9qiJRJ5Nr+9NcNVFP/3j1yIR1433IymG384CN96b9OmkbUjQBqWRAsb6wovQ5ajI3EKx+6wF528MGJUF+XXe2bwSJr8dSOTMxcS042eBkwOZ/EzYHdjqj/2GlgSISUxoIrxSKr0uhmj8fQcagri37yfXF2I/PGyumFJuIydwVShGrNqYpr88BK0iWzGtKNtJ4pOaLRePFF42e2/fkcAC3v7QUP7zvXdz+7yXIOQ7sgRCkSIKGru61dL4kx6NAnXayweNgmCAX9Lyy77zyDD6dvKgWXSujBGZEECShZHG+Vq6bQrKxMlWpYhi3cfB+T43IRwn6FWJ766238NRTT2HatGmYN49cU99++23kcjnsu+++gYq0Bx54oDJbCmC33XbDvffei66uLtTU0Ir0k08+gWmamDatjyvdSiMSA058BFj6oqhYUHZtrCaYOJiolyWXHCLJdspVc7dQkHg1FHYzBWSIrZy+Rio4HyCXkqsF1wG2/w4wYVNKsPv4MakgdawA2GFarVDhibfcKphMG7B+CV3krYsodMKrbg6fsTLEio4a2si0y+3gijQV4Vyhot3FDWmYpoZ8iqlKXOJfgeojX0ESipHteohHLN8HyfNIRSpA7WTgsN8Ab98DLH2eHrOiwd/ZPDs46fBk7IgBNZaUpJHdeTn0kFpfuq0H+p7QCkBOyisXAPAkeYskgC+fKVes37qHVFX2vrLTUkHy88mE31CYxBVruFwEtuuiPS0J0obuXPH9XArxGpHfVSLEygpSLhVUtdoFQapqpIXQcBEkKy7z2Ow0kN1AuVPvCgfzJc8BX/qeXOiUqwZ7nvy9VpQUMvUcdB2FXIrfbsUAGAOvaGIFyYoQwebPj1ZJ4mTFUVBS309y9tpSWtQ9+WELNm2uwc6zxvd/2+O1FF42TKpObZhOimu4T2K2U5pd8pjo5iXJ4SbSvSHbSWOtnQ6Gvz5/HVjzPt3meYkrXgdiRhlWm8P5jaMQ/TpbGxoacOSRRwYe60+Zf1dXFxYulGXMS5YswYIFC9DY2IiNNtoIF154IVasWIE//vGPAIBvfetbuPzyy3HyySfjsssuw7p163DBBRfglFNOQVVVhaz8KwV1FROvoYazO51GIYVcF63oOOnQitHEwO/pXiPfF60qniNkRun1/ZnEzIiwCKiiC41zBWbuQSQGoBUOl5e6jiy/ZjBRKVfq5ZL+7rW0gq1plsoA5x9xjlDnKiIxHNsGZGdpnyS5QkwSkyn3RuNQTlGC5NFg1N1Cx4MHz2I2EfE6FJC0fiItCFJCsXCOWIZPmABy0y6AJRJOdzolSJDUCTu8WlYNAK1IkAi6NpFizp3JtAeTRuceTbkO6TYiUf397bWTaGJOt0kSHP6sauHBxav6fIa2Wa1OiiZoIuaV6JYHE6nb8ZSyNsN2vQBBau3OIWf3QQGomUj7P9CCR4Hvdt4dXC3z7WQjUMpHayhgRUUOmLiuutYJc0ulSIVDoY5dvoK0coH057KiRFgbZ9GE3L5ChLPisogEoOPcX1VSBS/wolXBsGZ1M4XtOV/TVKopAVlR10e0KefPirY0bNcF0M/fEKum7gWZdlIZuWKTCZIZpWsg2yUJUi5F2+7kgYS4VkyzvGPFY7haydq6EHjsfHmfE6s9r6x0gR4RjQP7/wx45meyF+YoR78IUk8J0SpeeuklZLNZxOPF82Ref/117LPPPv79H/zgBwCAE088EfPnz8eqVauwbJmsrqipqcETTzyBc845BzvuuCPGjx+PY445BldccUV/fsbgQiUu8Voa7DfZhxh7V4soIY/IioV4jSRCrYvpb3ICGZ8VS8YzI8KVth+rU0vkpUSq6HMCsWIxgdhZ+FKuk5MXcxjlVim4IvbOq4pIXOb6ROJy8PJcel3tZAo1zjmcksq3PlLG0f0GjpZ8H/dGY4m4lEcT502p/hzFPJ8S9cGE1gEglZc5SIAQ40zTvw9IEhUAt08JNIuM9jzhchI3J0irBMoDnYdMTtSV6xG3AOM3o9wEDi32d2K3olQ9t+GzYBWhYQozOmWf8vbZGZp4H/8RqRqzDxFl0a3ynGnaksJWZZaj5x0XHQNRkKwoGWuWmlhZQcp3F18tJxvFOTvwc6hfMAyalOO1ggxnhNqlnO92Win/LpMg2Rk5+ZlRqhRLNsrcGg5nGQohYpuOgRpmsoIUXjQm6mRrIDY4DYeh+kGQ1By29pQ9MC8kBvc5s7PBc6N6Ai0Oc1009rz1Z+D1PwC7fp96dfK+M6zyjhXnMwH0eQvuokbkKmLVYlFiFRa19BVmhNTjjXYhw99K9OocZgyqQcGBBx6IBQsWYOONNy76/N57712YnKpg/vz5BY9tueWWeOKJJyq1iYMDzwtOTLEamRsC0ARd1SAdTfMpkr75oue8npomCkkUq3YwTfqM/pzUHP6LxAHXCqlAQp2ws1JBYoJUTKIuluCtIp8B1i+i7bTTwZCcT5CEBxITMg4NpTcAu55D5MjPvREkiZNNedDglSWTSS5DXvoC7f8p20nFyMkF/TnUhsKMuMjFqcDq31eQohxS8xCxDBiG4TdRzRTxSoIVJXUrpkwGgRLgIuB8DJtNREOXuBkl8hn4nlgwt4m9uQbi3VPTTCSTrwO1bN5z5Lnkn78elQfnuoAXrgM22VuE0jw50HK4q8ztyuQddGbk+ZbKOcX3c0/oqYovLkLUuVIEaXy/lYuKIVZD/zLt0vm4Q2kHk2mX4xO757OHUalwmGcr124sGPphmIYkM4Cs1h3ovjBNOpfC4168lv5x6oFpFo5NfSSqHZm8Hx7n+wPKQWJYUakcqeHXeC0RpE+foDJ5xvJXgCnbyvucQ9oTPE8ouOL6a/kAeO3W4GtmiGIJOyP6OQ6wmIDHDF5IjwEFaVC1357Iz5iGkw8mzhazyI+yq6xFxpG1EwurXaqbpCJQDE1bSJ+PvoDLbi0Rpst0SJLg2/ZnxUDp0m3PK04WelOQeLWZ66YBWLUF4NySaJUc2LgVi7+tFlWzGZB5SoBUIlQFyYqRazFAxKxzNfCvi6iDvJrA7djB1WUxgpQQIbZKKEhikLVMA67nwTJNREz6HawiFZ24I5zoqihI4f0TBjtA5zPUGNS0lERtUfZf0xQ8luyPwrDiA8tF8Lc/lDxuRigXrW253P8B0q38rjf/LB6ylKavotqxp9+vYEVbOpCq5oFczSs2LnEOX/vnha16ABnKHC4FCaBjwIuGztXAXUcHc7qynbKCiUlP++eFSgPDdekfq85WTB7D8BgXicrHrIg8Fwf8m5KFi7VInHrAJRtlRewAFaSVbUEVurMvRqO9oWocjYfqNjGxWPhk8LWxZDDnyF9o9LAtbADKCm7rouDzk+YC+/yYbufTNPeErWT6CtOibeIcwXDu4CjEMAXHxzjsbHDVH6+B73rs5Gl8N0260A2DBtpxswoJUs3Ega3iS4FX80yU2FMEUEIeCkEKr1aWvQw8e7VQYhTn3DXvF4a2PJcmODsrlSi/KaxCkMyorIwzICv7AIWcqQqSHZTsDVHyHhH70M7IUlZAdKrnZOV8UDULew0BdJFXaPWfFlVstuOiPZWnQy/6sMVFXhJXugXAZFU9B7i/WSlE4oLgWFIZsoTfDd+OJIKJztEqseL25GdUelLn45tPyz5xnkjIDldvAsA79wAr36LnOZE8VhNUunrBgmVtAIBNmqqRjNHv6ajkJKeWRLPxngrOIxlOBUklSMteKXzezsgWHqxc25nS4RFPjAk+QVILN0wZBvdVSc5B4vOxAvuiYXrxMKuqxljxAStIhQTJ7luItidEkwA8YOcz6P6cw2V6QFiNdO3g7+VQNSt9Gz4rXOS5wqOO93fYd2zSXJpvPJcsGsKqcn/AY3FMK0gaPcFOy9UjQCd+JCEnCCtOxpGqbGqawVyjRIOszKg0OAzDRpO1k0Q4RzFys0U/KdelCyk5jh73XODxC4FP/kHhK16lpTeQZJxaD6x4Szq9uo4kW/CEvYAYyPgCilTJHAU3Lyv7eMJm1cRXkEQOElcBAmIAjpNqAohqQGXQ6F4rBhaXFCR18Ay3sgBk9VclCJJQhxqSMbRncrBMQypI0R4UJL/hsfKc5/QSYrOIWLN3Frf/yKXEKl6ohvEQQTIitO/Zg6jSBIkVBCdH57mdllV1HKLpUkI/8IAPHqbf4fcmrEag1UovWLC8DQAwe3JdkCBVTEFq6Pn5qnHwe9ENF6yYHFfUSZL9p3LdFA7lvDWACFIp+w6elP1rNyZ/H4e5zagY7xRCZIgKs0qMZ9Xje08tsGL0O7hi1kCfv/tz0aZmSj2pMJ0Zu+8h2lKICRVs4lbAdx4Edvt+Ya7p1O3pr4egqz5bJrg2jV0tH5CCyQbDgEyP4GOzfnHws9muJdtJajnnJQ4EPD6rPQpHOTRBGgx4XpDxcxdpIyI7zEcShWGMuLIirZ0UjOFXEqYFv6t27WRKfuU+QRwadLjs16GVMk9iaxXTPq6AAehCzXTQBG5npNkl9/7h6qR8txJi49yShJhAI9K/J1oFv1RXbXpqGPS4a6PAE2jqdnIlZGeCE+4HD5PppmtTDoWrhtyKxPN5hVcBosAEKRGz0FSbCITYuLItVaqKjdUyhttLiA0QJoYN8jjHqmmwMoWflhUN+p2wjQSrew3TySm60ogkRKJ4tahac+j7eEDlc2ZrUSG7agH95d/P5eS95b2BvKbeW0nVWltOrEVNnIh0RzpftGixX+jJdTiSoEXFQJLdKwErKscVdk/e/GuyvRDvc8OSix3u/F4M3BfMd9JWCiw4KTtWRROwFQlen1a08sS7FHhRkBwPdK8H0PexdIVQkGZOoPMznXeKNp7uF2KiQpkdrg2j0L6CS/DDhovc9NbNk6WE59Fr1PxOz5HKu+fJ6mQGq5/5NBUD9dUuphg4hKoJUnkwBiM8NBrg9wcSSNRKQmRnxCRVJAGyRmHxHF4bjAGFV3kcq4/VCOfbLBAVqgWTGtcNDixLXpC3nZw0n+taA78PUz4lEz49l9xjudO2nSkMscWqZI4KEyRWMdQL3T+fTPF5Raoj/fh3mnIuGB8/BvzrxzJ2370WWPGmCP0VGfSiVdIwcYCQZf4mZk2oRm08AiukIKWKVbGxw7pqWeD1EmIDiJwn6hQX63pRGDBOEONYsP1F7ST43iqmJZuxVhqRKkGEOY/MDg6ojGk70zamNwRVD04mLsMkr6Uz41cgbdJcgzpRIt2RsSunIPXkYj91BxnCHs4QmxUvzFNMNsoFHFcyGoaYdLlqNV88x4VDbHwNRxPyfGRVmhtoq4SIr++h2heRuPQ+qmqAb1bZB7R20xjWkIzCEmPPmo5MZXLYTIuiDGpKQrggoBRBMgWZ7WqhhHu2k1DzQT0PZIVi0jHm9kn+dykeePHQ9ddfcBoJq3uaIPWML2ySdiQRnIBiSnWFnSs9+cw9mhyHE/XUjmGwVp+mJeRvzt8xSHXIZ2TjU06oDk/IajJqrpvUGE8oSUyQnJy8IF1HqkpVDUT8wgSJnbStqBx8/ZCbIEiqnwz7ugi1qytryxYAfhWb0m9IBW+nnQY6V5L0XGy1HE2K76ycglQVszCxLoF50xv8xQNXtmWLSfect6PmgLm9hNgAkbA6T07gsSoaBHlStGJB9aN2CvzSYZ7IBgPRBP2mqkY6Tqn1QuEKrZyT4yhHAgCWvyoeFNUxFpFox/V6HF8+a6VJpSYeQdQyUVdFBKkzbcOpRKl2Maj7bcp2MsQxrEnasWC4H6D7/BiHl/3wM1/3bnEiynmJHIJjvyP+jFg1LQjNSDCk5pffD2rhtASnEUSTtE39SBDnvMBkLIL6JJ0/61M55CqVh5SoD+7jcC8zNl4M53UaokKPUwh8ryc1FO9Ko8ywesTfzYj0Eq4sF7wg4GjDFzlJ27ZtPPnkk7j55pvR2Un5JitXrkRXl0ww6+zsLFniP6ZhxUMKUh38thCeW/qETDSQmeQJf6MSzMEiSIYJREITYayWSAxXPThCWeG+XAzuNwcQwWFPIc8FIAZOTuJkcuS5RL6saDDOzisj9t0xRSK274orYu0cYvP7rslydNtxsXBNJ9Z0Kom8AL1nQ5FKHNeh7QRo4OlqKW4q6VvzV5AgRQs/K+FXsRULsYkcDnWA7C0HqRgiVUCiUZJ2wwhOmnVTZQEBV8ENBji3LF5LlZuxasp9CBOkWA0w/ct0+4O/id8grimTcuUWtnQF2oiocF0PC1toTKpNROB4HsaJCa4rW8EcJN5WADjoWuCYO2SId5OvkOFftEjF1VAjbBOSbJQJ5C0fAg+dCSx5kSZUOysWPG7xUKZq/QEoTaQhm+PWb0S/u3aSHOtiNbQdQ0mQTKFOJupFQUzfxlJWfpNRCw3i/CEvrQqdP1FRpMPKj9rLzIrLY5RPUen/faeSwSQnaXeuonwsRkBBUm6XIkisGPe1n2cp+KR07ChI/TpbP/vsM3zta1/DsmXLkM1m8dWvfhW1tbW4+uqrkc1m8bvf/a7S2zm6EIkHY7pV42SVldHDCalOxrz6HAxJ2k+YVA5/NAEiJ4IYcMWZatef6QhKtfluqTJxIjWvPvOivJ9XSOzWrcI3jawSJMyWOTOcf+WVUJDEvknlHaRzrowGxDkMYxda+AMiAVWsjrm1S6az8HV8kQ9wQPc8D1lBfhLFCBIrSHYxBcmUoQL/A/uxek3UUV5RoAhAIfB1HGLLVW6wLAYrKnsL1k+n6yJRXxhii9cCmx9Avi1q1/iIqIzyXGRs5/+z955hlh3ltfCqqp3OOd2nc09O0oxyQCCRwSCiwAJsbKIvGOfrADYGG/xhbDAGjI2NsTG++PoaGy7YpCvAJMuAEFkB5VGYkSanzn3yDlX1/aiqHU7oeDpJvZ5Hj2Z6TnfvPr131VvrXe9aiDqc5P1I4FxJsW6qtSbRlzMFEu/eFBsAvPKTKrph5zXq+Xj+n6vfkVdUGYZbLlu5gnOhSKfaA+p9j13AK0rkO3YQ+IXP65ZzBFCptV9N94NhJkwLPcMgkSRKBsj+2XLUPbhaMIy05aoi3PirLQJVXzFInkMxmHfwCKqYroUII9HytiwJth6g4IG6r/MpIbaIUkxMXblTA8CX3wRc9T+APU/VOq/U5F56bUgzU0agbSQLQBJ3xbzlG0QaGF2rWUPC+sKTFtYplkRPvOlNb8LVV1+N6enpTMTHz/zMz+Cb3/xm1y5uQ8JMAbm9SavIBCqaSbZO2UzGLBFI0fMrxCDRJrrb8rTpm5d8/5njwF2fSoSczaPMfjVpWQmORDxMVEEUVNQpxe1RDqstBVITgwSodk/fruQEaMTU6WkgtxgXePWAoxpGsaZHxXNs6fyzhzUA2rrfRK1EbU466XDHZSASEn6kFi4zSZVGUiB1KHxMUPGIFk3vf+7iL4LZanNKM09pXUN+JNEgdYtubwczQWc0eLl+ZIzlDOy8KjD2PTP5mDlcDOyFHD6ASIi2scOAymArNxS7VMypqbdiXCBFrcHAy8HAHpWHB6hnJjegrj3y9fRnm3H01UY6sgfIMkhpSKk9z0wbrUOLDUgGG9IM0nqCWW+N6ezoRYvWExoH/LxjYaRXbfoztQCnZ+r4ybFpTFbmMWucD5an3r/IV2tsOgJG8qRwSR9K69PADz6spvPSUg1Csr+vdLFkdHyDe5OPOT3a/8rtLsNpNzF1fpvD5wbCklb/7373u/jBD34Ax8m+sXv37sWpU6e6cmEbElIb8dk5VSC96C+B6eNJq4RZqgjpdEMaUbZpWS3C82VRMGLd9Nc2D2t6Quorb1YP7uxJRZ0/8JXs1wkqybipFOprCsP2EB1voIW46aKwMQN85a2JRsjOq/enb5dqUZiFgTBA+ImOw1xvcZvKUxMhKoEavY1ZARPGatKqC6NAYzoRYofa94UHWs9C2nu+mA15mQxexGXMDuXaFEhGpB10KpAKo+r9eeX/Be77gsrL6wZMyjuQjGcbT6yVgu21BpsC2Rab0Ys0X6OlTSILQ+BcQMhGR588IRA7aPd6NgiAwYL6nhU/6o4bskH6vjQO4SJI7CrWur0G6EPHzqQ9nhtMNrL0Rhr6WnsoAPDOLTYgCat1Cuu0QNJM/SKDgmdqAcqNEFv7cnGLrWBb2KZH/asBx5nZBoJIwLEohnqWQSWZgYjahFpDe5q8iOZ6FtMeb4Dae9oxzZGfTB4P7k8MI810rFvo7h7jFBRz9JK/Vy3V3ED3vvYaYEl3thACnLc+PCdPnkRvb2+bz3iMgBC1kJv2xf7nAlsvRezXk2aR2sFsVKbPv1Ip4MxqvXEtT9HlRhwNJMzRmbuyxdHQ+er/QVkLO0O1mFIGmBBZO69EhNxvfQDvuwGYPJT83XaTIipN9xrRdswg6a9jjDULo5iuBeBCJgUSYVnTsy2XAq/6dPL3sKa9dbRxoltsf1K2XGR8lpaIkPO4+JmLQQoi0V503L9LMRSFYWDL5d3bcB/3WuDi64EX/3Wi9zL2EysFt1eJr5vvh7TlQLoNmGY5UkyFkAAXgOzAIXEpUaqrAqnHtcAYwWhvG0F/N2DcgwFtW2AnXlt2bmUOOIuF5ajN0cDpUdfV7ONUG0+eV8l1sdT0bJiWtzFX7RleHz9jM0xW5aILpBD3nCrh1HQtLpB6cgxbdYFUqofYUvQw3ONiouzHTOWS4fXpdqVU053nP0d9/Pxr52ZzW0wwkf1d8RD47geB//MC9XfmAE/4RfVn468kou4zxiZXszC8ttObXcKSCqTnP//5+NCHPhT/nRCCSqWCP/mTP8GLXvSibl3bxgOz1WYWiyJ1W8gwQdTWDNIcLTYjTE6P0q4GaGrKZD4dSo/WNPhVtViKEIBmeUxBYzw+oqD1hNk8NWYW7GZYbmIw2TyB0r8L0ikgjKQ6PJk9j1B1YjYY2KseVrPxhnVdIOmJLZPf1AzD+i3zdxBEEmY/LjitXyuXarHN2fmJPaC6dFp38sCVr1F+OIY9SusHVhNeqigyDuZA1hwv5e4tpIQQyfvajEgIVIKkQLIIwbA+6df8qKN2aUlI3x+GRTUeNc2BqmsFagMXvlD9uU+3WuvTrcaE1bHk2SQUmD0FjD+YfY3g2sZDDzYU5mhnryWYq+MzFl8A+KGAH4l4uKLoOXGBNKVH/3MOgx/x9vYci4E5kJh7+XGvBZ7zJ8Az3ozY/Nbgyb+ppiOBVrdtQrN6n3P3AKd/ov5cGAGe/nuKeX/9l4HrPqC/p+z+82656n5bL/f+MrGk1f+DH/wgXvCCF+CSSy5Bo9HAa17zGhw6dAjDw8P49Kc/Pf8XeDQjLc428RhxVlGqL94OGQZJrm6BBGgTvkj9DM3eGwCw42rg3L3AFa8Ajn1fh8/qCBGCZLrCZH7xAABvLW6anfo6OoYzFbjILKDY6tXBhYSAKpDiCABC1UJgYCZDmAugnIwf83JSGLUTElqOus5l/g6qqQiRfJsCKWaQuICQErSTCWRKmN4VmGI8XdwyZ20KpLSLr9mYIbNWGZYXF9FCSnDZecxfiERg69oUOYdhIK+euXrIuzemDWTvbSkAMKhhBdE98etyQS2lYXvJh1NGqr5ikdOZa5XxxPdMRO21eVLo2B5ov6wueeh0G5YDbL1s0Z8W6bUpEjJxwM9ZcHQr3BRICiQewFj6daaeN+aqe2bfM5Pn3MkDda11Gjpf6ZFO39EqC2gukI79QP1/6xXA9R9K6TebiuJudymMxIRand3YNxCWtPrv3LkTd911F/793/8dd999NyqVCn75l38Zr33tazOi7cc8zGi6KYjcXrVAzcUgpVtsq10gDe9XzEqnU9dz3qkEtemNyS/r6A7j2holugwpgNnTiVkboPKgzt6d/brUbs+M5IpKYDp1pG1hwKWEkBIWJfHCBtpUIPXrAskEMXq9WhQsk+/ZzgfJxIws08Om6qtFlhLAZq3FTy7WIPGOomMAKQapSwWS8SzhOl6GQOvQVrDF1gmXvAz40u+oP/slYPA89f6fuzd5TUoPZlqqnRg3LiUqpkCyKEZ73dhJO+QyzsbrCmjqXpe6TWKwHvRHQDLw0L8naf+3Yw+q42rzvfkDwBWvBPY+vXUtiPykqMoPrv4atcIwrfogErH1Ro9nY0QzkNO1QB1kCIHFSOYAtCSY0XhjfBtbm+jnPP08FncA4w+pP7eM0JOs4a0pkA48b27Wudv3KLOzOsINjiXf3ZZl4Rd+4Re6eS2PPphNzWzOlpOYf7VDswaJrpAGqRPcXjW+2unka5xeCdTpMaioAsmcFKjecM20SFAFbvgN9edf/bai67/+h61ft9PG379bfbPZE23/XUrleWMxkg2R7Nulp4doMlpsqOrIV4tCWt/C2yxygitt1DKdtCu+em8ci4Kx1q+VMEhy7ukqwyB1S+9BGeLoG7MI297aLGxeEXjBnwPf/Wvg4pepU7NTAKZT7ERYz2qQ5nivOJeoaJF20bPRl3NQcJOfq9RYZlskDVNEN9svELKOCiTdPjebqnEwb34Pq+PAjX+s2OMffBjY/vjWjK7v/hVwz2fVn3ODj5qN0MAI+Othivl1GUaLrtI1S2C2HmIg78BmNC7ElwymA6QhEp2d5ACa8ioB7RlmYjyaWmw0NcIf+So4HAB2Xp28Rko9nGKsBZYvIWiB5akooQ0+3m+wpHfnS1/6UtuPE0LgeR7279+Pffv2tX3NYwukdYJrLpjoDxOHsVb+KQthEdyiLpBKKQaGqgkec2JJ+xD9+KPAxKGWLwMgYc7agTlqI2/HIAnNIDGKjI2Q5QE//bfZE645Lbdji9pRwVJ0pd10ekZpNQbyTtvmWSLS5vNrkNDtFhtNpq2GDmQdu1cbO64Gflb7HpkA23S7OqwlBZKQELwzgxQJEbfYBgoO8i6DYzG4FoUfCczWO+SMLQVxqzJ1AxrPnZUaslgKmAuIWfXMVsYBbwBo5iz9cra1LsLW58UUR4B6vsiji0GKuAQhQC1ICt68w2Axiv6cjelaiDd8/FZs6/PwthdeBEpUe99uc/hZEIwfnfFlI1b2XkqP+BvjS6A9g2SKksasLpZI1vIkqKj4pfwgUJtWrP5KMEjbrgDO3D3/azcAlnR3v+xlLwMhpEUDYD5GCMHTn/503HDDDRgY2NhjfsuC0YwspkqndsqEbY0W2HYMUvPP4PYAZWgGSU+ZUQoEEWDp604/fHd/pvP3m0tbY05YbQooLiUEAIsShGldkzHjTOsj5iyQ2px2JM8KJJeIM7PK6HCw4IC2YX+SAqnzhg9gBVpsqWKc2er32exHtJqgVsLCmALJai6Q1M/+j995GJ++5Tj+6XVXY/dQqxh0th7G4tm+XJKjVXAZ/Eig0uAQQoLSLrBxplVZPgtAD2JQqp6B9cIgATpbkKsiuHeb0h9d8Urg5K2IjVWbIy0KI7pI0kHT/mz2372BRx2DxKWARQmqmoG0GYGlWWTz/HIhcXK6ju8fnsTzLx2FHy2jQDIRVFS3uiltZSPTMGuaKWTDevJsmINebMDb5FEV+Yk5bq5f3asrscfQRZAC6xxL+q3eeOONuOaaa3DjjTdidnYWs7OzuPHGG/GkJz0J//mf/4mbb74Zk5OTeMtb3tLt691YIDTpMS8U2ik4/vNaoJ0G6aKfzv49flDrUEJsmggF44DKeX7u/c8FnvvuuTd+Y4/QZhRfCKmIHkoQ8ZRolyn35AzMZlWbbC2I2oXVLsF5tx3OzCoGaajgoN1+7OiokYiLjmPrAFIFUpdabGaqcqXNIRcKY+lAiP6dU81yaDg98WL/v25+BKVGhE/8qE2UDIC//9ZhSKj3vM+zYxNRM0VY9sPueSGZFptbBJgWuhOiiuu10HN1ghk6EJF6L0cvAnY9CXjZR4Hnv0e9pjlyxxi1nrlbTUVNPpxdkwz7+ChBLYhw48ExzNRDNLRA27VY/Mg9cV/W9PMnx6cRctnZw2whIEQH/lqJBmmuMOZ0i+3wN4FPvQL41KuUE7rSHCiGEGi9/3iQFMpen26pr1SsEEOso9rAWNK786Y3vQkf+9jH8NSnPjX+2HOe8xx4nodf+7Vfw3333YcPfehD+KVf+qWuXeiGRLzYL+JtZvo0R8j6YZCe8futDs5pG/woBO7/snoAL7guObXMl8Vz7TuUaSSlnbU+5oTV5lSl/HAkLErVZJPWI7V9vWGQfvB3wJHvqsmO+At16Jdb3SiQ1Kl8qODEAbVpOPrkGYp5xvxNGnk3TfmYgxU3h1wo0q0FU1gP7VMjyT/+R+Bpb2opuNtNsfkRx7ceGAMA/Nozz4Nj0/h97/HUc1j1o+7FjVBLvX/MBgL9foJp89N1ZKBoChsRJb9vK5cNTG0ukIy7ugiAwFeTU2n/nd1PWV8/4zLxudtP4qM3KSPFNzxtLwCtHdT3z5ufdwGu2tWPA1t68YaP34qHzpVRaoTJgMhSYeUBWkNsLJr+PVzxKuDuf1dj+kBSIJVOAze9P2GNvvtB4KUfVS25sYPqY83ruJmMjgJ1fxa3d+/A1QxzyNngWFKB9PDDD6NYLLZ8vFgs4pFHVO7LgQMHMDExsbyr2+ggBLEJ30JBbZ2J5a2PAqlvlzIUTCPyk41ahEq4+bCOmBk6oE4mXrG9Q3UzhEhacu1gvJnaPMdcyLizF/GUL067AinNBp25s+ka2mmQZFcYpLOzStcz2OO2ZZCMk3Y4n0gb0O9DFxc0pj1L1kMriNnq98Dc5EDhFBRzWRhR/zUVh6zNGzpbCyGh3qYDoz1xAQognmSrBByhEMh144RLCDB6iXpmSqeUQDWtFVkvMO+pRLKuWI66z03B1KxBIxSA9nSqT+tsRv1cvfKTiDWWGxxcSERC4NxsUph8/d6zANQUpGmt9Xo29g4XMNzjYu9QHkcna3h4rIqn7x9p+3UXDMPkGLNWU7AKrixVDjxPTXYC2ftKhMC2K4HJw4oZnz4KjFyQSiiYQyrh9qxsDM5KxWStMpb0EzzhCU/AW9/6VoyPj8cfGx8fxx/8wR/gmmuuAQAcOnQIu3atYjjhugRJNAoLRTxhYK1diy1t8tVOl1IZT8aFeQicvCX5t5veC/z7axQFHHZgkHq2KDM0YH47A8o6vg9CSnzu9hN46+fuRjWdsUVZ0mETEVA511oEpIsRM8W2V2d/XfFK9f8uFKjnSmrR7aRBcg2DxDtni8VgHewQlgqTibYW3kfNoCxJF0/fD4ZBTEd6mH9qUyBNap8a1U5To9gGpkCq+xy8W4nsgA5IZmrq0vbUf11gH7uK9L1snqe4UGqT+QXonEUBcJ0LZu4TZifTuI+CTXC87OPhsWqcvQYoR20gWyCl76WdA2qNnKj6c05ULggsZazIHMXShXXFEjFbt+D0924uvJ/yW8mkYVhVk4jGpyrdOhdR0g5eiem1ZnSb7V4jLOld+ud//me89KUvxc6dO+Mi6MSJEzjvvPPwxS9+EQBQqVTwjne8o3tXuhFhNEiLEmmzhApdDwyS06ZAIiQxHOO+yjdrxpm725tNAqptYgwcFxKp0oFh4kLgvw6qdsptR6fwjAN6oUiPw4d1lRvVXGRF9WRRMgzS+c9WJ7bhC9Qis8z3nwsZb9gjPW5b8ifNIM2lzQQAEBttqbSlgi0tjmFFYPxfmicW45N16zPUruA0Rn69ngUhZYZB6vXUz1kNupzH1gw71xWBf1dhmGyZ0tYZh3+ngwYtrGvLkUg97w0t0k6vCY+CTTCIBEqNMJ58BBCbRLo2i39Em6piiQsZZ7ONl/zlR9d4fdlpWymA2hQwtF99PB1i2+xQPbA3K3fwy0kbND0Fasb7qaWfsRUukOaaTN5AWNK7dOGFF+LgwYP4r//6Lzz00EPxx573vOeB6r7jy172sq5d5IZFrEFaBA1tMtEW+3ndRNojqLlAEtoZ25xk0j5IaZTPdm6xFVJffyF+T7nBtnTxWDlpCVBKk5Mcodl8rHahlY1SsrAYBolainaWXE/PLY8FmKj44EKCEqA/b3fQIKnf8bwibaDjNN+SEQd6roPN3Cyozfl35oChP5bWDrUrkGZqqkDqcVWBZGcKJM0gpcONuw07rwz90uPV6wFOj7q2sJ4Um0yxbB1//0FV3R88Ajw7mY5KuzE/CjZBP+LwQx6buqaRZpAYI2BU3YMmemS84i8/usbrSxj5NPvtFdv4a6Xeb+N+b9axoKoOdmY9Ta+ZpkByCq3P2EogXZBvYCz5XaKU4oUvfCFe+MIXdvN6Hl2wcmqccjHTLLkB9WCs5XTI5T+n3HQB1Z6K/IReN6G0ZpE0gbbNmD3ZeVzVTtHEC3EMN+G4TTg2kRRgYSSSk1y6sBRR+4Bgvwz06ky52OjS0pMgUSKYXAamU+0ei5F5ptg6Z4vFGNjT3bbrfNE3qwnm6INBk2aP2Zk2az3VBkm32MbKDQzkHUzr1kiPa0FCZl4TF0gBzxqLdhOEKPHregOzVZEkoiyDRC31fJtR/zSCim75hGoz9h+dBVIt4Ai5bGv66Fk0fm4tSsAoBRcSgzq6Zrzsd5eNTBerzMlO2Ioo+36bzE9TINVnsqL7dFRPFACF/qzeaSVhDjxzTeRtACx5F65Wq/jOd76D48ePIwiy3jJvfOMbl31hjwowq+Pm3hG2pxegNUzIHjxPnYAr59T11ybUqRjQieUsGcGudhDiTx9pdeEFlKA1ffJfhiHm0clE41QNUpNJJgMPUIuKnW9lkNJ6C5FikAC1KNn5ZS8ihs3IOwwUpL0GyUpPsc2z0HZb+GvntJnmOtjkcv3qvm8W/VI703arpaIdzNtZboQ4PlkDZKIdMcVQ2uuoqFts9YB3N7B2oyDXrw84+lkwzFx9Sh2AmmMzvvQ7wLPfoQK4CVGHCgBwHl0FUkPn81XbFEiuzeLn1mYUjBJMVn3kHHU/TlaCTNG+bFiuvrFpYn1hUDqTXcdMgWRapI6nAp6Nn1WGQQrVwdsw4yt9ADfh0hv8/ljSu3THHXfgRS96EWq1GqrVKgYHBzExMYF8Po/R0dHNAmm52HIZWnx8VhOEAj/9N8AjNymHY4lUy0r7HJlstVqHAmnqSOuG/prPJJ+X+X5LK0SOTyUMUi3g2RYbmlpszQvCV34feOZbgYtenJzSzLRcehR6GZiuq6+bdy3VbW3XYlsMg9Rt5AbUf4vE4bEyBvIOhnq62JqzXH0waJ4+tPR/Omw2lZ4eaaH1bD3EbCMEpQQz9USDREBgpRmkXNJi62pg7UbBwF71+45bbHbiu2Pn2tty/ORfgRe+X/050AWS26Nb7XTt3P67hJALhEIi4CI2F03DtWhciDNKwCiBzSgu2lrUGZASZ2cbuGKOBKlFwXITho+5SftfCnWQEVx1JqI6cP616t9iDZKWHBjtZ7O/mSmYLGflB4By/Wqibr1Ncy4SSyrvfu/3fg/XX389pqenkcvl8KMf/QjHjh3DE57wBPzVX/1Vt6/xsQfbW9skcELVZnXRi7O+GzPHteCZAV6/+niz+65BYwaYeiT7sZ7R9u2cJZ4y0gVSPeCI7UgIQ6bAjAMgm3DzX6r/GwbJaDJEd8wTZzWbUXCYmohuJ9I2BZKQ4POqtNcHKo1oZQqM0YuVQL4ZVi5mudKbWMAV63au1EAQCQgp4/e8x7UhkS1Ke121KTRCDn855n4bFZRlR7tN65Lane93p4D4WTIMktubOLCv1aRtFzBdDfDQ2TI4F7Apjc0h08ilGCRA+ZYN97rYM5THUEGtZadnOqyBSwHTBZL5j6q1A1FDtcPdXuXh9qTfSOxX4gIp5a4NqCzJ0hlg9pRafIzUgLU5MK4ENnhxBCyRQbrzzjvxv/7X/wKlFIwx+L6P8847Dx/4wAfw+te/Hj/7sz/b7evcxGqCkGz/mEC5MvbtBiYfUotsrm/+r1M6rf7/xF8H9j+n8+uW2Mo6k/ItqQVRikHS/iym4CBzuJkH1VSLzQVg8smW36Of0i22gmuBkvYtNsMgAVieI+8qQUp12l4RkXMn1s7Ox7+/dIEU6uuoh0p/JnWQKAAUPQsEWZ1SX94USOKxWSC1g+2pg0Gn997rU0MSQFaDJCL1XK0H/doSwIXEsckqZushQiFRcFjbVpl5dg0u2a6YIwmgmLNxruyjVI/iiK1lw9huGOmBMR4N66qwGT6gfldeX3KwbC6QIl0gCakGYiQSwb2wlBbtURYRs1JY0tHdtu14Wm10dBTHjx8HAPT19eHEiRPdu7pNrB2MaJNQbSZoqRMJs9WD6i6gQDLYcknSL2+HJbbY0qLKWsATkbYZ85cCgM6Jszu0g9IBupajpUuyK71zI9Lu0YtsO9+eTIEUrmFbdYGIhFSmlqtZXwzsiQX1zS22SEhw7ULOhYwLJLOxsdSmNZBLxvyDaIWKvI0GI9JPD07sfkry57CuNuRTtwMHb1AfcwyDtIZWJMvETC3AeMVHuREh4hI5h7VlkHo8KzNc4dkquNZmNNa0lf2wu+1xt5gUrCYzMawrDVHvVrX2ptlm022IGST9f2YB/XuArZepZ8jKqa+x5ZL2dPYmWrAkBumqq67CrbfeigMHDuCnfuqn8M53vhMTExP4xCc+gcsuu6zb17iJtUCmQNKtJ69fLaaW17ngAJT79myqUG727gAUO2WCY5dQjEgpUUuN5dYDnjWKJDQx3LTc9tcAABMPJn9m2mdIiO4USJpB8mymIgvaFUipMfRGtP4nPozr8LLjFRaDFLuRFmmHukAyhTEXEqV0gdSUYDNaVNOk5UaEMOIIIhGLbR+zsHWBlJ54uuinVavzJ/+q2mphDbj1fyf/XhhSa4Ob37AbbcAFhAQ8m+LQuQoGdg+0ZRV7XasjM9SX187sOrqm3fO9JHh9yWStETpHfvI7YlbW6NY8H6a1ZuxV3KLOXMstflhoEwCWWCC9973vRbms+tF//ud/jte97nX4n//zf+LAgQP4P//n/3T1AjexRiAsOyJPmTp9mOIovaA2Y2i/WjhnFLPYthfdmFVmaM7SpsWqQVYHUwtTo9vG5p7rME07p9oB7TCeLpBMu6A7DNJUVS1yOZvFWqNmEELgMIqAb4y2D9cBwSs2Jj8P0m2QSAhEXIAL1UqTEphtqPecQE0dWakKaahH/X65kJjROqquxI1sZFBbPdNpN/XCSLIBTx8B/uVFyb9d9nJg3zOVvYe9cTUmYSQBCTwyUcVffONBXLN3oG2Lu5jrzJD159T91NVsPwDo25H8OXa/thK7mGbG3fwewhrw5TcB5+5Vf3cKj4oomLXEogskKSVGR0djpmh0dBRf//rXu35hm1hjUEuPuxfUIuoWFAtj55Kiw8SiNMPOAXuelhRIlTHVYksLA0WkF+WlZfYYMa6B8TKJr51YysfFLWqzyw4LmGmxmVai1AzFMk/GERcxm+HaFPk5mArHMgXSBmCQpASHXLMCqdbUYgu4AJfq9B4JgVJd/f7yLsOB0d4MQ+RaDAWXoepzzFT9NfsZ1hWM1YMxgQTUc97uUFPcATz1d5Tw1y+r3MUNinoYgVGCL96ldJK3Hp1u+7o+r3OB1KeLp4ofLT9upBMMg8TspIhtPlCaFlvpdBIzYj6+qTVaFha9M0kpsX///k2t0aMdlCX5PU4+EfaZNhth2Um7tBmmKZDS/2aE0DxUp0/BNTtFl/QQm0gJg4z5n+UqEblfAfLD6tqHOyzmpVP6502nT5NlM0i1kKOs2YycQ+FacxdIwMYQaXMuITiwVrVcs0g74hIEEpQQRCkvm2LOxmChVUA8oE/9pQbfEO/3iqMwDIxcmEyoATpKqE2BNLBX/V/wJTO/6wX1QMCiJNPiNiikiupirjOHYET/VZ/jxFRtZe4no0EyU21A69pkWmz1piLPzm94H6K1xqIZJEopDhw4gMnJSRw4sHFPEJuYB1SblBGqQjiNGHPkwmRCzM4n+Uy5QaCsp9YsTwkBL3pxYm9vNCtBVTm+moBGES6NQdLsjGNRBJFAPeRZBqYwolKtc/1KZ3HZzwETh4G+7SpmxCkAX31LInakVjK914Uk6prPUdWbecGxMpEXzTCLdKOND8t6A5cSXEqEC9QgCSExUfFRDzl2D+aXPemT1iBFQsQhv4Sotqs5x+dtlvFAMhgo2Dg5U0epEW4ySGmkjVMJNOtKkGFen/CLiR9PYXTDjvhLKdGIOCzWqgskRJlDmme3f44W24B20674EU7P1jHa63bXG8xckGG3DYOUbpvxAKjPtv9cp7BhNWLrBUvaBd7//vfjrW99K+69995lffObb74Z119/PbZv3w5CCG644YYFf+73v/99WJaFxz3uccu6hk10AGNQOU22ouBNvACzE9YnndmWTxkO2jn1UD/zrcDjX6fbdb5y5jatNcGTMdYl9MmNAHq0N1mQTHsFgNJLFUaS6yYU2PcMYPB84LyfArZdmf2C1IzUknkLpAfOlHB4rDyn7qDcCOOJq5xjwWadFyrDIDU2AKNRqoV4eLyMMFqA8zcUk3b/mRKOT9WSFugykBbmR1xN1FUaHJMVP5OllXdYxkXbYLCg7peqH7U1BnzM4rnvUv+/8tVJxlfaBPL1X1YsrMliHNgL9G5bk0tdLkIuEXHFIJmDloHDaMZl3Tiyt4NhKINIIIzEypmPEqanh40Dul4vGyWgfE4dYNuhXdD4JhaFJRVIr3vd63DLLbfgyiuvRC6Xw+DgYOa/haJareLKK6/ERz7ykUV9/5mZGbzuda/Dc54zh7fOJpYHozfq5HNCiJpWM8g1FUgGUqgH2y+rlpcxPDPCQ7K0FtusLob6cnZcYFQaUbJpe33AyEVJgURN0aMXMWZnr5laUHooog7OHQqkiAtMVgM8Ml5tafMBqjDiQmKyGsQbcI9rwZqLQdLX74etUQfrDb/+ydvxl994CLccmVqQMJULiVBICCmTKcNlIKNBEhJ+GOGP/t89+IPP34NTM2p6x6IEOaf9xmbM/SqNqG20xGMW518LvPyfgce9VuteWDYHzGy2JovRhJ5uQJjWrMUIJpueYdeimWw1i3VemwyDVAsiEBAl/F4JEKosSNJ/J0QVSKMXtx72mAOc96z2UU+bWBSWNMX2oQ99qCvf/LrrrsN111236M/7jd/4DbzmNa8BY2xRrNMmFgHjxTFXGvPAnuTPxlkbyOqRBNeW+YH6OA/Ua7mvc7b8JbWz4nFux0LOZggigbKeJrEMW+M1TdoRioxhSWEk6dtTHWnBg4TWbgPTyvOjVlF1EAkcHqsg71ioNMJ44qqYs9pqHQzMv9XD9c8gHRpTYt7vHp7A/3z2+fMuIFKqaSEps5PJS0Vzi+3e06V4+u/QmIrKcCya8ZdKw5z6K5pBaoQcnr1xtTRdA6F6vDxqDQwGklaN4Dobb+NGjBj/LMjEq8zAsSgajeQes+ZgfgcKRqTNYVGCanOWXbeQ0UciYbgZU8MvzdOEL/5rnVqwMVug6wlLustf//rXd/s6Fox/+Zd/wSOPPIJPfvKTeM973rOgz/F9H77vx38vlUpzvHoTAFRxZBc6j8cDwOC+5M/pBbMdg2RE2WE9EXkze8nJ0jOxx5CaEJuth/E0SccrpgxIn/LywwAeiv+tEgFhPUSRETXpr4updKumHqppOVdrn9IQUqLqRyCExC1AACi61pwLrWvrFtsGKJAMpFyYWaSQ6n2R+v/LRS3Mtti+dzjJAjQtNpvRjrYKZtS/3IjQCDlqwWaBBCDxDhMhQJ3O7JDgusW+cQukehThCz85ieNTtZbZVsfKttjaud8bmCm2qh/BZhT1lWKARy7Ivt/md0Wt1lYooDyPGrMb+ne0XrBkjvThhx/GO97xDrz61a/G2NgYAOBrX/sa7rvvvq5dXDMOHTqEt73tbfjkJz8Jy1r4L/9973sf+vr64v927do1/ydtQjFEaU+Oln9PmY+lGSSkFhVTIAFJthDVhZGdz7JNi8CMZpA8m6Hgqnuh6kdzb9rUQkZ02pOioJmN8QrH0ak6Hpmo4dhkDcenqjg5Xct8iUag3LktSjNsBqAYkkiLko0H0kivC9ey2gqGDWKRdjdTwVcYQmJBo81SqhBege4USPWmFttPjs3Ef5/VQbWORTuK4oe1iHamHkICm202AzNOznXMTqfWuuStjMYGw48fnsJX7z2Le0+3HpQ9i2VI5rnMH41HUqRbyI1ghdzZ3d7soZM0FUgAsPVy5ZT9kr9Tr5Vis0DqApZ0l3/nO9/B5Zdfjh//+Mf4whe+gEpF0e533XUX/uRP/qSrF2jAOcdrXvMavOtd78IFF7QJtJwDb3/72zE7Oxv/t2lRsEAUt88dEZJusYnURtMoJa0rKXUrjSbMESVKqF0YUt9jkZCpUFLPZuhJFUhzbtqEAlGgbAYAzSDpyycMMw2BRiAwUQ0x0+CYrUcoNbIizlIjgE0ZLEZaWmKKKZHwQ4GxsmIsdw7kYFtkzuktw2Cs94T5ZlH2QjYD1clQ5pLd2DuaC6TJaooZNpONbaaTDEa0qH+mFsCiBDP1Nj5ej0XQVIFkRsqNxnDXE5PXCZ41ldyAODWbDZftdZNCotzIFsxzHWx6nCSGJIgEQj1VueIwgy3mwAkAP/23wMs+qgolIMly28SysKQC6W1vexve85734MYbb4TjJCeNa6+9Fj/60Y+6dnFplMtl3Hbbbfjt3/5tWJYFy7Lw7ne/G3fddRcsy8K3vvWtjp/rui6KxWLmv010AZajsn6AbH4Ts5UYG0hEzybPzTBIVk5lChUXPwnja70RoESVRS9r+d8R1AKCsireBM8wSIIw1CJguDeHvpyDgCtBcMXncWEgpUTV54qhoKrFlqbjhZQQALb1eTgxpZinnf25jnoYA8MgrfcCKd0ClFIxXvNNskkp1bC4bC2wloL0e9QIeeaaSnpzcyzacWPbogukqWoA16Io1aPM7/Axi9h9PlAbr+DAte8ELn4p8Kw/Sl4ntaZwA2O8pIrqq/cM4CnnDeGNz0nsasYrfmZybS4GiVISH87+7y3HEUSr5IZPmVpX0wHDlqfsTNLY9EBaNpZUYt5zzz341Kc+1fLx0dFRTExMtPmM5aNYLOKee+7JfOwf/uEf8K1vfQuf+9znsG/fvg6fuYkVA2FqPNh2s54ozAa4PomZTdGylZ6JWMo2wGgZloBawFHRm6FnM/R6iWHbnJsdYfpk5aiFPjX9QfwyOJTPF2MMoQAEV2yFHwl4NkPIlYO0zSgoIbF7t/GAFEIz24Tg2KQqkHYspECKp9hE91LBVwBpNi0SAscmq6CExKxMOwip4lSEbrUtF+kMuJkmN/XYubxD7h2g8tiIvq4gEpBE6ZqKc4joHxMgRB0gpEg22qHzgSteobzEDB4FDNJ4RRVIF2zpxaufuBt+xLF3KI+jkzUUXIZ/eO3j8adfug8/94Sd8+arbSl6KDUq+M5D43j6/mE8fvfAnK/vCogW0afF2cxunYLYjBlZNpZUIPX39+PMmTMtRckdd9yBHTvm0Kw0oVKp4PDhw/Hfjxw5gjvvvBODg4PYvXs33v72t+PUqVP4t3/7N1BKW4JwR0dH4XneZkDuWoHqNG+3T4Up9m5T5owjlyRhiwbMVYuw5aieuhm/XwLqIUdNCyLzDoMfqdu4HkRze+0YOtqckFM+Lqx6DoRYkJSBUYpQEAgt6PZDVSAFXFHoOVtR66GQmTwvI0bmQuDYlJqo2tbvwZ1n8zUi7SDiiISc0zNpLVFOFUiNkOPsbAPb+3NzfIbRHcnUn5eHaI7fbznDILV/zz2boZizMVsPUWpEyDkUNZ+j4FjdCxvdqGC23njzQN9O5VtWPpP8e+mMMnrd4NNR47r9bSYaZ+shfuUZ+/Cfd5/Bcy4axeN3D+DPXnoZ6hGf955498suxas/9mP1dSt+V7y+5gU1xpEpnRizshPHc0zibmLhWNI7+KpXvQp/+Id/iLNnz6rToRD4/ve/j7e85S143etet+Cvc9ttt+Gqq67CVVddBQB485vfjKuuugrvfOc7AQBnzpzB8ePHl3KJm1gNxNNnQj2QL/8/wEv/AXB7sg6u1FZFiaWTw5cpHqw0wnhiqeAw9HjqOjKBtW2vV39fy0kWkytfDQDwR64ACIEkFJRSRFqEHAkZj/MHkUDIVQFjMao8fppabBISX7zrNBqhwGDewUivO6cHEoB44sqPVkjk2SXMpow4Ay6Rs615heVCShAQQLNIy8VcBZJhuFyLgnUoMhklGNAREVPVAJAEp2fqePDs5mSrKpAcxRBRpltpUoVKN2YACOUdJjd2S3JCM0jGE4sLiS29Ofzucy7AhVuLYJSAUgJGSMdC2+D84R48ca/y/psor2K+n53PtjqNya2BlBs6Cma9YEk71Xvf+1781m/9Fnbt2gXOOS655JJYRP2Od7xjwV/nWc961py6hI9//ONzfv6f/umf4k//9E8X/P020WUQpp5JoSNJnLwqPghRD6dhD4zo09ap4csokISQmKmFMZvRl3fidaEe8LkDX6leRIztAAA88deA0UtQEgXItIu2TlkgRMY6FzPWb1pgEjIz6i+kKnI+e9tJAMDrn7oXjNI5R/wBxDltIRcZk7r1htmUdUG1EcFmJONe3Q7m8SZo7QAsBdEcY4rm9O5aDJ0O/jajGMg7ODpZw1Q1wIVbenF8uoYtvd66bm+uDvQgRRyKSlVLvDGriqLcINC7RbXINzAmK+o+NgyShITDlKaQUtUiZ5ToQmnur8UowaC2jpiuBasXOD18INvqNO00wVVobRfyJDexxALJcRz80z/9E/74j/8Y9957LyqVCq666qrNbLbHGigFoENtmZPNb6O2Nl1kqmhijjKii/xlFUgmBLaiN+b+fDK6Xw95ZsqpBYTqeBML4Hp8nxBg3zMgjh/WtDQDQNHregBlaEQc07UAu4fySrOS2uQpSIZB+dztJ/Av3z+Kesgx2uvi2ReO4EypMS9NbxikgEvw1aDol4h0LEMliGAxilrA5ywsuBD4/uEJ9OcdXL6zb9nXsJAC0rVoR/8aRkm8MU5VAxRzNixGtPGneGx7IgmunlVjvWHG+U07xy0AWy5d22tcJkIu4vs4CTMmsCyKRsCRY6q4thbIIDFKMKKtIyarwepZdaQF2kBSDHE91UmwqUHqApa0U33ve9/D05/+dOzevRu7d3fIgdnEox9mARWRmkozQkFClMaoNqGKEa9fOXPnBrLxHktAzY8wrk+AlABFz4ahkOoBnzvPjOgTMWUJg6TBARBt4S8J0JPTTJivtDdBJFALosx0lMNoZiz4L77+YPznJ5+nc+ok5l1k4wIpEnMyJGuNUupnVcyZykKbq7D4z7vP4F9/eAwA8Iprlu8/1q7FRknWQsCx6JwZnSa/z8RMOIyi7EebBRKR+jCTCkU1rtpuMWOLsVExUfEhATBCUMzZ4EKCEQKbEZQigYJjxQwS1SzSXGCUYLg3KbjXzOyV6uxMHgFOLxDVN4Nqu4AlcXDXXnst9u3bhz/6oz/CwYMHu31Nm9goMIZlIkpG+AFVOI1cqBZaypLA2y6g1AjjCba+nA1Lt0wANd0WzKnjIcl1NkWoCAkQEEiiR2j14pKzGRqhQNWPEHCRWTANgyKEbGkVP2nfIIRETNXPBddOWmwL0SCdmKq1hGyuBpq/p/F+6WRPEHGBv/3mofjvvAv6jHYF5JZidrzZszszSAAwWtQFktaiWIyCc9HijP6YhJVLpkuplTje9+0Eeras7bUtA1wbuJ6dVfYjfXkblBBEQoXW2pSqEX2ixvctSuBY8xcYjJK44J6o+PBDvjY6QsIASDUcY7nqv80W27KxpHfw9OnT+P3f/3185zvfwWWXXYbHPe5x+Mu//EucPHmy29e3ifUMyhQjI0K9mBKoFcYCCsOqT+4Wu+roOlMLYxq7L6cWORMfUQ0iRHOZtRn3WcrQbLktJEAohSS6bajBKEEkBWohhxAq5PS+07MAFPMQcI6AZ/1Prt4zgEu396nTKZ3bbM58HcAwSPMvrun3YDVRaimQVEsw7FBYnJltZKZ6/C6crtsxSKNNNgNKg9T5Pd/el4uvLwYhq6cfWa8YvgAY2p/83ZhHEksVR+7GTYcvN0Kcmq7jXEkXSMYFW4fWFnM2CAHMPIVFyZz5iQaqxaYK9EYoMNMIV0+onYbRTfJQWarYeaAlSGUTi8WSCqTh4WH89m//Nr7//e/j4Ycfxs///M/jX//1X7F3715ce+213b7GTaxXEKZbbDy1mNLk5DKwF9j+uK75pvgRVyP+OuKjqAskoyVohEJPms1VIGlX76gBzCSO6lyIeDRWNhV0RBIIIcGlwL/+6Cje9oV78N/3n4PNVIK332QQ90cvulgVVkKA0c6ePAZmzH+hDFIkRFcEz4tFs6t4NYgg0dkhu7mI60asR7v3x8SHGLgWw1zv+OW7+kAAnJqpxyxSs57sMQmnkPU8oiwJcd7go/2Rnjid1t5ZOZvh9GwdZ0sNWIyi4DLYLGF7Ge0cV5MGIwQ5h8VmteOlVZxkS4NSANoJ3S2q32VziO0mFo1lc3D79u3D2972Nrz//e/H5Zdfju985zvduK5NbASk4wlM4WEM5wy6aCrXCFQhYnQ/Rc+GzQj6vGTxrvq8syEhoeqaLTNNR5ORZW1oCMIgm8ZjCUFsdHjrURWh8nffOqRH/VVR5uvNlZCEMfJDgbzDOganGhQc7eMUJm2ew2NlHDpXbnmtEBJcZz+tNppjGM7ONrTpYvtradZjVLsQ5tmOYUvEtgquTTMBw80YKrjYM6RErnednAEA2EwZf64WKn6EY5PVVft+SwazVbbXBtezcKEsO9Ih18M9Li7dVsRor4se10LeYfHBw3MY8s78zLfFKPpydmxWO1UN5rSiWDGYg6kUqjjadkXWJ2kTS8KyCqTvf//7+M3f/E1s27YNr3nNa3DZZZfhK1/5SreubRPrHYSkRoKt9gVSF9GIOIQQsVi46FmwGYVnM3iahan6UWdmOc0g5YeV54vOkBOQoOb620x/8NTiCijW5MhEFdA6BsMg2ZTGE10+5+jP2/OOjhu6vx5E8dep+Lzthi20N9NakOemQGL65/nITYcxVQs6Fkj1ZgapCwVIO6f0Zg1Sbh6hNaMEF21TcUN3nJgBoHQnqxIToVHzI4yX/XXtewVA61nmNgPdCEgKJMUg5R0LPS7Dga29OG+kBwXHQj6VybajP4ddg/lOXy6DS7YVMazb/KU1a7FpMb3JaNtEV7CkAuntb3879u3bh2c/+9k4fvw4/vZv/xZnz57FJz7xCbzwhS/s9jVuYj3D0LiGTQJdskFZxY+UeV8H1PwIEiRe5Hp0gUQpiU9w5UaEjuWDGfPv3abaf9SKI1GEBEAIuASOlrOsCCEEEZc4MZkNuTw8VgYkEEYyFjCnY0WklOhx529N9GvjwnrK6DLiou1PwaUKfu1GrtliUdetzV96+l5s6/NQCzgeOFPuyNg1F0i1LrTY2jFIzVEnOWfuZc2iBJfqAum+0yWcKzUgpUQUSYhVKliUAekGEIYzF3AeJQUSF5ipmxYbzUwsUkqQs9m8esF2oJTEbd7ZWrQ2mYrmcMeszQKpi1jSUf/mm2/GW9/6VrziFa/A8PDGH/3cxDJge8npRTsmL5VBmqoEqPhhS8vEoBpEcBiNmZxez44nTQbyNsbLPmbrYWd9DiFKcGrnlIhx8lAciXKqIvGB285grBJiosZx/RWPIO9auP6K7aBQup8T07XMlztX9nE5JagGER7S7TATE1L1IzBGkXPmLxYNg6Sy3dTiqmJLWn8QKQEu10aDVNMFTzFn46KtvTgz28Cp6XrHoqLZk2q5LSyp2bNm5N3se5yz577/LEZx/mgBlKjYiV/5t9vwwku34rVP3o1ISDirEDnChUQjUsamC7lH1gx9Ox8V01AhF+BSoqwLpIJrtWiMLtzau+T2mCnSZ7UlyKqDMgAM8ArLinHaRBZL2sm+//3vAwAOHjyI2267DUGQPfW/5CUvWf6VbWJjgDlKpxALtNmSF9R6GM3Z5gi5BCTw8HgFALCl6MaLXDpXqeMS5/UBQ/sShsvyAL8EKYEvHnVxcCyZavry3SqD6uGxCn7zWfsRctlaIJUasClB1Y8wq1kth1H4EUe5EWHfSB697vyPWNxiCzn8SAXWcgG0ky5xrUFaCxhNUd5i2Nmv2g+nZ+udW2xBljFaboHU7ufu9Szkm1pqpt3aCRYlKDgW9g4V8MiE0gF9/b6zeNUTdyESAs7ypZnzggsJP9wADNIGnlxLw48EpFAFDKAyHJsLJNdiWMDj2hZmkrLcCOMhklUFtQCvR00bbkaMdA1Luh2OHDmCn/mZn8Hdd98NQkh80jVaC84f49MgjyUwnbNmCiRKl14gBXNvGJGQODVTQzXgyNlqkzbj3MOFRAPQUcBMWdao0s4D9SkICdw2qR6FomdlDBFvOzYNShSDZMbCn7BnALcfm8ZYydfTahIV3T6yGUU94OjNWThvuGdOsbBBURdIUirmSWWyCQjZ+rlCSnC5NiJtM+XlOgw7h1Tb5fRMvaPmotbUYpvT5XwBaMceDeQdFJoYmPw8DJLxphrpdeMCCVA/30pFvXAhcbbUQBhx7BkqIIha7SE20X1wITFe9hFEAkLKWEfX49oLGuNfKIwOrtSIUF8Ls0jKgC2XKXZ8E13Dku6QN77xjdi7dy/GxsaQz+dx33334eabb8bVV1+Nm266qcuXuIl1DeboaYl0jtnibyspJeraZK1dy0ZKiYhLPHhWsUeXbC+CpcZyh3v1AjVXi60Zdg7gEU7MhjhRVREDH37VVZmXmEVUyiTD6bLtKjJjrNyARVVobVIgETQijqGCs6DiCFAJ80a7VI4LpPY/hBDqv7VosZkCJ+8w7OpXC/F0LcyI19u93qC5YFos2hUv/TkbrpUtiBaiQWKE4lkXjGQ+fna2sWITSOVGiPvPlHBkooqKNh2VAmvDNjyGUG6EODldgx+p6VZTIPV6FuwFGEEuFMZ8dLamWmzthglWHF0qjoSQGCs3Ylb8sYwlFUg//OEP8e53vxvDw8OgVKWfP/3pT8f73vc+vPGNb+z2NW5iPcMwSJIn+qMlFEgBVzEbvIPOxIy2P6i1PpduL4JAxqJKM0WiWmwL3OS0mPFHpxQzdGA4h6EmTx0updL9CIEpXQhcul0JfCcrASSUv4phAiglCLmIReMLhWnFVeoh/Iir79vm5zg7W8dtR6fXZFKmoY0Ucw5Fj2fHaehHJ2ttX99cIPk6t22paLfpDPc4sC0SC92BZLPqBEIIbIvg0h19+MDLr8CuAbWxnJqpr1jUi2mNBpFEqREh5MpEdKa+RpqVxwgaoUClEYELFUprDjLFnDVvBNBiYMxHZ+oBonUeOj0fTs/WcefxGYyVG/O/+FGOJd0hnHP09ioh2PDwME6fPg0A2LNnDx588MG5PnUTjzZQXSCJKBmRX0KBFHI1ZSI6aGy4lOBC4P6zJQDA5dv7IEFilmZYawBKjXDhBrLMFFVqgxrtbRWHcyExWfVRbvB4IztvpADHopBQCd71kMesl2czjPZ66PUW1702ry/7kYpL4QDatNh+9qM/wD/e/DC+du+ZRX395UJKGWuQip4NRkncGizV27MgzVNsjUh09qhaANKbzq898zxs7/fwosu3wbEofufZ+/H8S7bgL372chS9+ad4HItCCImLtxXjkf/Ts40V03eZr+tYFGOlBoJIoD/nYLoa4OxsfZ7P3sRSUQ8iVPwIM/UAQcRjs9Je7aHWLWzrS9y0S/WwxVR1I2GqGqDqb8pkgCVqkC677DLcdddd2LdvH570pCfhAx/4ABzHwcc+9jGcd9553b7GTaxnMFv5CRl/IcqWZCoXRgIRBxhTGptmSAmcnK6j3IjgWBR7hwuYrYew9SnQJGqX6tHCPYKoBRDEmgFXU+5ves6BTIbYmdlGfE1Fz4JrMWzpdXFiuo6JSoDBghO3+hxGccHWXhQWqfY0xUbFtNikaMsgGS8hY1i5WkibPvblbJQbPBa5dmoTNTNIjZBDSIm5fa47w7S/GCF4/VP34mnnD6HciOBZFNddvg07B3MAyJwxIwauReOCa/eAEpyfna2vWIvN3D85m6HqR6CEwGIEnmSYqPrYPbTperwSKDWUdcg7v3QfhnuceFBgIf5ki0F/3oZrqTy3UiPC2dkGRnrcrn6P1UDEFeNGCNquw481LIlBesc73gGhqeh3v/vdOHLkCJ7xjGfgq1/9Kj784Q939QI3sc5BGTByACjuWJYGKeQCkRQQAuBtNikuJB44o9iji7f2xo7Vlj4FmimS2XqoYkMWAmYBxIqZDtdSYt/nXDSKf/nFa/C084cAAGdLDUyUVXvNtOCMKHO87GPvUAGWLhZsi8ZF22JQ1C25qh/hjuPT+LP/vB/3nip1vvRVGEVPI80G9bg2XJvA0e99p+m0Zs2Rr4WyS4VpK1IKUB37J6SEa5vsNQJALqg+dy0Wszomy69Uj1asdRlxCQLFIPl65NwkxpvbNeJiMw+ui+BCouZzPHBWteUnKolWrj/X3egUSim26NZuVfu5raYze7dQDzkakRqCWS1PsPWMJTFIL3jBC+I/79+/Hw888ACmpqYwMDCw4SrmTXQBxndjGWP+oZCgxDhFt25SXEo8oAXacRAsIzGLYXxIIiFbIjE6gtoAs1DTERhmPJwQZfy2azAPPDyJ0zONOC7EaJ1GdYFkwi/NxuowsqRUBpPlVA043vrZuyEB/PlX7scbnra37TO1FEO75cAUSBYlsC2KwbwDW78n9VBpi5qv00y9MUqU748O/F0qTEHDqGKJiGaiLEZBCUAgM23XuZAuMPvzZgIyQnWFRNNCa9lsRlHzI3zqjtN44r5BXLq9L2ayzpV9VBsRLti66WPTDfgRh895y7PiWBS5BcSILBY7+nM4PlXHRMXH3qiARsgXzSSvNeoBRxDJDMP6WEbXVGqDg4ObxdFjHiTlqL04KNaIQKI9tcu5iM0YL9vRp1K4CY11BAXXiifBZuoL7P8zGyAsbh8ZBslgj257nJyuxRNsxjF3iy7IzpVU2KnRJzkWW1qBZMwifR431rjOfwMUM5ZuWbFVftaMp5FjUTCinMtN0ahaZ20+RxdIRl+1XAbJFM6MqiKUEsBiBBYleu1R78lCakeLEfPyWOBdboQrxiIFkYiLsu88NI5vPjCG933tAcV5STOlKVasQHssIhLt2/V5m3V1xN9gl27VnpltQAIb0sKhHnLEXOxmfbQKjmibeOxgGRqkgHNQvWO1E8oem6xhph7CogQXbOkBFxKuQ+Ki3KIUtt6AFjxiSy2AWokGqclwcLfOYjoxXcOETn0fbmqxmUkPsxg6bGEamGYYs8jmDdJMfZ2brcdTdADAuigwXQjqgSkAFVvT41lxyK4ftrclaOiCzrQP1aj1clpsiQaJEuXaTgmFRQkoUQu6Wtznf29szTrVgggDOcUg1QKOUj1E1Y+6HuXiRzy+L2ZTona1EalCOIgEGqFYkxiZRyOEULE8zYWKZ7eaRHYD5kB1Woc4L9f3ay1Q9SNYeg3jcuMVeN3GZoG0ie7BhCW2CXudD0EkQCkAibZC2duOKVHyhVt74VoMoRDwUowPpYh1QEG0wA1Gh+029Ou9JgZpe58HixI0QoFjU2qU3RQyRvM0phkkwzrY1tIkyObrptuDnk1jZibgEkG0hgySZoMcpsJ4XYuhN6cKpEaHwqc9g7T0a0i32BghWtNDdNGmFnUhF8YgDeQdnD/Sg+laACkTu4jJaoAjE1WcmGpvXbBURDxp6/Wk2jsz9RACqgUXcmUQutna6A6MtULzRJlnU3Rxwj/GriHNIM3U4TAaWwpsJJQbKs4JBMtqhz9asFkgbaJ7YDYwfGBJWUBBJNWmR9B2s71Tp65fqk0auZCZsEmL0niTW1SLxMqhHpoR/ezjYDGKndoj5+S0GsV29Zh2j970p2qB0jroU6q7VAYpb/LYUgWSxeJJtogL1FKjtwthkEIucGSi2pXRdXNdrmaQAKBfMy+NULU/mzeEtC0AoJim5bAj5veaaJBUS9OzGSg12q9WLVQ7MEqwtc9DzmaYrPlxERdGAsenapjqskmeYpDUn9MaqbFyQzNIyiMpEnLFJukea/Ajjr//9mF87d6zmY97NluRIYe9ukA6V/ZBCUHN52sWC7QUBJFAyAUemaji/V97IJY0PJaxWSBtortwe5bUYnvoXAlv+8LduO3odFvjPCOG3qEdnKVErDkC1IZnJtoWVyB5aOgNyW0TUbFLt9kMbEYRCAFAIqcLtPGyj3CZGiQjFE5Pi3k2i3UAIZeZqZiFLLz1kGO2FizbiHC2FmLaZM1ptgZIWC8/5Kg0opaWQj0OtzUMUnut0kIRpRgkQlUrzbVI3C5T0jeyIAYJUCP3BVfZNhgNmJBAn2cv3EtrATDeXmZTrqYKybGyHwu4/UhFnYSbR/eu4J5TJdxzarbl4ytVIG3r8+DZyln/1EwdPucbairRjzgmqz7+5Ev34eCZEr5yz9nHfLt3s0DaxJpDCIkP/fchnC35+Nh3H2m7qFTiDCVVlBAiW3QEZrx+UQWB5cB0tZw26bA9TVMoFiVwLQohSdxm+85D4/jWg2Px11jKsMKA0SClWCLXprGAl0uZYZfCBfyMnKvNdrm5badmanGB6lqspUBqRAKlRthSmPq6QDKvC5Yr0uZJgUSJKpIcpu4HSgiYLo4WyuCpaUUHva6NAV2gztQDMEq6urFF2gXeXFc51fI5V2pASi0oFhKcbzJI3UInBsSz2Yq0qB3GcOk2xXDfcWIaYSQ3lEu6Hwn8131j8d8J5GNeqL1ZIG1izRHpIE+DoA0DZNo3ecdCLYjgWgz5ppBSk63U7vM7glqoc/V5zSJtoHWyjVLFInkWjQXb/37ridTrl/ZImUmqqWoixLYZhdACXi5kbBIJKE1SGrO1sMW3JBISYbS8YFspVTRGKcUgmSFF02ZshByNNsn0Df130z7s2hSbbq/ZqSw+Ssxk2+JanIM9LnYP55OomloY5+t1qz3SCDne9eWD+PVP3o5//cFRlFMM0ud/cgp3nphGqN8brqfZNrE0zNZDPDxWRsgF7j/T3kcsv0IMksUIrtqtCqRbj05DYmOFEQdRklSgQNYkFHs9YbNA2sSaQ+WsJX9vJ7I2m0rBtTBTC7G1L9eSd2YYpUW12JiDhimQmoqhkIuWOAJKKGxGkXMYBntaIy2WWiAZBiONiAtleyAkpJSopTbWiCd6Hi4kjkxUcGI6Kyzmul2znI5NwFXhY6brPDtpsZkCtREqr5laEKHUCOPrMj5IZkos4GJZJ1LDrBi9UX/eiVugaqiNxJnJC0XRs7GjPxdPJc7UQ1AKnQnYnc3t4JkSDo1VMFsP8bmfnMTB09mN+xv3nUMohC7KBMINpFuZC1xInJmtr3ibphZEEEIVlvefKeH4VA2NkOOBM+0ZpJxLV6RAYpTgqt0DAIAjE1WU6xx+uHEKpFI9xNGJavz3IOLd7DRvSGwWSJtYc4Q8285ol8dmdBsFhwEkcT9Ow2FLaLExKy6QLEoxUfFxdraBciPEeKXRsklSogqDHs/CYJuixmvDQi0EA4VWZ99IF0bGPDNtARDyhP6WUqIeCMw2+T+FXCDky2OQ/EggFCIWXDssEWmbAkkIiaJno+JHeGSsEuuVzObQn0+m2JbDyhgNkkWVSeT5Iz1x+45R5YfUn7NjbdhiYHytxst+bGzZLQZpvOxn/m5+DtOi9UP1e+K6DfdoYZDqIce52UZLJl83UW6EOHi6hOlagJArM1IuVXF+dLLa9nNylrUiBZLDKAbzbhziPF5poOJvnEy2nxyfzhxUfb789vxGx2aBtIk1x2SqrQSoVkq6MGmEPPbAcSxlDtmOqUkYpEU81MxBQ6/f1UigmLOwcyCnxu0lWnROhAAFx0LeZhhsU9QslUHybKvFvC7kaiz+M7edwG996g7ccXwm/jfDLgFKWBzJ1piKiAtEvL1Z3kLhhwJhJOLYENeisc9Qzk4KH4sRRFyiEqhpLS5k3OocyKtCIIzEwmNg2iBKTbE1d9EsSrBjIIeLtxWX5HFzYIuavDw6WQUjRE2TdalAMl5ZzffGzz1hJwDFrJ2aruGjNz2M45P1FS0oVgoN7aaehtHALed9PDFVxdlZNelX8VtNPI9MVDFVDSABxcJJCUhgqhLGlg8vvHRr5nPyDlvSpOl8oJSg4DFs1cG1E5UA5Ub3PbVWCmZS2KxDYbQ8xvfRgM0CaRNrjqMT2dZQxY8yp3fjY0KgNkeH0ZZ2GJCIrBejQZLUTjFIBFv7ctjW74HpSI1m4bZFCTyHwbE7tNjspT9SRtNjEHK12L/zi/eh6nPccOfp5N+ExOGximppaTFlPRBxWwtIToDLOQUGmoUyX9ezkym9uMUWCViUIogE6j6PJ7IMBvWJWgLLajmY1lM7gS0hBHuGCkuOdrh4exGAckH2I65YzC6Jpc/OqgLp6r2DmQk7o2ELIoG/vvEh3Hp0Gn/xjQfigYSNgpAL3Hd6NqMjBFSbMoiW/j5KKXGu5GOq6uORiSpuOzKF0zP15OsLiUoj0o7z6vtwzayWNXNTcCz81rP3x7mKAJBzV0aDBKiBBBOcPVZuoBpEOHi6tGIZf93EoTEV5XSJfhaCzQJps0DaxNrj+FSWCleBs8mTacwTc44KGHXaFC5AikFaRIvNF4kZo2cx5GyGvGPBs1UR1mwe6dgMNlNF2lCbFttS2jsGvU2bezQHxR1xgXrI9elabSa1IEIp1WYzvkPLWeTqQQSb0ngizbVaNUhBpLRapUYYb1ZpS4KBfMK0LSdKg4vODNJysaXXi6/z2FQdEugKgySExJhusQ3m7VjrBCSBqQEXOD6ZHBIa2o9mI+DukzM4PlXDdDXEI+PVTIHOhTK/NLYFi20d+lr7VmpEGC/7qAYcZ2Yb8dcJuWKnhFD3eCgUqyqhBgsAtWYAyn7DoGBbK5Zl6NkMW/qSGCKHMZycqcdRResVUkocGVfr8MU6CzBYZnv+0YDNAmkTaw6TZ2ZQrmcZpBmtack7DAEXLaP3BqZoWszkSCP12h5PFUiORVVivUVbCh6XUTj6v2KutUBaznLSzCBFQnb8eiFXgl4T8CuhnG/HUnoXI4pejpamFnC4Nk3y6mwWsyBm8/EjDotRvfmrlp7xRLIZgauLSgCZSbzFIkyN+S8kTmQxsBjBbh0V8YefvxtnZxtd0SA1Io5pHRFTzNnY1pcUaARs8AAAdt5JREFUSEZXF0YidoEHgChqnQhcjxBCFcKVhmp91YOsKFlINUVp3KzvWySTUvUj+KFiRWtBhOEeB+VGFGvtjKjd3ONGxC+B+KBQcC2EXMBJDVvkHLZiuaGezbC9T3m1nZqpoy9nw2EUp2ZqLVOm6wlnZhuYqYcgAC7Q7eZwU4O0WSBtYu0xXcuersp+lDm9z+p/L7gWIi7R47Zqf4CkQFrMImz0HoxIFFw7dtMe6rExkLeRc7KPSM6hsBiNtVDPvnAkw5AYgeZSUGyayovmOMFF2t+IEBIzSMWcjcmKj3JDjfzfdmQaD5wtLWuRqwdqQq2earElDJJ2n+YSf33jg9ojSZl4GgbJGEuaQjPtBr5YpH2Qur2/WZTgvOFC/Pdv3n+uKyxOyCXKOnutL2fHTvBA4hgfcBGbnJq/myJ/thZmfJPWE4RUxc9MPUhZUiT3mtKhcURcotyIMFMLMiaZ86EWqFanGjYQyDtWXJQB6n7gQt0P5lpM0Kppy3sWxfHpWsZ5vsdbOss7HzybYo+erDRFdl/OxnQtzMQIrTfcqw01t/cn08FBJB7zU2xLa9hvYhNdxFSTSLvih5ith3Atil7Pjk+MeT3B1knnY8SFixnPNkyHwwh63ORkuWuwACklcqncLIsS2EyxIYwQWIzi155xPnIOw9HJKg6fq2D3YKHt91kImnURIRcdT50hl4g4dP6YYpDyDsN4JcSJqRr68w7+4hsPAAB+7gm7On7PMDXGX66HOH+0N/Nv950p4at3n8HD40qfMFhw4qiMtA/Vtx8cxzMPjGDHQE632HQ0CaMgRBVWpUa0rHyqTIttyV+lPQgheOmV2/H/7jgFQLV5uzFNJlJZYEXPxnMu2oJT03XsH+1Bj96IQi4zLZ96yDFWbsCxKM6W6vBs1mJpsR5g2qnT1RBbih5KjbClQAp1gVOvc5QaISp+FLvGz4fZegDHUqyxpU1gLUrie8iIsqk+JPgRBwGBgIzXDNdm6HGsDBPc6YDVDbgWw57hAhhVQv/Jio/RogfOJaZrfuwJtt5gTDX3DOXjezHgAo/1vNpNBmkTa47pavaEXPE5ZmoBDo9VIITEjF7scjaDZ9M4N6sZiUh74ecew4y4tN3EGsmwOo5FYVP1n8UoXIsi5AKMqpHzK3b1LUv8ea5J5CrRWbcRcbM5qNcJqU7Og3kXZ0sNHNaCSwBzntonKj6OTlThhwKVJnYn5ALv/vJB3HZsOj61j/Qmm1vzVFbFj+JriQtP7bxt7A9qy9AgmRabRZfmVj4ftvZ7+K1nnQ9A6d4aXWhzcT19BagWm2NR/N7zLsA1+wYz93FaszVTDXB2toETk7W2BpzrBVKqAnBHfy5ue6freSElpFD3xUw9hJSkhS3uBC4kynUO16IY7U1G520rCYGNuIwLZZVlJ+L/G9bNsyl6PCtjv9HXYf3oFkZ63Xgw4ZxueecchrGyv26z2UxrfqTHRSNKGLrOTf7HBjYLpE2sOWbqatE0i8qMpqMnygEmq0GsJ3Ashv6cE7d2mmF0BouJajCiUst22hY3xmdHfX0KxyYZBiWdmyWx8JiLdmjn7eR3KpCE0SARdcqTqqDzbIaQS4yliq25WjSNgMfj0/WmUe2wjWGn8e4B0FKkKL8fmWmDGFF3LjaVXMaY/woySIAqwM1GX2qEXTH5M5NWAFBMbcxCykyBlLa6IIQoXY8QOgh5fY79cy2ONve8iqZI7pnP334StxydUtONAcdQwcG5ko9TqUm0TqiHHI0ogmcz2IzGGi3XomiEXOfWifj7h1zg+HQNf/T/7sEf33Bv/H56FkXeYRkLjU4HrG6h17VjZ3Zz6OnVBreTVX+uT10zGK+u/rwdD3UE2mbksYw1LZBuvvlmXH/99di+fTsIIbjhhhvmfP0XvvAFPO95z8PIyAiKxSKe8pSn4Bvf+MbqXOwmVgyGDt85oMSNtYCjVFfj6zO1ACWt4cjZtG0RYWDrXK7FtEbMRm5bNKbx0+hPUeI2y4q2C66V0UoRLCmnN8bvP/9CXLajiD976aXxxzpt0hFXpouEIB7zN99bSomJ1NRMeQ4GqdRQeq96yOM8MINmtsexKPrbCNMNxis+AKI1SOpzHVsZS3qabVqMBqUZmbDaFaiQLEbRq4N1FYPU6u2zWPgRj4Xp6WIbyGaCpYN+K36EYs5GI1Q+Vus1rkJICQ6Z3HcgcVTKjx+ZxIe/dRifvuU4qr4qZoo5GzalOD4xv2C5FkTxdGQaDqPwI2VcGkZCfW+tP/rLrz+IyWqAmXqIk1OqCMu7FighGY1Xzwq3K3MOw1Y9rWgOKhajYITgkfEqDp6eXXfeSGa9yNksNq01U4iPZaxpgVStVnHllVfiIx/5yIJef/PNN+N5z3sevvrVr+L222/Hs5/9bFx//fW44447VvhKN7FSEELG4kXjZsy5wM6BPDyLYbYexhqO5pNgM8xiahyoF4JYTMzaxw8UU5uaxUimQGq2GkgXKUvB3qEC3njtAVy0tRhPinUai5+qhXjorGqj/dsPj+Efv/Nw3IqxKc2cVDsVJYbp4UJNnfEmU78jE1n7hcF8oj9qh5sPjePuEzPa9VuLunV4r2GQaiHPsFuLQRS32MiKtNgcRmOtjx8JVJqGBZaCmVT7OK0jIlCtQpMfmMZ0LYRFlaN2JJSX0HrbUAE1NSlFmjVVkUGNSOBsKWGJTs3UYlNR16LgmN+81A8FJNT9ecuRSbz1c3fhliOTsBhFpH25Do9X8L6v3o83f+4unJlp4OHx5H41usYe10KvlzVhbeeh1k04Fo3NIs+lpkoHCw6mKooVX5SZ7SpgoqKu07VZHN8DIGPb8FjEmoq0r7vuOlx33XULfv2HPvShzN/f+9734otf/CK+/OUv46qrrury1W1iNVALeFykjOpT12wjgq0nxRohz2iQ5tqgTcEScbngYsUUD45F276+v+nUb6eKIqNZknqajNDWttNiYMSRkZCw9Um5VO/cHnv/1x/A1j4P//bDo5ioBPjuoXE875KtcCya8V1p1hYZ+JFAEHEdkqoCWtMFwaGUjglQ71Gzf8w//sIT8PffPoR7T5VQ9Tk+ctPDeMaB4dT7qibb4gLJj3BksoqRXnfR71XaSXsl4DCKvLZ5CCKBqYqPiEssw9oqNjbsz9uZ61b3jPqezW3HmVoARokK9xUSnCqGxGIr83MvFWZq7cxsHT85Pg3XYrhkWx/CSGAqdf+NlX1ctFWZD1JCwLkqyud6X/2I4+aHJvGpW47HH/uzr9yPd7/kUmzvz2G87OND/30IR7R/1B0npjOfb9aMHs/CSK+LnYO5+N9WaMI/g10DqshI6wotpgqn2XqAgIu2Xm5rAaHF5ABQzFmx1AFQLfjHMtbHb2iJEEKgXC5jcHBwztf5vo9SqZT5bxPrA4bpIATxqWtGCzkdi8LnSZGQd6y2LsoGdmqKbaHns3rTOHozmtsi6TacY1EVsaGLCqmjDZYKSpW+SYXkqu8zW5+7JXXbsam4BfPNB8bi60pPBnaaHPMjrv2UAMEVI2CKECFkSxp6pAXpaVyzdwCvaJqSm66FcYvN0+9rXjMI07UQnMslaRvSLbaVgDEgNb/z6XqY0ZgtBYf19N+ugTwmKz7qgSpIKVHi45zTWiVMVgJYlMaMXjOzt17ApWK2/vTL9+GfvnsEf//twzhXaiDkAtOpwt6zWHw/U6pYp/msJ4JIZoojg6/dexZFz8ZE2cexlLnmmdksK2nWkB7Hgs0oXv74Xbh6zwCuv3Lbit0/aewZUgXSfadLePBsEpprUYKQy3UlvJ+tBzGLP1hwUHCtmI3vxqDCRsaGLpD+6q/+CpVKBa94xSvmfN373vc+9PX1xf/t2tV57HkTqwsjDux1rZitMYubzSjCKGnBFTxrQQySCnJdYIstTBikdgWSmzrmSj01Fn8/pibaTOtHebAsj0GyiCmQ1NeZi0ECFKtmFtv7TpdwekaNhaep8aof6UDb7GkwiEQS0yCFzsBTP0u5EbWEfUZCtmwulBAMFdzMx2pBlIi0tW+SKQRsRiCAJbWM0mG1KwHlbUVjMfVMNVyU4L8dTNtnW58HSgkqQYhzpQYoAzyHtR04OFNq6MBcpQMRQuLkdK3FDmOtcdODY/i7bx/OGL1OVRU7kr5vp6oB7joxg2OTVcUgYf4g4E5t2FuPTil/pYhnCv/TM9nXmxZWQR+qHIviPT9zGV546dYVyWFrxr7hnvjP/98N98RrmmFN11OBdHq2AQl1SB0uuDGLCszdYpuqBuvq51gJbNgC6VOf+hTe9a534TOf+QxGR0fnfO3b3/52zM7Oxv+dOHFila5yE/PBLPq9nh2P8tbDJFOMkIQBKThszs3RFBV8UQySdoi26Lzsj1pEkhc5TG2oARc4O9tApJ2tlwpGVZtOtXXUoznfWLRrscwi9a0Hx0AJyZz86gHHVDXA/WdKGeG1yayTMK7Eyo347GwDB8+U4o1vrz4Nv+qaXS1CdkoIXJtmIjSMu7K6PgpCE88kPxSAXBqDZASjK9VqYpTAc2hs7VBqhHN6US0Ex3SRuaM/h7zDcNmOPjDjo0VJbEyaxpnZui6QBAQUwzdVDdadYeRbPns37j2VZRmrWlxdTbV17zwxg3d88V789qfvUEMFYn5399uOZVtmvZ6FvUN5RELi9uPTsJt0RM05cAbpQ5XRrrWZxeg6tvZ5+B9P3g1AtbK/dFeSoyjl+iqQzujisujZKOZsWIzGEUu1pgJpqhrEB63jk9W48Hu0YkMWSP/+7/+OX/mVX8FnPvMZPPe5z5339a7rolgsZv5bS0RcYLa2vha7tYIRB/Z6FnpzdlzkGA3BYN6JN4Ye15qTHjebdyQWniEUT1tZC/PWSX97SgkKLkPVVyPZhBAsZ/6cUQJGlbeSKQLmK5AsRjLF4H/cegK3Hp2KJwMBNTIdcompahAzdoBi6j7xw2N48ExJt0tUe3K6FmC2Fsa/m9977gX4v7/8JFy6o6/l9E2o+u/PXnJpXLzWAh5Pznm2brHFsSRqdHgp/ip8hVtsAJCzrXjUf7Ye4tR0HSen24+llxrzm0maNtC2Pg+uRTFccBWrQYkqyFIb/W4tjp2phWoTIoqPNCL65UwArhbqgYoFSVsT3HJ0Kv7z8cla7Ho9Fw6eaZVBHNARGKdn6phuYtPOzrYvkNLWChZV9+JqMEiORXHtRaP4wxdcBAD46r1n4nvFomRZmYTdxplZdX/3ehYKrrofjRlvswbp9EwdM/UAERdoRGJRweAbERuuQPr0pz+NN7zhDfj0pz+NF7/4xWt9OUvCsakajjS1LwA1NXTPyZlFfS0pJR4Zr7S0TzYK0tMmaf3HjPExsVksYi3okd1OsJtE2guBed9cxuZnkGSrz1HRs1APOXo9CwTL80GyKAGD0ig42rJgdp4WW/okaha393zlIE5MJfqMuvaNaYQq7NO0tz528yP43uEJ/PV/H8J9p0oIIjVWrgwfk9bmtr6cnuaTLQJXSggogOFeFxfpkMv0Zu4ZkbZuVZrR+aUMZYWxSHvllq2CY8WZeOVGhNMzdYyV1eYbRAJ3npjBRMWPwz1PdCieAKBUD2I/ni19noppoWoS0iLKViLdwh3pcePi7GypjvvPzOL9X3sARyaraIQiYya5HpBmc82UWC2IUA87p8DffXJWMZZz3ABcSBxP3b+A0gIalvJsqYHpWrO5bPuCI60hZFSxdnPpGLsFR3s3PW5XH3o9C1Wf4wGtRbIZbSl25QKKxpWC0W/15ex4wi9mkFKFnJRqelBI6OlKsahg8I2INS2QKpUK7rzzTtx5550AgCNHjuDOO+/E8eNKnPf2t78dr3vd6+LXf+pTn8LrXvc6fPCDH8STnvQknD17FmfPnsXs7OxaXH5HSCkxXvY7UvONkKvpoaZ/LzfCRY9/NkKBqWoQn/Y3GkyBVHAteBbLCGQBfXrWNG/vPAxSbBS5mKiRNin1c6H5NTnHgmPpTY/SZRkYEkJgWaoFYFyq5yuQ0gvYX/zsFQAQL2AG9SDSXjRqETb/lG6PfPDGh/C/bn4YpUaIRsjj38tA3kY95FpTQlo0YJQkxoZms6+HPC6uXMMg6Y3f5DulGb5GyBdE1YepMf+VwmjRxXkjBf39BAbyDuohRz3gODxWxtnZOuqBYuTmC/M0LUrlAM/izWeox0HOZWCUIJdqsfXl7diI8/RMAx/678M4OlnDP3/vCBoRhx+JrsSfdAPpicc/eMGFuGS7YuWrPkcYCdQ7+HfdpQ+AzY9oxqCUc5ycVgXSq6/ZheEeB7//vAtjG5BzpcaCHbkz1gpE3Ttz6Ri7BZsRJbSXwBN2DwAAbtdtQ89WrHP62T0xVcc9p1Z/H4u4iIvRoR4nZq4Ng5RulUZChQ8Ls46k1uZHK9a0QLrttttw1VVXxSP6b37zm3HVVVfhne98JwDgzJkzcbEEAB/72McQRRF+67d+C9u2bYv/e9Ob3rQm198JFT/Csclq3GbgQjkbm0Ug4hIBV14gjZDHdHE6nFToG3Ah36viR+tmZHSxMCfsgqPoXWNE+N6v3o+T07UMM9bjzV0gxVNsC2SQpqpBPA7fSaTdDNL0NnsWg6tFja69/AgMR0eYmAVqvoBLwypYlGDPUAFX7epv+5og4nEsiZQykxFm8OC5CsqNCAEXccG9rS8HXwtiCdBy+qZEmTbO1IP43xphikGyGQhR+jFATc41M0iHzlUyE0mdsNJj/oC63m06jX22HqLgWmgEAofGyjgxXUfIFYtmMuzsOdismZpJlGcAkjH9Hf05XKoLikwERs7GlqIqAt7/9Qfij5fqITyLqe+5TgqkdIvoSfuG4oK+FnD8/bcP47/vP9f28+48MYPxsp9hkE7N1DMTk6emG2iEamLyFVfvwr/84hOxf7QnNl88V/IXVCARAL2pYFpKVHG0CvWRdrVX1hlP2KMKpJsPjeNsqQHPpmhEIvNs18IIs/VgWVmFS0HABY5qv7NdA/n42TLF/Gw9xOmZGk5MVdXBXqgpzEhIRFK2ZTWnqsGjxj9pTXfVZz3rWXqxzP738Y9/HADw8Y9/HDfddFP8+ptuumnO168X1AOO2UYYb+4TFR+nZ+rxzWSEn0IqXYgRcqaZj1MzdZyYnn/TqDTUSPVyEtvXEqY47PHUCTsdRPv33z6MitEIMZrZTNrBxBFwsbAMoUbMjGimYwFPQ/Pa6jkUva6lGQK6KPaqHaSUcK3kZ52vQDInPFMcbu/PtbymFij2yKIU0MG2ARexkDqNih8hjESczbStzwNRIRJqGq3pd0CI2niKXqIf8yMRnyyNW7TRID1wtoypWtByvy6kvbAaDBKAOCZiphbGYukTUzX06yw1IRAXK2wOwbjxwCm4FgASXzchJP59pd/P/pyNPUOtYcc5m2FL0UPEZdv4l7WAKYAZIbAZiQuksXIDP3h4suX1V+8ZwON39yMSEl++6zS4/l3WgghHJqoYr/gxo/KgDk7d0Z+Ln2kAcYttsuLHWrrmPEDTogRUy91JabziFttqVEhQ937EBa7eO4j+vI2xso9f/8Rt+PQtx8EIyZi5WpSgVA9btFUrjSASOKYZpD2D+bjgN+tPJYhwbFKxW6dnGrG7NhcSXNsVpJ/dRsjxwJkS7jwxs24jchaDjUk7rHNU/QjleoSKrzZfQtSGFOnxc+P0LIQ+bQc6WyjFIJUbIap+hKofdazGpZSYqgU62V193noNQ+wEcxLscS1YjGDfcLJB3He6hFuOqMU277CWMNlmmBZbKBY2JaWmvRbeYmuXteZaavMa7XXhWmxZY/6A2jwdi8Wtl/mEuWZTMezE9n6v5TVGpG0zqhkkdd+18zihUPerCbvd3p+Dbakxac+mLb49jKjJoB7PijVgDa13AoCcDqst6I2rEQp89KZHWsrXhRT4Kz3FZjCiWzmmvbm1L4cd/XnkHUuLpoXWX3S+Zj/icUJ6QX+e1eb+9VLv52DBwQsu2YqLtZbLwLGUyzuXEj5fH5uOKa49R7GmhnE4OpE91P3aM/fh4794Dd7505fg5Y/fCUAlx5uDxExNrXP1gOP0TAPnSg08pLU6e1KOzlxIFHNKpyiRpM9v68ve78OpKCKHZZ9pQgDGVkekDag1i0uJHtfCX/3cldjRn4OQysvJsxlma1HcJVDtU+VJtJo4PVNHuRGBEmDnUC5+tsx0ZbXBUfFDMEJRDzk4V622SCiLkFAoSwez70RCohHxOCpmo2OzQFoBTNUCUKIefiklGCEIuLqpAi5i7YLQSd8hF6j5HKFIwgGrAUcjUr345pR3g2rAUa6r1odJsb7zxDQeOlveEIWSEDI2Quz1lNPwT1++DS+5cjuu2NkHAPjv+5X5YW4BBVLSYluYeFBCxqyEqzfyubCjP9f2NXuGCujPO9g/2pNZoJcCStRp3Gw4c+WoAUkBZX520x5S16U2mCASaIQRbKZy0oSUHVtaOdvCSI+H+06rlseB0R4V0msxFLSQvvl6PX29sblcwGPzSs9RwuRCyu/n8FgFlUYUC8mNF9N8iKfYVniDM0yFeTZZinUgRBmDBlwg4J2z2kKetDAL+j1oV9ilGaSBgo28x/DKa7I+bQljJhetUVwpVFIifCBhcpq9s/pyts7OI3HhWQt4XOzWAw4C9fwdHivj7pOzsbnm1lTxc7bUwMnpOkZ6XP19jG4m68E1kgpTdqwsW0SJEmivVoFkMRoz2VuKHj7wcqURnKmHgJQIOI9bpn7E44P0auL+s6bQzKFgWy3MZj2MQGBCsFWAcMQFakGkWqVC4oEzZTx4toSQK42cEIj/2+jYLJC6DJNc3evZqOmNQgIIIiPs1OJOqGq7FvB4cijS6dghF/AjAT9QH08zSCemarEtfKkeohFx5BwLIReYrYeYKAc4Pl1bV2OknRAKEW8iPa4Fm1KMFF1cf8V2PH3/MIAkDyxnMzhtcqvSMA93uMCATymTBcloZdrh42+4Bk85bwi/9LS9c8YUFFxr2RqkHQM57BjIxYXIfAySEcOa4mR7qkA6MKrM6kzLK71gPzJeQTvM1AOcmq6j4kfwbIrt/R7yjpUx8kyDUoK+nI2cwxIdSsjj06PRHtlNhVXFjzCpp8GEWNjQv9lUzYTfSmEw78Q6lWajTkoQOyGHorPWTUgZtz9z2r+rXWsw/aHBggNGSCzUNkh0HiRuTa01TIGUd5g6nOnfTfN0WX/Ojgtb0/7yIxEzn+VGBIdRDBUcbOvLwWE0ZpWLno1SPYyfgZ2DeZw/kjDMeYfhkm2JZYvDaGZqzWEsUyAxQmCx+f3OugX1TCbfrNez4sJjphbG65SUKm/PYXTVc/cOayZu50AOLJVHaZ5lh1GM9LqwGcGnfnwCv/cfd+GhcxW8+T/uwp986T7cf6aM8UoDx6dq2kVdEQFigYee9Y7NAqnLMB4fNqPxTSL0A2DGIiMuIQXg640k4ALVIEIUSUC3P6JIIBQCfigyWU2nZ+s4MlHFRMXHWKkBW6dEB5HATC0AIYqZWa4D8GogTAkV+/I2GCNwmFpwm7U0C2GQrNgocmFW/oZ1A5JIjHa4Ymc/3vC0vRgsOCt++hzUG4VZoOZjDIzWx2gHjMgXAM4fUQVSGAk0AgFGFIMkJTp6+0xVA/zwEdXWvGhrEUIqfdieoXycldeMA1t6MVhwYtarHiQn47y2Hrh8Rx8G8mrzMuLVUDt3iwWO/Zuv6dgr+zuwLRqHFDdv+JQQREJv8LJza9AEAQMqIkcVSK33b1pj1uOqE3xzmGqpEWoXd4JgnbTY0iL8RsjjFmoz+vI2Ql0gmRYloAoEw0QYDzLjl1XSrHLeZaj4ISarPmyLYLjHwauftAtP3z+MwYKDt193Ebb3Jfd7X87O2CY0D17kHIahgtO21bkSsCkFBYnvkTSLNlkNwIWEH/F4ItCxaDxpCgAnp2txlt9KwUywbSl6mSLeFHIhF6BaM/f/7jiFSEh8/AdH8ZPjMwDUZN6eoQLyjoWTU2rCkxCibAs2C6RNNMMs9kzfJGZD4kKgHkZxO0FIiUaoiiApgTBScQ8C+uNcZTCFPHGVDrn6+Ewt1H4sAfpyNoj+nIlygLxjQWJxo+6riUaYjPBO14J4MejL6U2EKbPFNBMC6KDaeYoT48Wi0uTnZ9DSjrYqEqP96ygx01qrMwEDLDxx3AwCUEpwVkdU/MNrHo8Pv+oqDOZVu2+qFuCPv3Qv3vK5uzBVCSAhcarDwvvNB8bwaZ2B9dTzhyCl2tj6807HTRBQm1G6XeTrot5EaXg2wwd//koAasqQC4ko0lEaC1xIzc/aLBTvNizNigHAn3/1YMzYAuo+UNpBoZ/rDgWSTBcRynHdbtNiSxdIjFIUtG6l+Wvde2oWFOvHgdkUMa5FUWlE6PXa3xtFz4EQalr31EwtLpina6EOS86GtroWjY1hGSHoyztglMRMxva+PH7l6UrXdMGWXuRS92QxZyFnZQukNIPkNSXVrzRsi8KxCSbKfswKGXbQDEEEUZK351hJ/h6g7nd/hafBjI/XaK8LxyIxA25sOaqprMr450oV+kGkCqi+nI1SI1QdAYn4oL7RsVkgdRlCAgJShTIiSbyWUlHlnAt8//AkTkzVtOhNggCo+CHOzfrgQqhThVSivZBLhEIi0mPFUaQ0EUVXGad9+JuH8Mb/uBNTNR8+5zHzsF4ZpPGyj7OzDZQaYdw+cy2qT9lqI4GUGOpx4oIHUHT6fNMnhmHiQqLqK5HgQ+fKiLiisduN0MYttjk0SJSqoo1i9fQL7UJMgdYw3EbKxynnMJQaEXYN5rFvuADXMXlKKvrh1Ewd//S9RyBla7inwXceGocE8KwLRvC8i7e0nVxrB5sRFHOJwaK5+3pS2iPzM5lTciCMNxMWxCAZUXl+jkKtGyAkKZAmKgH+9/eOpP5N3TNGoN2puEv7dyn9Fmvbfk1P+jBK4NoMUqKlnflHN9yLO07MIFgnU2ymNW5bSrw7VMhq7y7c0osn7htUBqpErX0WpXGbbaYWxJYS6eecEBI/p7ZFtHkhVTo4RpF3GEIhQQgBFzJzf/V6djwtCahnYjVMITuhx7Vw8bYiXP1cAohZ2LFyAxREdQv08+AwGnsMAeo+W0kWRggZx4wMFxzk7OS9NPrFW45M4cPfPBQXdAAyMgPDklKiHP39SFmKAGSTQdpEK4TOmaKE6EgFXTRJiUYg8I2D5/CJHx3Dn33l/tg0r9ez8J93nca7/vMgPvGj42iEQlXg0NMCXCTOpVxisOAg5zBMVwPcfGgC5UaEg6fKSYaXXL8FkmNRVPwIxydruFcLgXs9SzsLE33qo5AyK9LMLaJAUpMUAhU9BRhyidl6iMNjlYzRXrrF5jq0o4Ec1cwRoVgVkzkA6M+36n0AFZfwO9fuj/8et9gsZTdQDZL4i3aFzemZBoJIZFiRdnjOxVuUo7dNOhZrabgWw+5BpQ8xhW+vZ8VFE4DM5mXYUCUg54DMmgU2Qp7R3kVcxKdpb4Hs2nKQfn++f3gCExUfX7/3LKaryqKgHkaYTU3vGBhtjQoHNkJmmhGpp/GWF1yIHpfhpVduh0VVrp2ExLtfehmepnV4Bp//ycl1MzodB0g7Frb359CfzxZI7/2Zy/ErT98Hi1JIqVpJRc+OGcWZeojZeggJ2VI4Js75DP15G55l6UJLiYUNMxFxGbdCAcVCe00F0mrkrs2F0V4PuwZyqPiqTbolxSDZjKDciGJhs2KQkrU7jLrvrm3csAHlZTWhrQYGUy7uALBft+cnqwFuvP8cfuOTt8f/1kjdg2mNJAHw+5+5C2//f/fi2FRtQwwKzYfNAqnLEELis7eewP/+3iOQQmmNhJAQALgU+PEjSS7RbD3E333rEO47XcINd6owwxsPnkMkhB4XV+xTJM3UjICEiFmMW48lX0tNwCl2idL1o1VohhKvRig3onjSrMe1tIM00QGwKtE+PbJeWECBZETcqn2j9A2hPoX5eiNOO0ynW2xzsSQ0Zo+W/GMvGgP59tNwjBL8wpP34OWP3wEgYZBsSjCo9RVnSg3UA46+lDeRQSQEGhGPDTo74aKtvfAjrrypFmhCaqa/jEB+33Aho/dIv8dhpHRytx+bwhs+fis+e/uJmEUSQuKhc+XYHwwAjoxXY7p/pVtsAHD9ldvjP0sAv/yvt+IjNx3Gmz97Fw6PVfBnX7kff/rl+2I7BEAVfYfHKqj4qpVe0xt9zmGZjTuNi7YW8YlffhKedeFo3KZ0LIqdAzm87YUXZUTHPa4VhwqvNQzLk3Mozh/pwVBqetOzqRrH160WRim4VMV2PuXvVQsiEElwYqoWP4eG/QWAXtdBzmboy1vocdX7YFrwgDoI9eezDFI6/NdtarGtFYZ7XHg2gx+JWIN0rtRQjG89xOmZOv75e4/gkfGqNmFU70UoRNd/1zO1EA+eLUMIiSMTVUipfl9Fj2V85s7XAx4G6etIm/c+eK6Mbz84Ft+XRydrqPgRPnTjQ/FQxUbGZoHUZZwr+fjGwXP4xn3ncHK6Di4F3vnFe/G1u8+AS5lxgP3Ej47i3lMlvP/rD8SLP6A2bSNatCkD1z5HhnEyuOVIUiCVG1EsEGeEdPROqgccxxfgWrxSMILEiaofL4pFz443YZupSZOISzzlvCEQAFfs6MOT9g3PS5cbEazQ36Oh/X8MU9RcIJn+PwDknc6PgnGLXs3FtlOBZGkfFyOmND+OzSj68zYOjPRiIO+goafWtjVpuSIu0QiSKJHtfe2F157NEERCadwW2KZoNvLcN1zICJNdK5kUrEccQgr89Y0PAQC+cMep+N6eqKo27HRNMTRSSszUw4RBsld+2fr5J+zEO158MZ578SiA5H3mQuLh8UrMkn3v0ET8OWaTMP8ZNinvsEwbqRnpySHPZnAsFheZ6aiZqWoAntpA1xJGJ5S3LdgWaTK81PcuUUVdwbG0jxaL2ciKH+HEdA3/3w334jc/9RN87LuPAFCMhLkP+vMWXIth73ABo3r4wJidAqrYH8hnRdpeRoM0v25xNZB3GHJazH7esCo8Do1V4jXpn793BD98ZApv+dxdKqdO3/MRl5n1aikQQmbY0EBbyjQijiPj6h7eWvTg2CzzXDVPUqZh0gcM/vrGh/Du/zyYMZ6tBhwT5dX1dFoJbBZIXUbaMv/QWAX3nynj2w+O4xsHzyEIeaZAOjHVXih729Fp/MHn7sKxiRpGi662CRAoN5RhF6CYmHtPJ9k9s/UQf33jIbzyYz/E539yEkFK3J1GxY8wWe2cE7fS4ELCsxi2F3PxhFB/PimQLKZOn6EQuPaiLfjibz0N737pZRjqdeZtb8VhtcLEuCiRuxTq54640nKZ01D6/cnbnXUthKjWWrsppJXCQKFTi015uzRP9NmWCj/dPZRH3mFoRByMqvHdNLiQKPlRvAH/6jPOw86BHF7/lL341WfsAyXArz/zPABApE3uFoq801wg5TN6BUpJLPAM9PROOuvJtNgqDaUfqwWKZQi4Yr3iicNVYJA8x8LuoTxeec3uln+bSrFvgyntjTmgmOEMc9Lu8Vr9o9KwqCrAc9qHpuCwuBgcSLVaJ6sBqn60ThgkXaw6tEWn1pezcbbUgBACeYfhvNECBvMO+vNOLNJuBBy3HZnCuN68v3d4HFwkOsGcTZGz1fuWd6z4d+4w1YLn2mLBS23sxm7CwLPpnLYcqwVCFLvbCAV2DOSwf7QHXEjcfGgcNmNxZh8AjJXqerJTyzWWWQtXgwgnp+txazaI1ABLPUiGZYZ7XDhWlkGa61A00yYf8ifHp/G9hycyH1tt08uVwGaB1GXcfzZdIJUzuopz5QCzqbHhst8+iPTd/3kQ07UQ7/nq/fjoTQ9jsuLj+FQVJ6Zq8bTIqZl6ZnN5ZLyCh85V4EcCX7nnDM7M+Dh4utTio2MiEtbKoyLkQrXSLBqfbPrzdubhzNk07sMbMSZbAINjp8b8oTepSGfeGZ+pUzN13Hd6VmlEwuS9yblztdhWd4INmLvFxkhrXILNSLwZFFyGesBhM4q9TdEVkZA4pwXaPa6FHQM5vOdll+EJe/pxzd5BfPbXn4KfvmJ7fN8uRH9kkC6QCIC9Q4VMUUspSeJIQgEusnS9uSNrQYS8YyGMlLjcj9TgghHUu6vAINk6uG5r0cPvXLsfW4seLtiiTv/p1l/aOJ3rwtx4mRkBa5+OKOkEE4FhbCqKngoIFlLiN551Pq7ZOxC/9tRMfdmsQjdQiU0wLWUWmvrd93iWkgkQpevbUvRwxc5+9OVs9Onw2EYocGomGRSo+hy3HZvCfx1UGW55x0Leac1etJh6r9TXV7odU8QPFLLryHphkAD1nnCpMg6fdv4QAOB7hyfVMErq3rjt2Ixm2dUazeXyKiTztcxy3wg56mGERiRwUk+y9udt5PSkZRrNLuXtwCjBDm3J8q0HxjL/Nl/Q9kbAZoHUZTx4phz/+fBYJZN2fHamkfFVmWqjA2leSL9+31n8+y0n0AgETs808NHvPIzZehjb8RvcdXI28/epqo9z5dbU60ibVa7VhEEQybjQmNA/f1/OySyEBW18aSC0B8x8GVymjWGE8VKL3INIGW9yocSQQST0VKGIP28ujyVKCCiUlmK10KlAIiAgtDW2wmHJaTkOiHUt7B1uHWs+PasWRqVZUsUWJQSMJWO+ARdwGV2U3ie9Oe0cyCHnWJm2qDHqA4Df/Y878a0HxlBLFanJIi5g6WupBRH8UJmvmrpgNRgkc51SSjz/kq34p9ddjcu2K3f3o6kWtZ/yKBMCEFw5g//qv90Ws3Q9rjUn+8h0cWTuwdGii6EeB+NlH+cP9+BXn3keLtPhtqenG+vCLLKaah8ymmWQCo6Ffk+ZXprfP6MkLsgBnQXYdHh7z1fux+d/clJ9DdfSIb9Z2IyCMYLJSgBXR9/82jPPw9P2D2H/cE+mSJ/L22y10evZGO5xMVhw4ry9Y5NVEGTNSI9N1OBHXDtRJ3ozFUW1+GLJ2GiYZ0sZEwPlehh7oRU9uy1T/OcvuwzPODCM9//s5W2/9jMPDONjv/AE/NLT9gFozY00KQkbGSs7L/sYhAlaBJTXR1oM+/BEtmBKM0AGBYe1eJ0cGqtgoODg/Z94AH4kcNOD4/G/5WyW+ZoG50oN9Lg2zpUakFJlajFKtDGZWNBY9Uog5CJeNA2DNFiwMwVKX96BY6lx3x7XUgUSnX/EPl00mEBRIXUWWZRssKH24fnmA+q06lh0zuKLEsVkLVCr3BV0mmKD9mRqdhVP5045lmpT9udsDBVatQTHdF7WaK8bG41SSmBpts5mauN3m2j3+ZDenC7Y0guCrC0BJQnLJwF86a7TmcJYQsYmn8ZYsR7yePLRYDVE2hZTBSMXMmZ2DJs2kzrkmIkeMwzApTJsfVjrOwgUezAX+6nuLRoX+L2ejd2DBdx+bAoF10IQSYz2egBKmKr564NBil3CrdYCyWXIuwwB5y1hvluLqkCqNCJM6xbMsy4cyaxpAGLNUjNspt4rRgUu2NKLomfjZx+/E7sH87BthlzqvVHxQd35eZeLHtfCE/YMoBZwjJUaoNr6YKoaZFpWpUaIqWqA0aKnW7bq4/efKcNmBJfqIn2h4FIi4safT1lP2IxgqhrE7c2+vBVPF6axb7iA//HkPRjuaa9H8mwG12a4YmefcgFvKuCMTm0jY5NB6iKEkDjb5C+TbqkdPF1q/pQWNDv3AsnG0y4+4+oU/Q4kuU2RkNg1mMN42cf9Z0pxnlst4Gqybo1bbIDymAEUW5LeQAYLDs4b6UG5EaIWRBACbdtKzUhPbEko93IhjVut+neuqeubHhzDJ390PP68uQTghBAwuroMUqfCxIQXNIt+bYvG3R6XMSWOdS08cd8gRntdPH53f/xak5c1WvRUgRS3eGi8+QZcoODNPzmYRnqRvXBrL6TMjnCrIN7sdaf1NKY1FQoBi6qitR5w1HwOPzQtV7RM5q0EbEph6dw1g2aNFWBahRIPni1hRhufVlIHn1962r62n5eGKkqzWW05R20+NlNj8kaTVqpHq57X1Q6mxVbULf90K7bHtTIBxWn065+j7IfxWvlzj9+Jv3z5FfjY/3hC/Lrjk7W29x7RWYVbii626qlJSpLBhfQ9qDRI66RCQnL/51xLF7zK0T5dcM/WQ5TqEaarAbiEcmsXEiHnmXb0QsG1CaWajlMazKGCq5IXqur7DuSdti1gWwcDdzo8FnM2/JDDs1ncfk6jmVHaiNgskLqIRsRbMqXSfdhjU0ubHvNspkJvm27Ulz9+J55z0ZbMxx63qx+AejBci2FHfx6exXB8qha7cgus3ahwyFW7rBHymBUYLDgtD+HuwTzOGy5gph6CawZp3gKpqYDxIx5Pg3ApYVGKhs4+enAsYfqEnL/4Ma2otUD62ypWhrTkkdlNDFKPayHnqIDZd73kUvzp9ZfGrzXxAqM9DvIOg2sxMP3zpSn9Tm2+TnBTRdoFW3oBZN8zIeWc01yAKswizdpYTEXolPwwfg+MSHeloRgkmnlO2jFXgdZHNXQkUCRlXDz05Ww8/cBwy33ZDGUSmI3SyTtMT7QRUJJkjFX9CKdn6i3j/sYaYSmb6FJgNj8zseZlGCQLW/pcFHN2PNZvMKwZzRPT9VijtbXPw0XbitjWl8OlupV4xc6+jhvzJduLuGR7X1z8mABaY5FgsBqt2MXCZhQOI7G+58R0DTMpGcRMPUTIBY5P1XDTA+Mo+2HMAjVCvmgfLDM1LKEY+7d9/h58+tZjGCw4mKknB9R2z6X52NkOYen9eRuR1khdnMrEM7+2qh9teDftzRZbF1FLLU6Gcmyn+F8sqn7WlO66y7bidU/Zix7XwqHURj/a68ZOraVU/7fHszBdD1BpRKkJiWVf1qIRRgKfve0Ezh/pwW3aw8mzKAoua9HUEEJix2QhJKwFCHMpVVlOtYCj6quMJy4TbQujqjBjlMQLNaCK2PkOmoysHz0DIcB5I1nxdVqDlHMYzhvtQa9nY6YWwNbMkBK3yrhAGup1kbMZQi5g6RN4I1AGjZ7FOrf5OoBSgldeswtHJ6rYM5THZCXIFHfGKboTjKh+thri5gfH8Yz9I7BtAhkm7r02W53JJJNLlTZczbVpQwQ80bi5loTgQJUndgRCyDkF2oBmkCySYcZspow/pZSgDLG4uRpwTFcDTFZ8jJV9bOvzMNTjIuACpXqIWiFalLB+KUi70he1D1G6eMw7isE0LEkau7VDsynk0hl+APAnP30pvnHwLC7e2tvxQNJc+FCqTFyb7R/mY+7WCnmHKRPcE8CDZ8sZlpILdaB7/9cewH2nSzg0VsbT9g8r/7JAjegvNIYIAOp6pF8K4D/vPoOTM3WcnKnj1U/cExtyjvR0YJCYypLjUuJXnr4Xn739VObAr9zeVdbcRVuTAmm018PZUgOVQA0aUKyPdXMp2CyQugjz0NtMUalm0VouZuthPAo6kLfxm89KnJTTlf+uwTz6NOWdvpFtRhFGEhMVHx/4+gO4aGsRV+/JtuYMQj3htpiHcKH49kNj+MIdpzIfcywKi7XXAJnYESHn32QMzhsu4N7TJZyZbSDvssyjyQhBLeTIO6zlJDafhYAK1FzQJXQdmVo2VSikYQI/DYp6QzUxKZVGBIupAskE4I70OLGg2+hIZmohSvUQI0UXvd7iCiQAeONzDuCeUzPqokn2fR0qOHFLpv3PKRFygY9+52EcGqvg6GQNr3/qHsjYOLU1gHSlQAiBZzEcna1CCImBgtORQTIs0umZCI9MVGIPmZytctXmY80sRmCL1nbQ1j4PjZBjph6iVzNIM/UQhBCcmqljuhYgZzMM9bg6+FTMG27cDdRSgnkTiZIu7vIO6yhK3170tBGs+gJbmwKQcw7D9Vdsx0TFX7Cthpns9GyWOfithl/WUlBwrPgeufPEDADtlWVRzNRCVIII92k5xo+PTCGIBDiXaEQRaiFH+5W7FfWA4yUf+T768za+9qZnZAZ2jNyj4DD0eHbbIRXbomAMIILgWRdtwRU7+/HGf78z/vctRQ+MKKPPkZROabTo4mypoSwppNzQRcb6vIM2KIxY2rUSY7j5Rh2fcWAYuwZyePnjd3Z8jQRwWDNFzYK5dGEx2uvG1vulJoEcgYoquOvkLP7jthMdGaRzpQZOrJCRZKnNVMNVuwfAaPsCybRTQhOhsgAYB9hTM3WMlwPMVFWcwfcOjeOBsyXdBpUZPdfjd/fPK+bMO2xVxsvbIvW7Itq00mrS4XQqIBlR4utGxDMbjs0I+vOOpvwVg9fjWbHYuHnjWihU8aJymUzIb/raO7U9XO28PFnxcUi7U3/noXFlkKp9kMx1rxaTJ6REMWchkgJVvz0zE3ARh67++idvx198/cHYRDJnM0jIedPjzxvuwf7RVg3HlqKHrX0eGCWxvcdMLUDRszBbC1FqRJiqBXEb2Y94PP1ZDzgOni6tSMvNrGlmMg1Qv1uz6V+4tdhRJ2ZZNHaTBoBdgzlMVYOMHYqQUmn+Fqg1Uy1nNYmadn1faSZtqXBshgNas2M6DP05O/bUShsuOhZFaNrOlCIIOcqNcEGhxfecmkU95Dgz20Aj5DFzDCBm8OM1oM36YQYlbIug6FotxfdIjwubEYwUXRRzFp5z0Sgu3V7EJbrdVtf60Y2MjVzcrTuYFpuTCkmcr0A6f6QHb3jqPvTn7XjEFQCevG8QpUaEg9p48qFzatNomSggyU3bn7Pjjf4nx6Zx6FwZB7b0xtd0LtVL7qRBirhEqYM/03LBm56Wn3v8TrxEZ1C1o9NtS+lQKo1owcLcA3qjuf9MCZ+9Xb2f7/2Zy/AJLcj++C9eA0jEoZ/b+zz84lP3zrvp7mnyE1oNPP/SLfiv+87hhZdtxdfuPRt/nJJWo8hOcSCuRWFbFLP1MPMeDve4IES1dbhUrcmcw+DYKjdsoLA4/VFybao84kLGGXZpdMpRs5kShH7z/sRLxaIEIee48eBYHMWjpvWWdGmLRl9OGTfmHYrD4xVUg9bnIoiELpKSQsQ8q0YwPH9ETvsNClDO0cpmQn2NciOCwyhmeYh+z0a1EaEacG1nIePrOD1Tx9HJChxGsF+vAd3CtJ7MzdkMdkoL94XffCpueWQKA/m53de3FXM4rT2QthY9EKKyyUxUDRdSG7MuokCyKCxG4Mi0jmt9bm8OoxjpcbF3KB9bRvTnlR7wEVQze4ZrUWVRoln0ahChNB5ia19OhRrnbVT8CH25LAskpcR4KmB2pqbC0A2+/aB6zrYU3Y6FpMNorJ/rzzsthzKTjzlQcFCxIvzCk/fAogTfPawMI2urpIdbSWwySF2EiRZIL+LztdhyNtWne5JpBz1hzwD+4uVXxNMB39I3dPr0JaVE+rN2D+bRqzOLGpHAmz97F/7yGw/g07cch2vRjEV8+sQ2W08mSkIu4AdyRcR1zQzSVbv7IaEy1NotqA6j8WTVQhkkcxK/NzUxeE/KI6rgMu1Mrh7eC7f2wrXZmrXP5sL/96KL8XvPPYCXpHLBzBRb8+bRqfCwGEXOoZAk25ZzdE6VxSiKnoWtRQ+jvR4u39GH80YKC36/m0E0g+RHAi5jLa3aTiycGUNO22REQuLEVCMujsx1r9Zk0nkjPbhsRxEDBRcU7QNnTYutESTFv2Enc45q8S5H3M/04cF1kjVlth5iW18OQz0uGhHHbD3U2kJlTtkIOU7P1uEwhtOaPegmTKsm57BMGGzBsVry0NphWypjcedAHn05O7Z4ANTvndGF56gZZ3mb0sz9thp2EEuBZ6tDy5P2DcUfu2RbMZ76S/vjeVqqQaCe32rAUQ8Vo3RmVrVZj0/WMpNwgIq8OjaZ5ATWA47JalIgGf3RvuFCR60WpQSuQ5B3GTwn6xXnaRuGC7f2Yu9QAQN5BwFX7vh9OqD60VAgrc8Se4MirUEyYpFSm1HH9LRQj2vDYRRCqgfAjPCaqr55kmgodbL3IwHXZvjT6y/FT45P4dLtRZxpmji4WWdF/dQFw5kFJ91iOjpRRcgFtvZ5ymlbKNdij3Z3gWlm0/YNF1APOTyrU+4YjR2GF7phHxhtPS2fTlkv+KEEpCoggUTntF4E2Gn0uJZqV6Q8jwhUEWI3MQ6O3fn6e10bDmtk3kO1oajWRM5hsd6onbB2MaBEia0bIcfuwXzLJteJ6eJ60ubUdDZ+55GJSubvSoO0rEtcMEwh1utZyLsMjtX63gRcwA/VpmVgDko5h0HK5Wf4Mao0ZUXPxkw9xHQtxJBmkj2L4fRMHVuLHiIuUQ84/FDADwUGCw4mKwHqAe/qRJfZwI1JpIHJLJzve6X/fXu/h4JrwWuorLKCDuRli2CQGCXYO1xAr2uhnPLLcpdY5K808o4Fz2J45oFhPHiujKt29eOyHX34lvZlGysn65WrMxGlVFO6EZcIdVEecGWgWg95pghWdjN1jKcOxLWwfUD13uH8nHrTnG3BYRQuy+YJFlzFrpp1I+cwQAKhkHGrcLUmKlcS6/MO2qBIt9jMItCsBQKy+Ur9eRuMJl4oBhEXGCs3cMVOZQxWcBn2DuXx5PPUqUNKFcbq2QzPu3QLXnzFdgRcYldT9pbBdw9PxqcGAPFCIqVEI0pCXEMdkLgSXiuzTe9Fr2dDiLkXVJsRDOSdTObVXBgsOC2usCZzCFAOwMojKVUgYfV0LYuB8QJiTToeglZLgzkXOT0yni6qLKrG2LvtKWQ8aUIh0NdmCq7T7zriyu33jC5mL96qCt3m+IK0IeZqwWYUW4sezhtp1QmZwON0gKxxEM7bDJTQeUOW5wMlqgVq9IXpsfC+nI3ZWoiZWgihN6hqoMSxNqMQkLF+q1swbEXBYdl7k6pibr4Bj/QEps2UJYWJV6kFEUqNUEfnLPx968vZivFI3+PrtEBilKhgXYfhz156GX728Tvh2TQelf9xKoTcYUqDZHSHIRdoRAKNUOUV1kOOIOIZI9VKoLRp6e5FuRFmPPkM9gwWWlpnaWzvy2G06MK1aeagVnCtzHtt7ELqQRQf6mtdZi7XApsMUhdhKmbXTqanojZTJc3J14xSRELoHrNmoSyGSEhcf8V2PPvCUfS4FgghKDdCNEKO8YoPPxS4ZHuvyo2Cck3dPtAaLQEA331oPGPcZrxaqgFHXY+OKkMygShSp5Ruo5x6YP/whRcBAATEnOzQiJ7QWegJmBAlVk8vGMdSovOKH2HAsmOthq0duteL424aynuptZ3WTqTdiZlR/8aQdyw4qc+xKIFNSdc3EcMi5CzWNr6gI4Mk1T1nTs9X7OrH/WfLsZmowWpNsTXj/DYiaiDxbUrL60xIZ85hqmhYZhFqjFSHexwcn6plGFGLUeXgLdRzFMURHmrdoQSotXHsXw4ME6xabMnPxrQ2bj7G7LrLtuLg6RKecWAEEuoQNFhwcHpGhaqaInspcC2KvUN5zNRDbO9fHhu6kijm7DgLDVC/x2v2DsBhNGOwKKXSfN1xfBrPu2SrGlrQvltcs0lcqALIGLPWfI4wEgijZO85PdNQcgZG8avPOA8fuekwLtzSqzSKc6wB5pAjRHayucfNBjDnbOWeXvZD9JkCKdj4RpGbBVIXYabYcjZrcX5Ij7ZmcsdcpsWo2XFgY7B2ttTQUyzqRp2qBYiExGDeQa+HJNBRqs2pz7PxrpdcivGyj4fOlRFEAjc9NI5jqaBbABgr+Th8rowez0YtjGBZNB4BD8XKjAubhfWXn7YPT98/rD86d/ts9yLF0QQEo0UXj0wkgaJpn5Hf/+xduPai0Xg82dIhr+vJcddA6U8oGEneH3OtzczPXHqLvMNQcLJ6IEWPd//xTzxpWNtrmssH6eR0TbeaCS7a2l5YvJZ2C+0QRALlepQpsGOtnQQsMrdL+0JgmKsrdvbhJ8dncPfJmYwuzaYU9VDAs6lKa/cjWPqesSntuqOxmbwqNGXtUZ21NxcjAah74yVXbsdIj4vJWgCLUYwWLezzCxBSohbweW03OoEQgk//2pNx57EZOOtUgwSoZ5KSJGeSAMg7Ni7e1pvJ1Qy4wN99+zBuOzqNyWqIZ180Ai60QzZkzF76uuXmWgyz9QBUx/QYGDuBnQM5vODSLRgo2Ng1oFrg8xmZAkqPVPQsvO7Je/DZ20/iZx+/I9tepQQjPS6mqgEGckkg8VoZEncL65OD3KCoatYiZ7fmCKWnz4wrLqDGXhkj8HXmlEExb+sJo0S8KLWnStGzMFRwcGC0FyO9rs4mInF441PPH8KVu/rxO9cewO8//8JY2J1eKKtBhHNlH2dLdQihJsyMB5I6pczPIE1VgwW9zsB8/3w6hLKNQ/iyQObX0XzrgTH4uoVoUQpCsS4ZpDgGJK1B0n9s9ojpmaPYKbgWLtnel7m/bIuix128z9F8oISAgaj2Ups3Nc0gPX3/MP7mFVfGf39YF7WjvV5HmwF3nSS0G1YviASOT1Vx35lkKCA+KLkMPZ61ZMF7M560bxAAcO+pWYRafwKo4rjSCONDUiMQcTvVtRiqQRQHnUopF+3G3AzTusk7VuZ3bGJg5ttwGVU2EMa81GFKXH3RtiIu3lbEhVt7W4xQFwObUTjO6mnVlgLF6KqC1kx85l2GK3b2Z14XRAK3HZ0GAHzmthNwKIVrUwipTEkjoVrTvh4UEEJiuhbGBrAG39Na1Mft6sfx6RqeuHcQQz1OrPFcCPYOF/D7z78QH3nNVdje77Ws2z2ejR7PjlvBQLInblRsMkhdhKEU2/XghwpOrK/4+at3oR5yXLGjH66lvDsmykGm3dGvzbsIgICnpjsYwWDBxUjRjQuBSEhQ7STrabv99JTavqFCZuQTAGp+hJlaAClt9Ho2pJCYrPr40l2nccnWYryInpiqwmba+TX1c9qM4vhkFdsHchgquHjwbAm7hwpt2yqAWphNgWSmgZTfSXd1MJQAW/rahyumYQo7ixFQYF1sus0wQtV0UWGmFptF2umiu9PXSm/UrkVXxEjPjFwXOhRs6WfjuRdvydxXR3TA65aim5nWTIOQ9VHM5hyGckPlov3ZV+5v+5pe18JlO/oWbHI6Hy7Z3oe8w1ANOF7/L7egEXL83asejy1FF3/+tUM4M9PAX/3clZis+bFTvMUIqgFHLeSoVwNYVJlMXra9b8ksTcwgudkwWFPszPfzWlStaxGXLYwTIWRJBqVpmCJ9PT7TBp5N4doMfiTU9VK1Ll61ux+f+NGx+HXNWtC+vK2ZGYBLXVxRIBICZT+Ea1P4EUfetjIM0pTWrV2+QwXL+pE6DLNFDMDkHQsNogKIbcFaDFB7PQu9OgPy7159FWpB1DaPbyNhk0HqImqxBom2jDOnGaTtfTm8/+WX42n7h1FwVCsi0DeswdY+Lz5ZmawMLiQsQnDhlt4MS2J8hPJ24ruSzqLd1+Y0VvIjBJHEbD2CZ1NwSPzl1x/Ef9x6An/37UMIucosO1fyMw6sgNrIzpUa8LlQvkl1lUA9V8855DIz3WN+Hka7K6YkhGBLh801jbRImyxD87DS8GyWLZD0ZdpNm1txAWxQWoPkWa0j+N1CzmEdR4fTm2ePxzLandNakzHU43YcEfZDvi5+V+bnm+uEnHe6xx4B6l64fIca2ig3IoRc4nsPT4BSgntPlTBZDXDwTAm9roXvHhrHdw+Na12SxFQlwImpGiarKnIoXKKDnx/xWCTe41oZFsFiFBelxtU7wbHUoage8jjSpZsgUC2fdXCbdAQhBP05G41QeVhZepp0qMfB/tQwQPPk732nSmBExXtwrRmlUFNm42VfGb0Kidl6mDGGBNQ9u73fQ6+rvy9X5pOLOaBS3TK2LdKyx3k2wyXbi+jLqVbhjv7cmuVXdgubBVIXYRb1dptPugUyULDiFonaAJUPT5r16fEsFFzl3swojTN6rDaTR0xnkHkOjf+eFkG1m2wr1yMMFRyU6gFe+79/jBt+cho/eHgSADBRCRByiUYoUA2iWABoYMZK/VAVSFPVADO1ud1d6wGP35+CY+nU82hRhnALAQGwZQGj6sYHiVGjQeraJXQVjpX1djGXmS4qKensL9T8tQy8NkV8N5BzGHYN5jv+DtJvc69rIxIyfu/NKTfvsI73Uj0Ua/q7esPT9sJmBK990m4Ac2caGp1Jt2AzipdftRO9qQLk/jOlltb5X/3XQ/jITQ/jA994ELcenQIX6jmebagYGeW4Pb82pOpHLYeeoxPVZIrNtVqK1YUUhMb1uhZEyDus6/o/SggoXb+HHoMezwKXag21CEXBYXAow7MuHOn4OYfGyqA0scXwQwFGCQqOhVI9RMWPcHyyht/59B1xx8Kg4FoAIcg5KrQ75ELpZRfxPqn1MmmLNsP8/pu1kxsVG/8nWEcwlKZns5b2Rbr1ZCYAGNWGfYxgqMfJsD6UEAz1uBjIOzpkVKiTRpvJI4sS9Lh27ERrqvZyI0QtMC6rBEMFJx6frvgRXJvih49MIRISD42VM46qIVeLaj1IBICAmmYII4mar04+dT1RF2oPlnaoBcoR3Lw/UqqiqtQI9QmmmwySsg/4nWv3z/k607Y0FPd6XUxHet1M+8wsZum2hGu11/s0I2P01sRMdRPDPW7H60mPw/c4FgIu4gLZODQzQjK2Dulnpx7wNRXUv/HaA/jbVz5uQRqZHs/q6rVajGCo6OCPf/piPPOA2kQPni5hopK0zw+PVXDPqUTk+5FvHwaXgBCKdaqHHFwg1iTNhcNjFTw8ptqeUht5lhpRzCgP9bhLYgiMc3gkJPpzS3NsnxNE3UPr84lOoBg4ZRTs2Gpddx2CZxwYwYdf9bi2n3P3qVncfXIGpXqIY5M1fP4nJ/GerxxEpCNvyo0QH/3Ow5n2moFnqdambakQZT8S6M8vrgVm4oOM0WwnMELwKKiPNjVI3UTMINm05WSZjm5wLBazQQ6j6M876G1aTBkl2NaXQxAJnJ6pI+Ky47g7IST20AC0gFcqEbXNKPYMFfDel12OHQM5fOTbhwGo06HNKO7S0w3NZnIhV8nRXAr4EUEjVBMSXEpwKRAKAs6Biq9OpDmbodphnDiIBCrangAA6hFHEAlsLXpah9RNBkkxQs88MIL7z5Tw3/ePtX2dYShcy7TYunYJXUVztIy5zLQQdqHu0mnNgGuvniN1GumJQssmCBsCFqUIOcd0LRkfL+ZUkfvJHx3DW59/If7ohnsBKH3SWkJtDgwL2X17uyyCtymFRQj2Dffgzc+7ALcfn0LV5/jhI5Pxa+7Qz/Ng3kEjUkG3p2fq2NbnAVJ5KFkpQ9q5wIUE0UvCkYkqPJuh2ohiR/6dfbklT+j1uBZcm8asdzdBiZqmXK+HHgNl/mnh7GwDe/W0bs62MF0Jsa1pSGG018VY2cfdJ2dxd2rKzeDzd5zE8y/diofHqnGweTNci8W+cudKDYRcorDIe5QQAkrnZwqp9sTa6HgU/AjrB/UgYZCa2xfXX7ENuwZyeOaB4Vgwa6hmx6IoenbmVGeKBpsR7ZOkRjpzC2iLmHiCgYKDWsBRzNnozZkYALXinZyuY6Ls45juU9dDntlAS/UQ1SCEy5hKCtfFDRcynqyLpIitAfIOQz3gbSNKuJCoh0kC+GDeQSgEijm76xlnOukCQOf4DSApkHIOW7ci7TQMy3K5Ng5Nt1kX6i6dFnavFHs0H3iqtcMIQcBFfK/P1pPWTdGz8FMXjOBvX3kVLt/Zjzdeux9X7xnA65+ydy0uOwal6r+FxFj05rqr8bKYMveMtNP0E/eqqbb/uPVE/BozjLFrMIcLdAbbsckaGqFAf87Glt4cKMn6s/mRCkBthpAyfmbLjQileoiTM3VIqPZhX95astC74FpxXEW3QbROZr0/05QSbCl6GOn1sL1fySAKjqXazk3vq5lg7IR7T5UASDxwptzxNY5FYFsMwz0uhgouPJt2HKqZC+4CvK6YbnGmdbUbEZsFUhdhGJKcQzM29xYl6Ms7+NtXPw6vuGaXCqCkKow1vWmlT9fm2VYJ6BT1QCV1e/b8NzSjBJ6jjPpsRuLsH/X56vvdcWIGv/bJ2+PPqQc8o/uYqPioB8nmZcSoXEhIAXCuNjv1n4BnsziipBlcJu03RgiKOSs+yWxZYmr8XCBQIvW0585gU2RLPUwE40RrFtYz/uv3nolXX7Mbb3jaXgBZLy2HUSykoZDJYluj412YZpD0MIEp/kr1xKHZsSj687Zq70YCV+7ux2uftAeDPSvQklkEGFXBsa41v7i1t8sTPLaO3jG2H9ddtq3ja7f2JQXSkYkqGmEEx6K6jU7iDDkAmKyoPK9mqBFy9b3qIUc1iHB6Rr1uW5/XMkm5GDgWRY9nrUhemmkDbYQWz5aih4u29sbyhryr9KjNyQr720QopXF4vIJ6wPGAzjJ8waVbW7SdNmPIO+pAvr0/FxdJi8WeoUKcedkJTCcARHOJ9DYANsAttHEQT7FZLOsyqi35XUtlFyn6kcSUp0H6ZkpT1yo1m6DHsxY0Mqw0SYrC7vEs9Oec2HOj04mtHmbt6scrASIhwAhBzmKYqAaQUrFHkVRmklz/HUQteGEk2wZjCpHYzqsJJwu2tTIiYcPIBVxkWJXm72V+V/l1GlTbjPNGevCSx22PDUTT7bGFMkhORre0No/+iy9Xm/rWPk8HkiZ6KnP3F3N2HNcjpBLz97pWW1fx1YbZeB2Lzil0ZpQgtwJp8jmbxUzzRVt7O0YLbevzcKEukB4Zr6Ae8rhAtgjBdC3AfadVqybiEmU/yrC/XCiWWEqlVzJM8ekZJfzdWvSWpR3s9WxsLea6qj80ICAxg7He4dksI78oejbyroVSPcqIoPvbxPakwYXEick67td+XE/YM4CPv+GJuGbvQPwa16bo89T3Gul1cfG24pLa7AMFZ17mz+gi1/m5c15sFkhdRFqk3ZwqTYnalBghythRTwKktSTtWmyAMui6et8grt4ziNEFjLB7NsNFW3uxvT+Homej11OmZCa7rR24kJkU6clKgDCSOFtqwLMpqo0IVd1CkwI4PF7Gdx+agB/xeEHiQsZRKZmvLWUs7Oz1LFiMIm9bK7JJM6rE6PUwyiyQuwezESyG0co7bM033YWCELRluhaqQcowSCs04j8fLtzai8/8+pPxjhddDAAotDFSLHp23H4mRKIeRsjZ6r5Z67FhczKe76DiMNpi5tkN9HpWzNISQvCEPQNtX7e16MWn/DOzDYSRzLzPs7UQtYAj4gIB53H4qUEk1Li4kKq1z4Uqks7qMOzRorusn6/HtbBrsH0s0nLhWFRlna3RIWA5cCyK4YKDahBl7rGBvI13XX/pnJ97araOEzp38sBoD/pyKuDYIK/jQAxW8lnqy9k4f6Rn2Z5Wa401vYNuvvlmXH/99di+fTsIIbjhhhvm/ZybbroJj3/84+G6Lvbv34+Pf/zjK36dC4UZic3bWQbJjLI6jIExVUwUXAsjvdlpnz+8TuWTPfvCkczHPVu1y5qzj+aCZzP0uhbOGymg4Fro8ZRxWMFt3RjNl0wvkJNVHzfceQp/8Pm78YOHJxFwjkojUoullHj3l+/H535yEjc/NBG3ayxK4hyqNISQODertBFbip5qs+mibSXQl7eVZ1SKMblwSy9ecfXO+O+mmLWb2L71DNM6aIbDFha/YTexmmuFbX25uFBvznQCgMGCre0sKAA1Vuza6jCx3NiO5cJMPKZb6O0iWxxLtdG7jXwTK/W4XUmBdHWqWNrW5+kgbOVaXczZIAT49C3HcXi8gpl6iIgLbeehJlKN8/LZ2QZOTddjRsl46zT8CPdrjcv2/nzXg467BUYJ9g4X1m1Y7XwY6XVjeYSBZzFcvrMPv/fcCzp+3oPnyvEktAmMTRfFebd9/M9KYaObRAJrXCBVq1VceeWV+MhHPrKg1x85cgQvfvGL8exnPxt33nknfvd3fxe/8iu/gm984xsrfKULQ2z97zQXSMpQjTHFGpkCqfkE9Zon7saHX/U4/MKTd3dlIyCEoF8/KD2uBT8SGZEsAOwf7Wm7WZbqET57+0kAwIe+eQhSKquBc7MN3HliOn7dI+NV/PP3juB3/+MOAMBMNcxY3AOKGTtXMtS8i/68vWR6dyHode2Wn8m2KF542db41GS6CQM5u8Xef71COe62Z5AW0k5IL5YLEfuvFAhRxXQxZ6EvZ7cUymZyz2YqBoER9bxYDOh+hPLiwHQ0g8UohrUe6rVP2tPyOneeMeilwrPV75oLZbyazqx78eXbcP5IAVuKLnYO5EEJiTfKQ+fK+Oo9Z/CpW47jfV97AHsG8wiFapUH2vDVFEsPj1cwVQ0QSQkJ1WrjHPjBI1OYrYcYzDu4ZGvvirTHNqGKm/68nWnhBkJgouKjmGstOsw+YtprxsCTCwk7FVNUcKwVEcU/mrGmJd51112H6667bsGv/8d//Efs27cPH/zgBwEAF198Mb73ve/hb/7mb/CCF7xgpS5zwTCsRN6x0AiTpbygDeMsPb3WqaVDCMGOgRwqjajri6vRO6Wnxt7z0suwezCPt3zurpYR/fRUCyUAiNIj/PK/3YazKQOy7x2eiP/88EQFuwbzuOvEDC7b0Rc/jGGqQNrS52kd1sqdPj2b6sUgWcALDo1bmxwy89qNAkrRVoztLkGDtBL6mIXCiOKHesxJOTtdZ06e/397dx8lV13mCfz7+933eu33lzSdkEBICMbQEsxEYAANxoHNMu6M64gS5IiIA3skrLggb7JRg6NwcD0wnLPAsqK4+LayaxwR2Q2cI6hLMLw4RgXEjkASknT6vbte7t0/7q3b996uTrqTVNW96e9nTo+kUtV9K11167nP7/k9j+YtUznS8e9XmkWDw1qr1BL+t4+ficdf3oPzl7fjvqdejdynNtkuU1OgqQIjkyUMjheQMTR84qzFeHXfCPoWNuP03qZQk8TWtI59I5P48r/sDH0fKdzMbqFkY7LodmQulGyMFUoYGC2gNW14GSR3kLYNB7/+k9tO4MKVXVDV6sE6HT0pBU5bkA/Vc5qaAsdxkKnyvl3elcWuA2P+Z07OVHFwrIDBiWLo4iOt1y5rf7xKVA7s2Wefxbp160K3rV+/Htdee+0hHzc5OYnJyaneEENDQ4e495F7+nPn45ev7kdrRg8VPKcMt8eRu73/0CcWd4fbsW+TryruB9JfLWnFaKGEtK5iVW+T/3dRf/IGhwLupJNCyQ2Qdke6swb17x/DuxY24+BYMVTvVCjbfu1CV276kMNjTQi3DimtT61/51O627VbEQiWSTWqFudIKKL6Upqhyjk3iqxnqj1Kiso2YPfPaihwU/zaFr9GT7gXGaoiY7FtOGdpsDQFC1vTOH1hE5Qqa2mz/Z3MlaFKmKqC3YMT6Gm2cGC0gL/t64HtOHjr4ATasjpU4e5YHSuU0ZyuXgMy7F0QjRfK7qBqb2yF7XgdmstllB0Htjct3rYdfwbb0o5sInZ+JpmlK6FxO5bmBuXBrukAsKQtjcvWnoj/u3Ovv8knZ7nz2rrzZmhziqnX5jV5PEtUOLl79250dnaGbuvs7MTQ0BDGx8dnfNyWLVuQz+f9r97e3pocX1vGQFfe8jvFVqR098Vtau4OrkMVBVfqTI711WeTpeHkjgxa0jo+cFpXaEhotK4BAIYCb0QH7pysw304vfr2qN9MspIeLpVt/Mfvvug3AezMmXXZXZIxtdDOj5ylQamyRJWU+iNg5nEolWWXwwkFSA2sQYruMgoW+6Y0t04PcK+kDd0do1NpqhqD+AiL29JoTuvuiBpv7MMnz1mMBYH3lK4qNckgCSGwpD2Dha0pb3xR5X3mZnnGJt12IHuHJwBUbywLAAdGJ+HA8TpruzMeK/O5DFVivFDCH/eMoFh28Oj/24XP/I8d+MtAZVaeDjhoeD3YfJKzVLRl9NBnx3uXdeDr/9CHvKWFzudZU0XGUNGc0kN9jqrVn9KhJefT4SjceOONGBwc9L927dp1+AcdIeEFOMEdWmldhRTu2vDham8UKSFx7NPXbs2EASHc+onKB81kqYzMLN44f9o36vdfmcmrb4/4/12pQ/rTvlH83uvN0ZkzkNbVuqTms6aK5kCAlNHUqlt/dTU5J3llhqv25V25WX1YhYq0G5xBqgxYBsJNL1OGGmlxofon+aypNryTdpAUAhLu5owzFrXg/OUd/t8ZWu2u1tuzBvoWNqM7b0FK6W3Dt5E23OnwkyUbGdOt82tLV+8btX+kACmku5PNcWBoCsa9Ym1FCHzn17tw1xN/wPe378LdP/9jaANHS1qHA9SkCJ2qa7J0v/2Fz3t57R6aCO1uTusqspY7E7EjMxU4WbPooUdhiXqJd3V1Yc+ePaHb9uzZg1wuB8uq3g8EAAzDQC6XC33VipsBCmcm0qYy66yJKgFFQc0KmAE3iCs7bpHneKGMTKDdfLTfRmUm1r+8vBv7R6q3sK9sod87POnXLlVqRYLTqG++cIW/TbrWTE3B4sBU7LSpVi2crdVE+1pQZLgC6X9fcxY+fe4S9C1smtWHVfDqs5HFmpXl5srrILjEltKV0HNZkLfQ7gVFSzuz6KhBY9EjJYX7XMYKZbd9ReDAzVnWhR0NS1NgqpXBow4MVYENd6nMUCVaMwa6m6qfF/ePFqBJgcliGTv6D2KiUPJ3sgkh8PQf3drCH+14M/Q4TXHLBAxFVs08U21oitv1Ovi+Lds2JoplCCCSKVKRt3RoisSCQJ+sarst6dASFSCtXbsWTz75ZOi2J554AmvXrm3QEU3nbwOelkGa3dlSkbJqTdCxpEi3Bfy+kUmMF91RJBXtkdlfH12zEAvyJgbHi/hfL74Z/VYAgCXezhkAeG3fKBQh/E7VB73+R4vb0uhptiBk/a48FzQFlxEVaEq4cFYAsd2qXE3O0pAKLI2d1JHBmiWt3uTswz+P4PJUqoFLbJUMkvQzSOH3SjDQyKfCvVziRHoDUSdKZe/1FWjE6dWM1JKuSrRkdAx5W/ZVL+icKJb9D8xFrVM7Zf/LP/Rh/WldANw5jWlDxY9ffAvf+D+v4Ks/+wOKJQdlG6HALrqJoTVtYKJow9QVv2kp1cb7V7jlJOee0u42HvXavVQUyw7+MjAOU5OhPm9ZU/WX0IO/v+bDNJuk6RoaII2MjGDHjh3YsWMHAHcb/44dO9Df3w/AXRrbuHGjf/+rrroKr732Gj73uc9h586duPfee/Hd734XmzZtasThV1VZYtOVqZNHZdvlbKiKqEmDuSApBCxvFMlk2UY+sHV09aLwzJ+2tIHlXW7G7Y2B6nVeaV3FSV625tW9I1ClwHjBTckf9OdruV2Rq9UB1UpH1sSXP3garrvgFK/Ddvhnq4qATMI8As+CJstv2wB4g3kx8/b/qHIgQqrFkNDZakrpOLFtajdlsFlq2qhN7U4tCC+DlNKm2nhUmLNsvXC0eppSMDSJoYkSUroCU3OXzdJedqc9O3WRcEKzhVYvI7x/ZBKmpuA3/W7Ljv4DY7Btd0ZhcGkwmmFtSeuYKNpoTess+K2xr/z9O7Fp3VL8+9UnQJVuP7Dl3Tl85MxeZE0VF69aACHcbHBv61SmqCml+Uvowd9f0ps2NkJDPx2ee+459PX1oa+vDwBw3XXXoa+vD7feeisA4K233vKDJQBYvHgxtm7diieeeAKrVq3CnXfeifvvvz8WW/wB9wq9kkEKLrHNJUCS3kiSWiqWbeRNDYamwFBkqIP2WUtbQ8s4OUvzr4yD9wtqTmlY4gVIr+0bhapITJTKcBwHg+NuJimtq7DtqX+feulb2ILe5hQUCeiKEsrOqUrtl0FqqTKYV8rZLck6gQApGMDXmyJF6GQd/J2kDTUxtS0C7k48Q3OXm4Kdm01t9svqRyNvaWjLGLDhIGtqaMno0FXh715avbAZaxa34O/e1QNNkf6S+ZM792K8EO6s7w6ftvHnwFy2UqSnmaYI2HBCWWeqjayhYvWJLW420nuPZAwVnz7vZHzpb9+BjpwBQ5PImipODLRvabJ0/z0Vys4eB40b662h/2LnnXde6KQdVa1L9nnnnYff/OY3NTyqI2c7jhsAyHANUn4Oqc2sWftmXh1ZE6amYN/wJCaKZVy8qgeP/3YPVi9qRkZXw1tMHcdvzhcNkHRFojtv4sKV3X4h9qtvuxmkSpfeSg1SxlDdfx9Z3/4pamAZR8rwCUOTArOY8RprArOv6QoW2cdpTlWoXi+wzT/uKjVIpiqQNpTQ+9bwxgvVQ2tGx+5Bt09Ue8bEgdGp/jeaKvEf3nuy/29aWUIv2Q7+6fGdoffD0HgRj7+8J7SUPhkJkMaLZViagjwDpJpzNwEIqEKE6gcVxW0Do0iJtO72DVvSNlVvaWpTY26CO4+P9fDk+YD/YsdQJTuS0lV/7AjgbrGfraZU7aeV66q7o22yZGNksoS/WtKCr/y7lWjNuGnz4Hld06QfxB7w6ol0RWLdqR1Yd2onWtI6sqaGk7w36F8GxnHDD1/Ezf/mVJRsG0NjUwFSyXbqVqRdUQnGVCm9r2gGKT6Bwly5Szyzv38wQIrTs1Zl+Co3IfFRoN7QDeqC9R6WWp8MEuAuneRT7gVIa0pHe0b3Z265fdek3yNn5Ql5LOvM4vd7hvGvbw2FprI/339wWp1htDGnpki0ZQ8/rJSOnpTCq9kMX1Rq3p9V6ZZKmJr7+utb2IS3hyZxckfGv3/wPd/I1h5JlZBTUTLoqsTy7ixa0nro5BjXq62WlI6FrSloirsl1HHcN14p8KYylKlhrpVu22uXtOKKc5Yga2r+fZvTun+yfX3/GN4cmEChZGPQ29WWNVUUSu5W5HrWLihe001VmZ7ZU2W1vtTJUalBmm1GLpisjVNgGCxuzppaYmqQpBQwNQnLK9AOtk6oZ1O+tK6gpymFtowBTZFY1pXzl+ndOXbC/6BUpcBtG1ZAle7uuz/umWrN8fPf7an6/Su6ciY+dEYPWtPxabVwvFP8YEiGbxPujtxlXVm0pHToqsSnzz0Jmy8+LbR8fUpnNvA4ftzPFTNIx1glZb2gycLfvasHwxOl2K79WrriX1UIIVC0bUihhq4aNVXAiFwtaqpbCKqrAhNF228i+Z//7Wn4xH9/DuPFMvaPFlAo2xiaqBRpqyiWbTRZtc+QBbkFzO7/qlKGlhTcIu1kfBhX49Ygzf45rD2p1X9cnGrTgzVIc6nXi4PelhRypobJUhlmoM9MPftMCSGwYIbt/IA76HT3pNuCQ1clxotlnNBs4fX9Y/54JADYdWBsxu/xvuUd+Mz7luKtwQnOYKsjRU4FSRWqlKHGw4B74acpApNFJ3QR2J418D//8T14Y2A8Ue+ruIjnJ/dx4j/9zXJs//NAIro1q4pAqexAU0Rot5OhKNPS6aYmMTBaQHNGR2myjJQukbcMDIwWcGp3Ds/3D+DAaAHFsoPhSpG2oQKi/rPPKmv1UrodmYPtF3Sl+uiOpBBwU8CzPfG9oyePhy4/E6OTpVgFhqFt/ZZa0x5gx1plsK7tOLACOwPjtJxham4DyaylYmSihKylYlFrGq/vDwdEh+oD25Rys8WqKmrehoSmKELCUMO/GFVxL/r0yLlMUyQGxwuhcxzgBvHjhTIDpCMQ/0/uBKsU0Mbpw2gmmpQo2860YC5tKkhHTvZ5S0PZcbxuyICmKmjPGijaNtq9CecDYwVMFssYnnQzSLriXvVEs1G1Vhnbogj3iivYU8dQlUR9GEcdyTys5V05tKSMWO3eCy6x5eucYTxWVClCfYHiFCBVNig0pzSYmjvf7oTmmTNO1QgB7BmagCoEB57WUTQQcm9z68qCuyZ1VboXsgLTMnxSuC0oGCDNHV/pNSTE9AK7uKq8p6JXH1lD9bcGV6QMty5J9dbGU7q7fdjSFL/IfHC8iLFCyR+uWLRtpDW17hmkysmh8ivQAqNFTC35GSS1yviUQ5He8lqcgnY1cEJPajM7VZFY3j3Vod+IURChKRKWpsBQ3fenJiWWBPpQRf310rZpt6U0t2eaooQ3OlBtKVJOOyer0m0jo0Vub0pp7jk5kuGTAv5FIs1NfN7FxyHpbc9MQoCkeleZKV3FZ963FABw4couaN6OtyBTdYeHKt6bMWdqXpM6xW9pMDBawOhkGSNegNSZMbGsO1v30R6H6tps1KlXTa1UmpLOqfZSuMFwnJ525XcihTuUM6mCxbFxqtNRFYGUoaI9a2BRawqaKnByYAxP1NqT2vBfL10dui1tqO4yjhShgJZqS1PEtJ5lquIGTdF2GBlDg1WlTUZl/iZrtOcuuWejBDiSK/xGUaU7HsXUFFxxzmJ05Q1kDdXrQB1+Z5ma25U6rbu1DZbu1o1kDBV570PiwJhbpD0y6QZIGVOZlomqh+jcr+AHl6nKZO9i85bY5vL6Et7/xek1qXnBq6Up0BM0Gy8quPQUvbpvJE1KpLzlZUtXMDBawOB4EVf99RLc9/Rr6Gky8cbBCf/+KU2Z9p7PGAp0RXJ7f50taLKqvlfbswYykdlqpiaR1lU4CNcsVfpWaYyQ5owBUg259S/TB6TGkYPKOrZ7ZdKdtzBRdAv7oidLQ3HT9ZauIlNy/NqLjKki62UADowUMDZR8tsA5NONWTqRAlDFVL8jPTgOQlNilUk5EmldQWd+9gNc3aL1eLU3qGQkLD3ZGT0pBXqaLOwdnsDSQ2Ro6i1jqjih2fKXty1NQdl2cNE7F2BJewajkyXc/uN/9e9v6dMvitKGCk0VsOq8RD7fzTQQ+ITm1LTbTE1xl1IjGSddlVh8iCVVmhkDpFoSgKIgEWu/hZINU3WXySodwSuNFaPLBYbuBlKa4vZ9qnzAGaqCFq8GaaJk481B96pUCiDXoFYHUghIZWpAbnB5wNSS3SgScCfcz0WluWGcnnelSDulq4nfIfXDf3wPtr8+gFSMWnsoUqAjNxVEa6r0cwyndufwyt6R0P0nijYOjEyGbssamnd+iM/zojBTU7BiQS5Wy7tJx3/JGpLe1bqSgJO+47hvsMrEeynd2ha1yhJbztCwoMlC1lRDAYehShiqgpyX+v3zwCgAr36hQUsnlV1sfgYpMi9rvknpCtqyRqwGjVaKflN6cgbVzkRXJAw93sX/0V1o0SLgym6o4FPIp1U0p3R/xhvFE4OjY4uXAzXk1r/IRJz0F7enMe7NX1OkgOK1KFClmLYjJ22o6M5P3yZsaBKaKpCzNAxNlLBr/7h7f11t2BtXeEGeUqVIu14DRePE1BT0HKKpYCP0trjLBd15M1aB25GIBuRxlDJUpHUF+0cm0ZoxoCgCmiJQ9BrEduR0lB2EKlla0wZO6sjEqj0EUa0xQKohU5VoTmmJaBSZMVRkvGUBIQRUVaAMWbUGKWNUz7yYqoJFrWl0ZA38ZWAcfxnwAiRDaViAZKgSKX3q5wePw9KTX4N0PHjv8g7880ffBcdB8reQe1njOAdIGUPF0s4sXtw1iKI3jNY9Xjckas+YGPCGTFc0p7RE1FISHUvx/+ROMFWRWNSaTuSJRfMyX9VqkGYanSKlwOK2NNqzbluAfm90QdZUG5YZMFQFp3RmpzJIgeOo50BRmpkQAid3ZGDUcX5ZrfitF2L+NNoyBprSGgbHi5CRXY0ZU0VKD7/nubWf5iO+6qkqVQF0VUCI6RmkmXZWVHR7u6oqc57yVnwGkAa3X1uaEqvdXPOZ7cBf1k0y6bWViHuHdkW689tGCyWoSnhcjRQCzZGO5km8yCM6Wlxio6qCWaNogHS4MQrRGpd0jAaQBpdwTF1JfMbieGE7TmK6zh+KwNTmjLjLWxoyuur10pq6XZECXfnwNvKkB65ER4IBElWlKcHeQVMBUqV79qFEJ4tnYxQg6aEMEhOocWH7s/3i8To5UlNtFBp9JIeX1hVYhoJy2ZmWQZo2zysJT4joGGOARFW1pg2/I2swqNCUwxeg9kQGYebMGC2xBU78cepVM9/Ztje3MCavkyPlN+JMwPMQQsDSFBSEHQqAqjVcTvrvhehI8BOCqsoHhoYGM0iqPPx4jgVNFnRFouDtkMlaamx6QQWvlDOHqaWi+grOzEuqSoCUlExYpZN2MACqFgwl/fdCdCS4xkCHFcwgVXbpHIqlKTila2rUQj5GGaTKtmbAbT9A8ZGUoOJQDFVBb3MK6cPU6cVFxlDRmTOx6YJTAADnL2uv+ns4Hn43RHPFS2g6rGCANJsxFZoicdqCHF5+YwiAm42Kywm2UJoKkFIJ+RCbD0xNYrzoHP6OCdDcgKHMR+vi0xdAlwLZlFZ1eTAuFzhE9cQMEh1WcOeX8P/fzHRFYkV3zv9zk6XHpgFgMIPEtvzxsaQ9g+VducPfkWpCCoH2nBkqlL9oZTcA4MKVXWyoSvMSM0h0WMErSneJ7dD3l1LgtAU5nH9KOwxNQaaBjSKjghkkNr+LjyTV7RyPFK/+SzpThfL/9PfvxKrePE7pyvJ3Q/MSAySak9lOgk8bGj62dhGkEDBjtJ0+GKjxpE/kUr35i7YQfrYopStYuaAJAJfYaH6KzycXJYIQmFW6PaUrKNkOSrbjTgePiY+uWYQlbWl84B1dHDNC5KnMXww26xRCQEh34HNcMsBE9cQMEs2JmGUGqVLfY9sODDU+AVLe0vDgx8/ES28c5EmfKECTEkXYoWyRKgXrj2jeYoBEcyJnmUHSFAk4DiAO33m73pIyUJSonlTFzRRFl6G5FE3zFZfYaE6EEBCzGPGqKxKKlLAdJ3YnWAFxXHRtJjqWDFWZtttUkSI2O1CJ6o0BEs2JxOF3sQFu7yRNFVCFhFZtdkEDCQFIJGMcBFG9aIqc1vpCkdPnshHNF3zl05zMtgbJ0hXkLQ2qgtgtsQHetub4HRZRwyhSQFfDbwqVARLNY6xBojmZbQ0S4M5ks+34NWR06yy4zZ8oKGdpMCItOSxNjeUFDlE9MECiORFi9ktTHVkTGUON1TZ/wG0ErszheRDNB3lLA6CFbjuh2eIuNpq3GCDRnMw16ZLS4/cSE8LLIvHET3RIbIVB81m81j4ots5Z2gYAuOid3Q0+kqMn4O5gY6NIIiKaSSwCpHvuuQcnnngiTNPEmjVr8Otf//qQ97/77ruxbNkyWJaF3t5ebNq0CRMTE3U62vnpvo+9C1/64DtwwamdjT6Uo1bJILEGiYiIZtLwAOnRRx/Fddddh9tuuw3PP/88Vq1ahfXr12Pv3r1V7//II4/ghhtuwG233Ybf/e53eOCBB/Doo4/i85//fJ2PfH4xNRWLW9PHRVAhMLdicyIimn8aHiDddddd+OQnP4nLL78cK1aswH333YdUKoUHH3yw6v2feeYZnHXWWbjkkktw4okn4v3vfz8+8pGPHDbrREdHwFuaOg4CJIjZD90lIqL5qaEBUqFQwPbt27Fu3Tr/Nikl1q1bh2effbbqY97znvdg+/btfkD02muv4Sc/+QkuvPDCGX/O5OQkhoaGQl80N8KNkI6LAKkS6LGTNhERzaShW4z27duHcrmMzs5wXUtnZyd27txZ9TGXXHIJ9u3bh7PPPhuO46BUKuGqq6465BLbli1bcPvttx/TY59v3O39x0mA5D0P7tAhIqKZNHyJba62bduGL3/5y7j33nvx/PPP44c//CG2bt2KzZs3z/iYG2+8EYODg/7Xrl276njExw+3+3Tyg4qcqaGnyWr0YRARUYw1NIPU1tYGRVGwZ8+e0O179uxBV1dX1cfccsstuPTSS3HFFVcAAFauXInR0VFceeWVuOmmmyCrzP0yDAOGYRz7JzDPyOMkg6SrEq0Zvh6IiGhmDc0g6bqOM844A08++aR/m23bePLJJ7F27dqqjxkbG5sWBCmK26nZcZzaHSyxdxAREc0bDW9zfN111+Gyyy7D6tWr8e53vxt33303RkdHcfnllwMANm7ciJ6eHmzZsgUAsGHDBtx1113o6+vDmjVr8Morr+CWW27Bhg0b/ECJakOpkp0jIiI6HjU8QPrwhz+Mt99+G7feeit2796N008/HT/96U/9wu3+/v5Qxujmm2+GEAI333wz3njjDbS3t2PDhg340pe+1KinMG+wsJmIiOYL4czDdamhoSHk83kMDg4il8s1+nAS47W3R5AxVXRkzUYfChERzUP1/PxueAaJkmNxWxqCNUhERDQPsKiEZo3BERERzRcMkIiIiIgiGCARERERRTBAIiIiIopggEREREQUwQCJiIiIKIIBEhEREVEEAyQiIiKiCAZIRERERBEMkIiIiIgiGCARERERRTBAIiIiIopggEREREQUwQCJiIiIKEJt9AE0guM4AIChoaEGHwkRERHNVuVzu/I5XkvzMkAaHh4GAPT29jb4SIiIiGiuhoeHkc/na/ozhFOPMCxmbNvGm2++iWw2CyHEMfu+Q0NDDLqIiIgA7Nq1C7lc7ph+T8dxMDw8jAULFkDK2lYJzcsAqVaGhoZqHtESERElweDg4DEPkOqJRdpEREREEQyQiIiIiCLmZZF2rRiGgZtuugmlUumov1epVMIvf/lLrF27FoqiHIOj48/nz+fP58/nz+fPr8/PV1UVhmEc4yOrL9YgEREREUVwiY2IiIgoggESERERUQQDJCIiIqIIBkhEREREEYncxbZlyxbcc889ePPNN+syj4WIiIiSS9M0bNy4Effff/+sH5PIDNJTTz2F5uZmnHzyyVi4cCFM02z0IREREVGDWZbl/3cmk/H/96yzzsJDDz2Exx9/fNbf67jY5v/222+jo6Oj0YdBRERERyiXy2FoaMj/c6WX0ujo6Iz3AQAhBDKZDIaHh9HS0oKDBw9CCIEPfvCDGBsbw/79+/HGG2+gvb0dF110ETZv3jyr4zkuAqRXXnkFS5cubfRhEBER0TEihJhWRqNpGorF4oz3lVLCtm2oqgpd11EqlaAoCsbHx2FZFh577DFccMEFs/v5SQ+QbNvGhg0b8Mwzz/i3FQoFjI2NNfCoiIiIKE5WrlyJF198cdb3T2QNUtDVV1+Np59+GsVi0f8ql8uNPiwiIiKqAVUN7y/L5/NYuXKl/2chhP/fiqLgU5/6FADgpZdemlMNUqIDpGuuuQYPP/wwbNuG4zj+FxERESWbpmmQcnqYEp13Ojg4iJdeegmAGxzlcjkAbsH2GWecgYsvvti/7xe/+MVZ//xEBkiO4+Dqq6/Ggw8+iHK5DNu2Q19ERESUPMGAqFgsoqWlJfT3QojQEFwhBFpbW6FpGlpbWwHAL+Jub29HT08PvvOd72DZsmX+/WcrkX2Qrr76ajzwwAN+MFQta1StuIuIiIjiqVJgHbRv375p95ucnPT/23Ec7N+/H0IIDAwMwHEcWJaF8fFx9Pf3o6OjAy+88AJSqRSEENi4ceOsjyeRRdpziQCJiIhofuvu7sZXvvIVXHrppbN+TCIzSAmM6YiIiChBElmDRERERFRLDJCIiIiIIhggEREREUUwQCIiIiKKYIBEREREFMEAiYiIiCiCARIRERFRBAMkIkqU8847D9dee22jD4OIjnMMkIjouLVt2zYIIXDw4MFGHwoRJQwDJCIiIqIIBkhEFFujo6PYuHEjMpkMuru7ceedd4b+/uGHH8bq1auRzWbR1dWFSy65BHv37gUAvP766zj//PMBAM3NzRBC4OMf/zgAwLZtbNmyBYsXL4ZlWVi1ahW+//3v1/W5EVG8MUAioti6/vrr8dRTT+Gxxx7Dz372M2zbtg3PP/+8//fFYhGbN2/GCy+8gB/96Ed4/fXX/SCot7cXP/jBDwAAv//97/HWW2/h61//OgBgy5Yt+OY3v4n77rsPv/3tb7Fp0yZ87GMfw1NPPVX350hE8SQcTn4lohgaGRlBa2srvvWtb+FDH/oQAODAgQM44YQTcOWVV+Luu++e9pjnnnsOZ555JoaHh5HJZLBt2zacf/75GBgYQFNTEwBgcnISLS0t+PnPf461a9f6j73iiiswNjaGRx55pB5Pj4hiTm30ARARVfPqq6+iUChgzZo1/m0tLS1YtmyZ/+ft27fjC1/4Al544QUMDAzAtm0AQH9/P1asWFH1+77yyisYGxvDBRdcELq9UCigr6+vBs+EiJKIARIRJdLo6CjWr1+P9evX49vf/jba29vR39+P9evXo1AozPi4kZERAMDWrVvR09MT+jvDMGp6zESUHAyQiCiWTjrpJGiahl/96ldYuHAhAGBgYAB/+MMfcO6552Lnzp3Yv38/7rjjDvT29gJwl9iCdF0HAJTLZf+2FStWwDAM9Pf349xzz63TsyGipGGARESxlMlk8IlPfALXX389Wltb0dHRgZtuuglSuntLFi5cCF3X8Y1vfANXXXUVXn75ZWzevDn0PRYtWgQhBH784x/jwgsvhGVZyGaz+OxnP4tNmzbBtm2cffbZGBwcxC9+8QvkcjlcdtlljXi6RBQz3MVGRLH11a9+Feeccw42bNiAdevW4eyzz8YZZ5wBAGhvb8dDDz2E733ve1ixYgXuuOMOfO1rXws9vqenB7fffjtuuOEGdHZ24pprrgEAbN68Gbfccgu2bNmCU089FR/4wAewdetWLF68uO7PkYjiibvYiIiIiCKYQSIiIiKKYIBEREREFMEAiYiIiCiCARIRERFRBAMkIiIioggGSEREREQRDJCIiIiIIhggEREREUUwQCIiIiKKYIBEREREFMEAiYiIiCiCARIRERFRxP8H2Mb0gA+7oQEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + " sns.lineplot(data=df, x='date', y='average_price', hue='type')\n", + " plt.title('Avocado Price Trends Over Time')\n", + " plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "- **Regional Analysis:**" + ] + }, + { + "cell_type": "code", + "execution_count": 137, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAJtCAYAAAA/w9qPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1xT9/c/8FdAhiBTRRAFwUEFxVkVtTir4ta6Wq1aV1VsbdUOFUFw9tPW0da9rVj3rq11FgfujXWjtO4FiApIOL8/+N37TUhCAmTcJOf5ePBQkpvknXBz77nv93mft4yICIwxxhhjFsjG1A1gjDHGGDMUDnQYY4wxZrE40GGMMcaYxeJAhzHGGGMWiwMdxhhjjFksDnQYY4wxZrE40GGMMcaYxeJAhzHGGGMWiwMdxhhjjFksDnQYY6JKlSph4MCBpm6G6M6dO5DJZFi5cqWpm6Lk0KFDkMlk2LRpk6mbYlBS2x8YKwoOdBgrovnz50Mmk6Fhw4ambopkVapUCTKZTPzx8vLCe++9h61bt5q6aWZh8uTJSp+fnZ0dKlWqhM8//xypqammbh5jZqGEqRvAmLmKj49HpUqVcPLkSdy8eRNVqlQxdZMkqXbt2hg7diwA4P79+1i0aBG6d++OBQsWYPjw4QU+1t/fH2/evIGdnZ0xmipZCxYsQKlSpfDq1Svs378fP//8M86ePYsjR44Y9HWvXbsGGxu+HmbmjfdgxoogOTkZx44dw6xZs1C2bFnEx8ebukmS5evri379+qFfv374+uuvcfToUTg7O2P27NkaH5OTk4Ps7GzIZDI4OjrC1tbWiC2Wnh49eqBfv3749NNPsWHDBvTu3RtHjx7FyZMnDfq6Dg4OVh9kMvPHgQ5jRRAfHw8PDw906NABPXr0UAp03r59C09PT3zyyScqj0tPT4ejoyPGjRsn3vb48WMMHjwY5cqVg6OjI2rVqoVVq1apPDY3Nxdz585FzZo14ejoiLJly6Jdu3Y4ffq0uM2KFSvQsmVLeHl5wcHBAcHBwViwYIHKcxERpk6digoVKsDJyQktWrRAUlKS2vd6+/Zt9OzZE56ennByckKjRo3w+++/F+rzUuTt7Y3q1asjOTkZwP/l4fzwww+YM2cOKleuDAcHB1y5ckVjjs7Vq1fRq1cvlC1bFiVLlkRQUBAmTpyotM29e/cwaNAglCtXDg4ODggJCcHy5ctV2vPzzz8jJCQETk5O8PDwQP369bF27Vqd3otcLseECRPg7e0NZ2dndO7cGf/++694f0xMDOzs7PDkyROVxw4bNgzu7u7IzMzU6bUUvffeewCAW7duKd1+4sQJtGvXDm5ubnByckKzZs1w9OhRlccfOnQI9evXh6OjIypXroxFixaJw2SK1OXo6LI/CDlMGzZswLRp01ChQgU4OjqiVatWuHnzZqHfL2PFwUNXjBVBfHw8unfvDnt7e3z44YdYsGABTp06hXfffRd2dnbo1q0btmzZgkWLFsHe3l583LZt25CVlYU+ffoAAN68eYPmzZvj5s2bGDVqFAICArBx40YMHDgQqampGD16tPjYwYMHY+XKlYiIiMCQIUOQk5ODw4cP4/jx46hfvz6AvCGOkJAQdO7cGSVKlMDOnTsxcuRI5ObmIjIyUnyu6OhoTJ06Fe3bt0f79u1x9uxZtGnTBtnZ2Urv89GjR2jcuDFev36Nzz//HKVLl8aqVavQuXNnbNq0Cd26dSv0Z/f27Vv8+++/KF26tNLtK1asQGZmJoYNGwYHBwd4enoiNzdX5fEXL17Ee++9Bzs7OwwbNgyVKlXCrVu3sHPnTkybNk1sd6NGjSCTyTBq1CiULVsWf/zxBwYPHoz09HR88cUXAIAlS5bg888/R48ePTB69GhkZmbi4sWLOHHiBD766COt72XatGmQyWT45ptv8PjxY8yZMwetW7fG+fPnUbJkSXz88ceIi4vD+vXrMWrUKPFx2dnZ2LRpEz744AM4OjoW+jO8c+cOAMDDw0O87cCBA4iIiEC9evUQExMDGxsbMfA9fPgwGjRoAAA4d+4c2rVrBx8fH8TGxkIulyMuLg5ly5bV+rqF3R9mzpwJGxsbjBs3Dmlpafjf//6Hvn374sSJE4V+z4wVGTHGCuX06dMEgPbu3UtERLm5uVShQgUaPXq0uM2ePXsIAO3cuVPpse3bt6fAwEDx9zlz5hAAWrNmjXhbdnY2hYWFUalSpSg9PZ2IiA4cOEAA6PPPP1dpT25urvj/169fq9zftm1bpdd8/Pgx2dvbU4cOHZQeO2HCBAJAAwYMEG/74osvCAAdPnxYvO3ly5cUEBBAlSpVIrlcrvFzIiLy9/enNm3a0JMnT+jJkyd04cIF6tOnDwGgzz77jIiIkpOTCQC5urrS48ePlR4v3LdixQrxtvDwcHJxcaG7d+9q/BwGDx5MPj4+9PTpU6Vt+vTpQ25ubuLn1KVLFwoJCSnwPahz8OBBAkC+vr7i34iIaMOGDQSA5s6dK94WFhZGDRs2VHr8li1bCAAdPHiwwNeJiYkhAHTt2jV68uQJ3blzh5YvX04lS5aksmXL0qtXr8T3XrVqVWrbtq3K/hAQEEDvv/++eFunTp3IycmJ7t27J95248YNKlGiBOU/Jfj7+xdpfxA+n+rVq1NWVpa47dy5cwkAXbp0qcD3zZg+caDDWCF9+eWXVK5cOcrJyRFvGzt2rNJtb9++pTJlylC/fv3EbZ4/f052dnY0fvx48bY2bdqQt7e3SsDw22+/KQVKkZGRJJPJ6NmzZzq3MzU1lZ48eULTp08nAJSamkpERGvXriUA9Oeffypt//jxY5VAp1q1atSgQQOV554xY4ZOJyx/f38CoPRja2tLH3/8sRhsCMHMJ598ovL4/IGO0EbFoDK/3Nxccnd3p2HDhokBlvCzYsUKAkBHjhwhIqIBAwaQm5sbnTx5ssD3kZ9wIlf8Wwqv7ePjQ23bthVvW7BgAQGgmzdvird98MEHVLFiRaWgRB0h0Mn/U7NmTTp9+rS43dmzZwkArVq1SuU9DxkyhBwcHEgul1NOTg6VLFmSPvroI5XX6tSpk9ZAR9f9Qfh8/ve//yltJ7Rz+/btBb5vxvSJc3QYKwS5XI5169ahRYsWSE5Oxs2bN3Hz5k00bNgQjx49wv79+wEAJUqUwAcffIDt27cjKysLALBlyxa8ffsWvXv3Fp/v7t27qFq1qsrMlurVq4v3A3m5GOXLl4enp2eB7Tt69Chat24NZ2dnuLu7o2zZspgwYQIAIC0tTek5q1atqvTYsmXLKg2FCNsGBQWpvE7+9hWkYcOG2Lt3L/bt24djx47h6dOnWL16NUqWLKm0XUBAgNbnun37NgCgRo0aGrd58uQJUlNTsXjxYpQtW1bpR8ibevz4MQDgm2++QalSpdCgQQNUrVoVkZGRanNaNMn/GcpkMlSpUkUcWgKA3r17w8HBQczjSktLw65du9C3b1+VnBhNNm/ejL1792Lt2rVo1KgRHj9+rPT53bhxAwAwYMAAlfe8dOlSZGVlIS0tDY8fP8abN2/UzhDUZdZgYfcHPz8/pd+F/evFixdaX4sxfeEcHcYK4cCBA3jw4AHWrVuHdevWqdwfHx+PNm3aAAD69OmDRYsW4Y8//kDXrl2xYcMGvPPOO6hVq5ZB2nbr1i20atUK77zzDmbNmoWKFSvC3t4eu3fvxuzZs9XmuxhDmTJl0Lp1a63b5Q98ikp4n/369cOAAQPUbhMaGgog7wR97do17Nq1C3/++Sc2b96M+fPnIzo6GrGxsXppj4eHBzp27Ij4+HhER0dj06ZNyMrKQr9+/XR+jvDwcJQpUwYA0KlTJ9SsWRN9+/bFmTNnYGNjI77n77//HrVr11b7HKVKlSpS4nNxaJotR0RGbQezbhzoMFYI8fHx8PLywrx581Tu27JlC7Zu3YqFCxeiZMmSCA8Ph4+PD9avX4+mTZviwIEDKjOD/P39cfHiReTm5ir16ly9elW8HwAqV66MPXv24Pnz5xp7dXbu3ImsrCzs2LFD6Ur64MGDKq8J5PUCBAYGirc/efJE5Urb398f165dU3mt/O0zFqG9ly9f1rhN2bJl4eLiArlcrlOA5ezsjN69e6N3797Izs5G9+7dMW3aNIwfP15rorDQkyIgIty8eVMMpAT9+/dHly5dcOrUKcTHx6NOnToICQnR2jZ1SpUqhZiYGHzyySfYsGED+vTpg8qVKwMAXF1dC3zPXl5ecHR0VDvzSZfZUFLbHxjTBQ9dMaajN2/eYMuWLejYsSN69Oih8jNq1Ci8fPkSO3bsAADY2NigR48e2LlzJ3799Vfk5OQoDVsBQPv27fHw4UOsX79evC0nJwc///wzSpUqhWbNmgEAPvjgAxCR2l4G4epYuHpWvFpOS0vDihUrlLZv3bo17Ozs8PPPPyttO2fOHJXnbt++PU6ePInExETxtlevXmHx4sWoVKkSgoODdfrs9KVs2bIIDw/H8uXLkZKSonSf4ufwwQcfYPPmzWoDIsWp3s+ePVO6z97eHsHBwSAivH37Vmt7Vq9ejZcvX4q/b9q0CQ8ePEBERITSdhEREShTpgy+++47/P3334XqzVGnb9++qFChAr777jsAQL169VC5cmX88MMPyMjIUNleeM+2trZo3bo1tm3bhvv374v337x5E3/88YfW15Xa/sCYLrhHhzEd7dixAy9fvkTnzp3V3t+oUSOxeKAQ0PTu3Rs///wzYmJiULNmTTGXQTBs2DAsWrQIAwcOxJkzZ1CpUiVs2rQJR48exZw5c+Di4gIAaNGiBT7++GP89NNPuHHjBtq1a4fc3FwcPnwYLVq0wKhRo9CmTRvY29ujU6dO+PTTT5GRkYElS5bAy8sLDx48EF+zbNmyGDduHGbMmIGOHTuiffv2OHfuHP744w9xeETw7bff4rfffkNERAQ+//xzeHp6YtWqVUhOTsbmzZtNUjX3p59+QtOmTVG3bl0MGzYMAQEBuHPnDn7//XecP38eQN605oMHD6Jhw4YYOnQogoOD8fz5c5w9exb79u3D8+fPAQBt2rSBt7c3mjRpgnLlyuGff/7BL7/8gg4dOoiffUE8PT3RtGlTfPLJJ3j06BHmzJmDKlWqYOjQoUrb2dnZoU+fPvjll19ga2uLDz/8sFifgZ2dHUaPHo2vvvoKf/75J9q1a4elS5ciIiICISEh+OSTT+Dr64t79+7h4MGDcHV1xc6dOwHkLSvx119/oUmTJhgxYgTkcjl++eUX1KhRQ/z8NJHi/sCYVqbLg2bMvHTq1IkcHR3FKb3qDBw4kOzs7MRpzbm5uVSxYkUCQFOnTlX7mEePHtEnn3xCZcqUIXt7e6pZs6bSdGpBTk4Off/99/TOO++Qvb09lS1bliIiIujMmTPiNjt27KDQ0FBydHSkSpUq0XfffUfLly8nAJScnCxuJ5fLKTY2lnx8fKhkyZLUvHlzunz5ssosGyKiW7duUY8ePcjd3Z0cHR2pQYMGtGvXLp0+M39/f+rQoUOB2wgzq77//nuN9+X/PC5fvkzdunUT2xQUFESTJk1S2ubRo0cUGRlJFStWJDs7O/L29qZWrVrR4sWLxW0WLVpE4eHhVLp0aXJwcKDKlSvTV199RWlpaQW2WZhV9Ntvv9H48ePJy8uLSpYsSR06dFCZ9i44efIkAaA2bdoU+NyKhFlXT548UbkvLS2N3NzcqFmzZuJt586do+7du4vvx9/fn3r16kX79+9Xeuz+/fupTp06ZG9vT5UrV6alS5fS2LFjydHRUWm7ou4PwuezceNGpds1/T0ZMyQZEWeFMcaYoV24cAG1a9fG6tWr8fHHH5u6OSq6du2KpKQklbwjxswd9zMyxpgRLFmyBKVKlUL37t1N3RS8efNG6fcbN25g9+7daN68uWkaxJgBcY4OY4wZ0M6dO3HlyhUsXrwYo0aNgrOzs6mbhMDAQAwcOBCBgYG4e/cuFixYAHt7e3z99dembhpjesdDV4wxZkCVKlXCo0eP0LZtW/z66686JTkb2ieffIKDBw/i4cOHcHBwQFhYGKZPn466deuaummM6R0HOowxxhizWJyjwxhjjDGLxYEOY4wxxiyW1SUj5+bm4v79+3BxcdF5QT3GGGOMmRYR4eXLlyhfvnyhilNaXaBz//59VKxY0dTNYIwxxlgR/Pvvv6hQoYLO21tdoCPMePj333/h6upq4tYwxhhjTBfp6emoWLFioWcuWl2gIwxXubq6cqDDGGOMmZnCpp1wMjJjjDHGLBYHOowxxhizWBzoMMYYY8ximTTQWbBgAUJDQ8V8mbCwMPzxxx8at1+5ciVkMpnSj6OjoxFbzBhjjDFzYtJk5AoVKmDmzJmoWrUqiAirVq1Cly5dcO7cOYSEhKh9jKurK65duyb+zrVwGGOMMaaJSQOdTp06Kf0+bdo0LFiwAMePH9cY6MhkMnh7exujeYwxxhgzc5LJ0ZHL5Vi3bh1evXqFsLAwjdtlZGTA398fFStWRJcuXZCUlFTg82ZlZSE9PV3phzHGGGPWweSBzqVLl1CqVCk4ODhg+PDh2Lp1K4KDg9VuGxQUhOXLl2P79u1Ys2YNcnNz0bhxY/z3338an3/GjBlwc3MTf7gqMmOMMWY9ZEREpmxAdnY2UlJSkJaWhk2bNmHp0qX4+++/NQY7it6+fYvq1avjww8/xJQpU9Ruk5WVhaysLPF3obJiWloaFwxkjDHGzER6ejrc3NwKff42eWVke3t7VKlSBQBQr149nDp1CnPnzsWiRYu0PtbOzg516tTBzZs3NW7j4OAABwcHvbW3sORyOS5evIjnz5/D09MToaGhsLW1NVl7GGOMMWti8kAnv9zcXKUemILI5XJcunQJ7du3N3CriiYhIQHz58/Hw4cPxdu8vb0xcuRIhIeHm7BljDHGmHUwaY7O+PHjkZCQgDt37uDSpUsYP348Dh06hL59+wIA+vfvj/Hjx4vbx8XF4a+//sLt27dx9uxZ9OvXD3fv3sWQIUNM9RY0SkhIQExMDAIDAzFv3jzs3r0b8+bNQ2BgIGJiYpCQkGDqJjLGGGMWz6Q9Oo8fP0b//v3x4MEDuLm5ITQ0FHv27MH7778PAEhJSYGNzf/FYi9evMDQoUPx8OFDeHh4oF69ejh27JhO+TzGJJfLMX/+fISFhWHq1KniewgJCcHUqVMRFRWFBQsWoEmTJjyMxRhjjBmQyZORja2oyUyFce7cOXz55ZeYN2+e2npASUlJiIyMxOzZs1GnTh2DtIExxhizJEU9f5t8erklev78OQAgICBA7f3C7cJ2jDHGGDMMDnQMwNPTEwCQnJys9n7hdmE7xhhjjBkGBzoGEBoaCm9vb8THxyM3N1fpvtzcXMTHx8PHxwehoaEmaiFjjDFmHTjQMQBbW1uMHDkSiYmJiIqKQlJSEl6/fo2kpCRERUUhMTERI0aM4ERkxhhjzMA4GdmA1NXR8fHxwYgRI7iODmOMMVYIRT1/c6BjYFwZmTHGGCs+s10CwtLZ2tryFHLGGGPMRDhHhzHGGGMWiwMdxhhjjFksDnQYY4wxZrE40GGMMcaYxeJAhzHGGGMWiwMdxhhjjFksDnQYY4wxZrE40GGMMcaYxeJAhzHGGGMWiysjM8YYMzheDoeZCgc6BsZfbsaYtVO3wLG3tzdGjhzJCxwzg+NAx4D4y80Ys3YJCQmIiYlBWFgYJk2ahICAACQnJyM+Ph4xMTGIjY3l4yEzKF693ECEL7e9vT2ysrLE2x0cHJCdnc1fbsaYxZPL5ejbty8CAwMxdepU2Nj8X1pobm4uoqKikJycjDVr1nBPN9OqqOdvTkY2ALlcjlmzZoGIUKdOHYwePRrffPMNRo8ejTp16oCIMHv2bMjlclM3lTHGDObixYt4+PAh+vbtqxTkAICNjQ369u2LBw8e4OLFiyZqIbMGPHRlAOfPn0dqair8/PyQnJyM48ePi/eVK1cOfn5+SElJwfnz51GvXj0TtpQxxgzn+fPnAICAgAC19wu3C9sxZgjco2MA58+fBwCkpKSgcuXKmDdvHnbv3o158+ahcuXKSElJUdqOMcYskaenJwAgOTlZ7f3C7cJ2jBkCBzoGIKQ9BQcHY+rUqQgJCYGTkxNCQkIwdepUBAcHK23HGGOWKDQ0FN7e3oiPj0dubq7Sfbm5uYiPj4ePjw9CQ0NN1EJmDTjQMQAXFxcAUEpCVpSZmam0HWOMWSJbW1uMHDkSiYmJiIqKQlJSEl6/fo2kpCRERUUhMTERI0aM4ERkZlCco2MAQjfsrVu3MHHiRPTr10+cUrlmzRrcvn1baTvGGLNU4eHhiI2Nxfz58xEZGSne7uPjY5WzT7m2mvFxoGMAZcqUEf9/9uxZJCYmir87ODio3Y4xxixVeHg4mjRpYvUneK6tZhoc6BiAMC7t5uaG1NRUPHr0SLzPw8MDbm5uSE9P53FpxpjVsLW1RZ06dUzdDJPhwommwwUDDUTYqRs2bAhfX19kZWXBwcEB9+7dw4kTJ3inZowxK8GFE/WjqOdv7tExkPDwcPTu3RsbN25UqqNja2uL3r17c5DDGGNWQiicOGnSJI2FEyMjI3Hx4kWr7vUyFA50DCQhIQHr169Ho0aN0KBBAzg6OiIzMxMnT57E+vXrERwczMEOY4xZAS6caFoc6BiAXC7H/PnzERYWptJN2aVLF0RFRWHBggVo0qQJd1MyxqyCNc82UiycGBISonI/F040LK6jYwC8vgtjjP2fhIQE9O3bF19++SWmTJmCL7/8En379kVCQoKpm2YUXDjRtDjQMQDupmSMsTzCxIzAwECl5XACAwMRExNjFcEOF040LQ50DIDXd2GMMdVh/PzL4YSFhWHBggWQy+WmbqrBCYUTb9++jcjISLRv3x6RkZFITk7mWbgGxjk6BqDYTaluKiF3UzLGrAHPNlLGhRNNg3t0DIC7KRljjIfx1REKJ7Zq1Qp16tTh84ARcI+OgfD6Lowxa8ezjZgUcKBjQNxNyRizZjyMz6SAAx0Ds/b1XZh5suaaJ0x/hGH8mJgYREVFoW/fvkprPCUmJiI2Npb3LWZQvNYVY0wJr7BsXswhKFW3T/n4+GDEiBG8TzGdFfX8zYEOY2bGkCc2xRWWNV1984lJOswpKDWHgIxJGwc6OuJAh5kzQ57YeIVl88JBKbM2RT1/8/RyxsyEoSvM8tIl5oML8TGmOw50GDMDxjixcc0T86EYlBIRzp07h/379+PcuXMgIkkGpXK5XKmdHIQxYzHprKsFCxZgwYIFuHPnDgAgJCQE0dHRiIiI0PiYjRs3YtKkSbhz5w6qVq2K7777Du3btzdSiwsvMzMTKSkpSrf5+fnB0dHRRC1iUqcul8EYFWa55on5EILN+/fvY8qUKSpDmYMHD1baztTMKZeIWR6TBjoVKlTAzJkzUbVqVRARVq1ahS5duuDcuXNqD7THjh3Dhx9+iBkzZqBjx45Yu3YtunbtirNnz6JGjRomeAfapaSkYNiwYUq3LV68GNWqVTNRi5iUaTohNG3aFIBhe1u45on5EILN6dOnIywsDJMmTVLK0Zk+fbrSdqakmEuUv50xMTGcS8QMjyTGw8ODli5dqva+Xr16UYcOHZRua9iwIX366ac6P39aWhoBoLS0tGK1U1dv3ryhv/76i5o1a0Z//fUXXbt2jd68eWOU12bm5e+//6bmzZvT+PHj6fLly/Tq1Su6fPkyjR8/npo1a0bNmjWjy5cvq33s5cuXqVmzZnT27FmDtaF58+b0999/F+v5mX5kZWVRy5YtqWvXrvT27Vul+96+fUtdu3alli1bUlZWlolamCcnJ4d69+5N48ePJ7lcrnSfXC6n8ePHU58+fSgnJ8dELSycN2/e0LVr15R++HhuPEU9f0umYKBcLsfGjRvx6tUrhIWFqd0mMTERY8aMUbqtbdu22LZtm8bnzcrKQlZWlvh7enq6XtqrK0dHR/j7+wMA/P39uSeHqZU/B0foTRFycCZOnIiTJ09izZo1mDZtmsF6W3jpEvOQlJQEuVyOFy9eYNKkSWjQoAEcHByQlZWFkydP4sWLF+J2pixYammLenIPvXkyeaBz6dIlhIWFITMzE6VKlcLWrVsRHBysdtuHDx+iXLlySreVK1dOqZs/vxkzZiA2NlavbWZM37SdEPr164fExEQcP37c4BVmeekS6ROGKD/44ANs27YNiYmJ4n22trb44IMPsHnzZpPn6AivX758eVy/fl3pPj8/P7NLcPfz88PEiRMxbdo0TJw4Ef7+/vDz8zN1s5gWJg90goKCcP78eaSlpWHTpk0YMGAA/v77b43BTmGNHz9eqRcoPT0dFStW1MtzM6Yvus54+uCDD3DkyBGD97bw0iXSJuTebN68GWFhYWjQoAEcHR2RmZmJkydPYvPmzUrbmYrw+idOnMDMmTOV7lu8eDHevn2rtJ3UcQ+9eTJ5oGNvb48qVaoAAOrVq4dTp05h7ty5WLRokcq23t7eePTokdJtjx49gre3t8bnd3BwgIODg34bzZie6TrjqUmTJhgxYgT3tli5kJAQ2NrawtXVFVOmTEGJEv93KO/UqRN69uyJ9PR0tfuSMQkJ7gcPHsTChQvx77//ir0hFSpUwNSpUznBnRmc5Oro5ObmKuXUKAoLC8P+/fuVbtu7d6/GnB7GzIXijKfc3Fyl+/Ln4Ai9La1atUKdOnU4yLFCQo5OamoqoqOjkZSUhNevXyMpKQnR0dFITU2FXC5HUlKSSdspLOp58uRJrF69Gjk5OQCAnJwcTJ06FYmJiRgxYoQk9uHMzExcv35d5SczM9PUTSs0rlmkzKQ9OuPHj0dERAT8/Pzw8uVLrF27FocOHcKePXsAAP3794evry9mzJgBABg9ejSaNWuGH3/8ER06dMC6detw+vRpLF682JRvg7Fi41WeWWEIQ50TJkzAsmXLVIYyJ0yYgGnTpkki90Uxwf3YsWMAgO+++05pyFVdvTHAuDXH1CUaA+aXbMw1i1SZNNB5/Pgx+vfvjwcPHsDNzQ2hoaHYs2cP3n//fQB5O55iYmbjxo2xdu1aREVFYcKECahatSq2bdsm2Ro6jBWGrjOeeHFEJgx1Pn78GJRvucLc3Fw8fvxYaTtTExLcd+/ejR9//BFjx45F+/btxf1WCkGGn58fFi9ejLt375ptsjHXLFLPpIHOsmXLCrz/0KFDKrf17NkTPXv2NFCLGDMtbTOe+GqNAXlDne7u7liyZAnCwsIQHR0tntTWrFmDJUuWwN3dXVK5L7a2tggKCgKQNwlFMTiXQpDh6OioFFSZW7KxthIVUVFRWLBgAZo0aWJ1F0aSy9FhzNppysEx9KKezLLIZDJTN0FnQpCRf0YTL5WjO16UVzOTz7pijGnHV2tM0cWLF5GamoqhQ4dix44dSkOd3t7eGDJkCJYuXWq0Qny8pp/p8aK8mnGPDmNmgK/WmCLhZOXl5aW250YorGqsk5qQY6P4oy65mBmOYokKdax5UV4OdBgzA3y1ZhjmOg1XOFlNmzZN7VDmtGnTlLYzNKFiMABMnDgRixcvNqskXktQmBIV1oaHrhgzA7oWFLTGq7WiMufEbsWCgXFxcWLBwJCQEMTFxRm9YCBXDDY9LlGhGQc6jJkBxau12NhYXL58WZyVVaNGDau+WisKc5+Gq1gwUN2inqmpqSAiky/qyYyLF+VVjwMdxsyAcLUWHR2Njh07KlUPF05wcXFxVnm1VliWkNgtDFF2795d7aKe3bt3l8Sinsz4eFFeVRzoWAEuMGc5NE0ZNqepxKamuFI8EeHcuXNK342+ffsiMjLSaDOWikIYotyyZQsaNWqksqjnli1blLZjzJpxoGPhEhIS8Msvv4iVUoG8mRqjRo2y2m5Mc6TYC6Fu6ComJkbyvRBSIfRy3L9/H1OmTFHJ0Rk8eLDSdqakaWmEypUrG3VRT75YMh/mnHtmKBzoWLCEhARER0er3P748WNER0cjLi7Oand8c6PYC2FnZ6fS02AOvRBSoThjqXHjxio5OsaesVQQTUsjjB07FnK5HC9evEB0dLRK4umLFy8AQC85OnziNB/mnntmKDy93ELJ5XLMnDkTAODh4YFx48Zh8+bNGDduHDw8PAAAM2fONJvptNZOn9PL1a3SnH+FZnOddq0LYcaSh4cH4uLiEBISAicnJ3HGkoeHB2xtbY02Y6kgwtII+aduCz04EydOxO3btxEZGYn27dsjMjISycnJ4vbF7ZXiatzmI3/umeJ+PXXqVISFhWHBggUW9V3WFffoWKizZ8/i9evXcHFxwbp163DlyhWcP38evr6+WLduHXr06IGXL1/i7NmzePfdd03dXKaFPqeXq+slUFw80dKv4BVnLKnrDZHSjCVN6y+9evUKAFC+fHnEx8erDCtdvXoVQPF6pSwhaduaKPb6aioqaq29vtyjY6H++usvAMB7772HAQMG4Msvv8SUKVPw5ZdfYsCAAWjatKnSdkza9FkMTF0vgVDczRqu4IVejgkTJqjtDZkwYYLSdlKkuD/IZDKltdFkMpleyg1wNW7zotjrq65H1pqLinKPjoV68+YNAGD37t1q8xD++OMPpe0KoikhkteyMR59FgNT10vg6OhoNVfwQi+HIXtDDM0YxeG4Grd5EfbXrVu3YufOnSo9sp06dVLazppwoGOhatSogSNHjsDJyQkxMTG4cuUKEhMT4enpiZiYGHTr1g2vX79GjRo1tD6XpoRIxeEOZniGLgZmLV3fir0hU6dOVXov5lQq39D7A1fjNi+hoaFwd3fHkiVLVJKR16xZgyVLlsDd3V3y+7UhcKBjoSpXrgwAeP36NTp16oTs7GzxPnt7e/F3YbuCCEMdd+/exbRp0zBx4kT4+/vzWjYmEB4ejkaNGmH79u24f/8+ypcvjy5dusDe3r7Yz20tV/CWVCrfkPtD/oBQMfg1p4CQ/R9rrbfFgY4W5lo/Ij09Xfy/YpCT/3fF7TTRlBDJjE9dovDmzZv1kihsTVfwllIq35D7gyUFhNbg4sWLSE1NxdChQ7Fz506V/XrIkCFYunSp2ffIFgUHOgUw59kn7u7uAIAyZcrg+fPnSgmswtTap0+fitsx6TN0jQxru4I391L5xqiZYikBoTUQelq7deuGPn36qOzXWVlZWLp0qdn3yBYFBzoaWErhJR8fH6xZswY7d+4Uu7Y7deqEr776Ck+fPjV185iOjJEobI1X8La2tmZ5dWvMxHFzDwitRf4e2fz7tSX1yBYWTy9XwxIKL6WmpgIALl26hLi4OAQHB2Po0KEIDg5GXFwcLl26pLSdJbDkInfGmuorXMGrm3ZtLsG9NVDcH4T1uoT9noj0PvVbCAiFKewc5EiPPktQWBru0VHDEmafCFG7tvFaS4nuzXmYURfGTBTmK3jpM6f1uphxWGOPrK440FHDEmafCNF9UlISfv31V7WLQFpKdG8pw4wFMXaisLkO6VgLc1qvixkP51Spx0NXaiieVNQxh7FOIbpPTExETEwM7O3tERYWBnt7e8TExCAxMREjRoww++jeEoYZdcHd0kyROa3XxZQZeog9PDwc8fHxmD17NiZNmoTZs2djzZo1VhvkANyjo5alzD6xhujeEoYZdcHd0kyROa3Xxf6PsYbYuUdWGQc6aljSScXS8y0sYZhRV9YQuDLdKK7XtWzZMpX9YcKECZg2bZpF7PeWwhqG2KWKAx0N+KRiHqypyB1g+YEr040lrNdlTaxlHTmp4kCnAJZwUrH02UiWMsxYGObQLa1uIVheBFZ/LGW9LmthLUPsUsWBjhbmcFLRxBq6Si1pmNGSqFsIVoqLwJrrEi+K+/3EiRPRoEEDODg4ICsrCydPnsTx48d5v5cQaxpilyIOdCyUNXWVGmuYUV0vBcA9Fer4+flh4sSJkl4E1tx7O8PDw9G7d29s3LgRiYmJ4u22trbo3bu3WbwHa2FtQ+xSw4GOhbK2rlJjDDOq66UApNlTYWqOjo7w9/cHIM1FYC2htzMhIQHr169Ho0aN0KBBAzg6OiIzMxMnT57E+vXrERwcLPn3YC2scYhdSriOjoWyxq5SQ5ep9/Pzw+LFizFx4kQAwMSJE7F48WLJ9VSwgllC7SXF9xAXF4dKlSrB3t4elSpVQlxcnFm8B2uiWNcsKioKSUlJeP36NZKSkhAVFWUxdc2kint0LJQ1dpUaOt/C0dFRqWdCij0V+mLq3BVDDhPqs7czOzsb27dvFxfM7dKlC+zt7YvVPl0I76FTp074+OOPVYbfOnbsiGPHjumtx5aTy4uPZ/KaDgc6FsraukrNPd9CSqTwWRpymFBfvZ0LFy7Exo0blXpNFi5ciJ49e2L48OHFaqM2QtuWLFmCsLAw9O7dW2noaunSpUrbFZe5JJdLXXh4OBo1amSS4NiacaBjoaxpNpIl5FvoytAJ0VL5LIVhwrt37+o9oVkfvZ0LFy7EunXr4OHhgcGDByMsLAyJiYlYtmwZ1q1bBwAGDXbc3d0B5H1Ot2/fVkpGLleuHPz8/JCSkiJuV1zmkFxuDtRdRGzevJkvyAyMc3QsmNBVevv2bURGRqJ9+/aIjIxEcnKyxZz8LSHfojCEK+v8P+qCn8JS/CxjY2ORnZ2NxMREZGdnIzY21qifpTBMmD+hWR/BXHHXDcvOzsbGjRvh4eGBjRs3omPHjihdujQ6duyodHt2dnax26pNSkoKAgMDMW/ePOzevRvz5s1DYGCgXvYHReqSy3nYqnCEiwh1f6+YmBgkJCSYuokWi3t0LJyld5Va4uyygvJjDNnTYey8D1Mpbm/n9u3bIZfLMXjwYJQooXwILVGiBAYNGoQff/wR27dvR8+ePQ3yHnQdkrKkyQbmzJrKfUgRBzpmoDgJj5beVWpps8sSEhIwb948PHr0SLytXLlyiIyMRHh4uEETohXzPho3bqwydKXvvA9TKk5i6P379wEAYWFhau8Xbhe2M4TU1FQAQOfOnXHy5EmV99C5c2fs2LFD3I6ZlrEvyEw9mUBqONCRuOIkPBoz38JUszIsaXZZQkICoqOj4eDgoHS7sEJ1XFycQYNTIZ+jZs2aaq86R48ejUuXLukt78PUilp7qXz58gCAxMREdOzYUeV+IV9G2M4QhL/Bo0eP8Ouvv+Ly5cvie6hRowaioqKUtmOmZcwLMilMJpAaztEpQGZmJq5fv670k5mZabTXFxIeXV1dMW7cOGzevBnjxo2Dq6sr1q1bh4ULF2p8rLFzV9Tljug7T0Cd4uZbSIVcLsesWbMAAHXr1lUaw69bty4AYNasWRaTayQVRam91KVLF9ja2mLZsmXIyclRui8nJwfLly+Hra0tunTpYqhmo0yZMgCAkydPIiYmBvb29ggLC4O9vT1iYmJw8uRJpe2YaSlekMnlcpw7dw779+/HuXPnIJfL9XZBxnlA6nGPTgFMOaVSMeFx3bp1uHLlCs6fPw9fX1+sW7cOffr0wcaNG/HRRx8pRe6CFy9eiF2lRIRz584pXbXqu6tUH7MyitLdaimzy86fP4/U1FTUrFkTcXFxuHz5MhITE+Hp6Ym4uDiMGTMGly5dwvnz51GvXj2DtEEY5rh8+bLaz/Ly5ctK21kre3t79OzZE+vWrUPPnj0xaNAgcdbV8uXL8eLFC/Tp08egeXBCgO/m5oZbt24pDV15e3ujWrVqSE9Pl3yAby2Ev9dPP/2EtLQ0ld4WNze3Yl+QcR6QZhzoFEBd4qexplQKCY/vvfceBgwYoPLFeO+997Bjxw6sWbMGGzZsUHn8kCFDAOTlCUyZMkXl8YMHDwagv3yL4pb8L053qyUU4jp//jwAoF69emoTgdu2bWvwQEe4mhwyZAh27typ8lkOGTIES5YsMYthQEMTho03btyIH3/8Ubzd1tYWffr0MXgdHSHAVzfUKVzkxMXFWd0JTapsbW3RvHlzsSTBuHHjlEoSXLt2DX369CnW38sSJ2boCwc6BVCX+GmsKZVCIuOOHTvUHsh27NgBAHjz5o3aWTgvXrwAAEyfPh2NGjVSKSg2ffp0ANLIXdFHLpEx1royhlWrVqn9HFavXm3w1xauOpOSktTmfcTExJjFMKCxDB8+HIMGDTLpjEaZTAYiUrqNiCCTyYzWBqadXC7HoUOHEBQUhNTUVPzwww/ifd7e3ggKCsLff/+NoUOHFvmYZWkTM/SJAx2J8vb2Fv9ft25d9OvXTzzxrVmzRkx4rFChgtpZONnZ2bC1tYWjo6PagmJOTk7IzMxUm8BrTPrsbhXyLcyREDyUKlUKcXFx4rTlkJAQxMXFoVu3bnj58qVBgwzFYcCYmBj07dsXYWFhSE5ORkxMjNkMAxqTMIxlbML3plq1aipDIZ6ennBzc7PaYQopUuxteeedd1QuyK5evVrs3hYpTcyQ2pIhHOhIVKVKlQDknXyio6Nx9epVMWcjOjoaHTt2hFwuF7fLLykpCXK5HK9evYK9vb1KV+mrV6/E7UwZHHB3ax7hvb98+RKTJk1SCWxfvnyptJ2hWMIwoDUQvjePHj1S22N7/PhxEJHFf2/MhWJvi7oLMn30tkhp2R+pLRnCgY5ECYmfcrkcHTp0UJpRZGNjI/5++fJlNGzYUOXxT58+BQBUrVoVaWlpSl2l5cqVQ9WqVXHjxg1xO1Ph7tY8igm+Z8+eVeqBUxy6NEYisKUMA1oy4XtbpUoVtT22VapUkcT3m+UxRm+LYo/sxIkT0aBBAzg4OCArK0sMfvXVI6utx8aU+a3qmHR6+YwZM/Duu+/CxcUFXl5e6Nq1K65du1bgY1auXAmZTKb0Y+mlyNVNm9ZGOCFWr15dpRdAJpOhevXqStuZiuIBQB1zqoNTHML7Gzp0KDw8PFTuE5LLjfU5FGXaNTMe4Xt748YNVK5cWWkqceXKlXHjxg2l7ZhpGasMRnh4OHr37o2TJ09i7ty5+N///oe5c+fi5MmT6N27t956ZLWVE1G3hIspz9Mm7dH5+++/ERkZiXfffRc5OTmYMGEC2rRpgytXrsDZ2Vnj41xdXZUCIktMvBN2eBcXF6xfvx6///67mPDYoUMH9O7du8CcDaFQ2I4dO1SSW9esWSMmM5u6oFhhulstudonJwKzwnB1dQWQ9/1Vl9PVo0cPpKamitsx09JnGYyCelMSEhKwfv16NGrUCA0aNFAazly/fj2Cg4P1EuyY2yKvJg10/vzzT6XfV65cCS8vL5w5c6bAP4ZMJlNK1rVEijkbU6ZMQb9+/dChQwckJydjypQpWnM2FK/8c3NzceDAAWRlZcHBwUHpisLUPSW6HgCOHj1q0dU+FT+H6Ohosdv5zp072LBhg167nZn5S09PB/B/VbPzf2+EnhxhO2Z6+sp/05T/UrlyZbUTO4C8Ipf6rKNT3HIixiapHJ20tDQA2k++GRkZ8Pf3R25uLurWrYvp06drnD2UlZWFrKws8Xdz+eLrK2fDxcUFJ06cwIkTJ1RuF4IlU9N2AABgtKUsTEnodt64caPS39vW1lav3c66sOTeM0sg9MRWrVpVbcFAIQfP1D22TJk+8t809abwxA7NJBPo5Obm4osvvkCTJk1Qo0YNjdsFBQVh+fLlCA0NFZNsGzdujKSkJFSoUEFl+xkzZognS3OimLOxY8cOpUUePTw80KlTpwKLtwkBkKZgRrhdKmP4mg4AAMRpzrGxsUoVg2NjYxETE2Mx02jzdzsrJhLqs9tZl3ZYcu+ZJRCWdrh58yYaNWqEPn36qCSeKm7HpKO4ZTA09abwxA7NJBPoREZG4vLlyzhy5EiB24WFhSmtGty4cWNUr14dixYtwpQpU1S2Hz9+PMaMGSP+np6ejooVK+qv4QYi5GyoW5uEiJCQkFBgzobi2LydnR3evn0r/m5vb4/s7GyV7UxN3QHg3LlzePjwITp16qS2YnCnTp1w7Ngxs79KUawnJAR0z58/h4+PDzp27Gi0gM6YC8FKgbn2XCkuAZGcnKzUA+jj48NLQFghKdXRkRpJBDqjRo3Crl27kJCQoLZXpiB2dnaoU6cObt68qfZ+BwcHlcrC5qC4JcNv3boFAHBycsLWrVtx5coV8WAeHByMbt264fXr17h16xbeffddY761QhGuPpYuXar25Lt06VJxO3M9aQH/VxfFlAGdta2VY849V4o5XQ0bNkSTJk3EHLx79+7hxIkTnNNlIqY6Dkmpjo7UmDTQISJ89tln2Lp1Kw4dOqSxy60gcrkcly5dQvv27Q3QQtMpbslwoQ7P69evERsbq1TlNjY2Fq9fv1baTqqEHIMaNWqoPfmOHj0aly5dQkpKCvr27WuWJy2gcAGdoSiO8RtjIVhT0lfPlSkrwCrmdAlDVYBpcrpYHlMGz8aso2NuTBroREZGYu3atdi+fTtcXFzEncPNzQ0lS5YEAPTv3x++vr6YMWMGACAuLg6NGjVClSpVkJqaiu+//x53794V64xYiuKWDBc+v/bt2+Ps2bMqSb4RERH4448/ULJkScmV6y6K1atXm/Vwi2JApy4XSVi93JDJpUIQZayFYE1Fnz1XpqwAK5WcLpZHCJ7zr3X24sULox2H9DWhwRLOCYpMGugsWLAAANC8eXOl21esWIGBAwcCyDuQKHbBvXjxAkOHDsXDhw/h4eGBevXq4dixYwgODjZWs42iuCXD27Rpg7179+Lw4cPYtGmTytBVjx49xO2kVq5bkZAsfenSJbXTzy9dugQgr0KsJQy3pKWlqR26MsZCkcLY/bRp09C4cWOVoHHatGlK25krXWennD59WqV4I6BaAdYU9UQ0BWuA/qcSM+3kcjlmzZoFIlK7yCoRYfbs2UbJsdNH8Cvlc0JRmHzoSptDhw4p/T579mzMnj3bQC2SjuImltWtWxdOTk54+fIl+vTpg0GDBok5PnFxcXj58iWcnZ1Rt25dvH37VlLluhUpzj7buXOnSs9U+/btsXv3brRv316nKZVSzeMRArqUlBS1OVlC4KPLLLmiXo2FhITA1tYWrq6uiImJwZUrV8RepZiYGPTp0wfp6ekmXwhWV5o+B11np9y4cUMcMlSkeMA3VT0RnkosLefPnxe/m3Xr1kXDhg3FIOPEiRM4fvw4Xrx4gfPnz6NevXoGaYM+g19zKwiojSSSkZmq4iaW2dra4ttvv0V0dDRevHiBH3/8UWWbb775Bra2trC1tVVZAV0qXZTaKgaPHDkSAPD++++rfbxiz5eUk0+FISk/Pz9kZmaqrE3m5+eHlJQUnYauino1JiwE++LFC3Tu3Fmp/pRw0Ba2M4eTp6bPQdeLiKpVq6pcAEjlgM9TiaXl7NmzAIAKFSrgzp07SjlT3t7eqFChAv777z+cPXvWYIGOPoNfcysIqI1J17pimgmJZYmJiYiKikJSUhJev36NpKQkREVFITExESNGjCgwMg8PD0dcXBzKlSundLu3tzfi4uJMfnLPTy6X49y5c9i/fz/OnTsHuVyu9DkI499hYWGwt7dHTEyMuKbP3bt31T5eOGn9999/iImJQWBgoNK6QIGBgYiJiVE7jd9U1K1NVhjC1RgATJw4EYsXL9bp5KzrSdFcTp7CwoKKn4Wfn5/O6w7Vr19fZb2eatWqSeIigNeIk5bHjx8DyDvOqDvG/Pfff0rbGYJi8JudnY2NGzdi7ty52LhxI7Kzs606+OUeHQnTR8lwc1mJWltvi6bPYfLkyVi4cCF++uknpKWlqTzezc0N3t7e+OOPPyQ9bVqfQ1dFvRoTeotq1qyJWbNmqfSeGSMhWp+EhQUFij2V5j47RTFYi46Oxs6dO8W18Dp16mTVU4lNQSjM6OLionbtsa5duyIjI8OgBRyFoHbWrFk4cOCAUhC/YMECtGzZUmk7a8KBjsTpI1ApbiVOQ9N1qq+mz+Hq1asF1htq0aIFDh48KOlp04pDV1lZWSrlBAozdKUP+feZ/D0f5k5Ky20UhdDTGR0djXbt2indN2/ePAB5M1SlHKxZEuF7+fLlS0RFRank6GRkZChtZwihoaFwcnLCvn37VHqBiQj79u2Dk5OTVQa/HOiYAakHKsWh61TfevXq4d69e3B2dhZXtr916xZ8fX3FekMvXrxQyW0JCgrCuXPnAJjHtGk3NzeNvSmGpjjDTV1PhzDDTSrLhhSHJUzNvnLlCoC8oU7FQFT4/cqVK5J/D5ZCsZfk+PHjSjk6mrbTN7lcjjdv3hS4zZs3b8SUAGvCgQ4zKV0T6Pbv349Zs2apPH7s2LFiReEdO3ao3B8eHo4lS5YAAKZPn66212j69OkAjNOlq2kmkGKQoW71cmMEGcL7b926NQ4ePKjS09G6dWvs27fP7Lu+pbLcRnEIORgeHh5Yt26dSvmIPn36YOPGjRg0aJBRShNYO8UhKZlMpjSjWPF3Qw5dbd26VXwddVPchX+3bt2K3r17G6wdUsSBjokZozCTlIs/5U+g2759u5hr0KVLFzGBzt7eXu0MGGGpiyVLlqgs9ZGamioGOTY2NnBzc1M7ft6zZ0+jTZvWNhPIlEFGaGgo3N3dsW/fPjRq1AgNGzaEo6MjMjMzceLECezbtw8eHh5m3/UtheU2imv79u2Qy+UYPHgwHBwcVNo5aNAg/Pjjj9i+fTt69uxpolZaD6E0g6OjI5ydnZWSjr28vJCRkYHMzEyDHmMuXrwo/j//+oaKv1+8eJEDHWZcxijMJOXiT4oJdAcPHoRcLhfvW7hwIVq0aAEgbxgqf2JptWrVlFZnVzeDRvH/L168QHR0tErRwRcvXgAwzrRpYSZQ/ppFdnZ2kgoyZDIZqlWrJn5OJ0+eBKBb7Supk8JyG8V1//59AFBa4FiRcLuwHctjqDpaQmmG169fIzQ0FB9++KFKgjsRGfQYozhsVb9+ffTr10/cr9esWSNePGkb3rJEHOiYmKYTn75fQ6rFnxQT6Dw8PPD+++/D19cX9+7dw969e7Um0CkGM5q6awUTJ07EsmXLVGZuCZ+NMU5smmYCKQZ4pgoyLl68iNTUVI3FGYcOHYolS5borafDVMUbdV0/Tcqzy8qXLw8ASExMRMeOHVXuF05qwnbMsOtQCceOCRMmYNmyZSqryU+YMMHgxxhhf7WxsUFsbKw4ZBkSEoLY2Fi0a9cOubm5kt6vDaXYgU5mZqYkhkDMVUFTYPX5GlIt/iSXy5GZmQkASE9Px4YNG8T7hJNeZmamxgS68+fPi//PyclRui//72XKlMHkyZNx48YNpKWlwc3NDS1btsSdO3cAmHbapbGDDHWEg7CXl5dKUJWbmwsvLy+l7YpDysUbzUGXLl2wcOFCLFu2DO3atROHY4G8/X758uWwtbVFly5dTNhK6dDXIq6aCMeO8uXLIz4+Xu3ahIrbGYIQsOfm5qJ3795K1fCXL18uXhTmz4W0BkUKdHJzczFt2jQsXLgQjx49wvXr1xEYGIhJkyahUqVK4iwWxrTZvn27+AVU7NVQ/D03N1djrsGjR4/E/2uafQLkBXsrVqxQGscG8qrfSqHmiBA8dOvWDX369FE5UGZlZWHJkiUGvSLMv9ZVdHS0Qda6MvXK4YqJ3xMmTICvry+ysrLg4OCAe/fumcXsMnt7e/Ts2RPr1q1Dz549VU5qL168QJ8+fXRKRFb3OQLSyeMrLn0u4qpJ/kr2+UszGOMYo1gYVlM1/PzbWYsiBTpTp07FqlWr8L///Q9Dhw4Vb69RowbmzJnDgQ7T2b1798T/qxu6EvJnFLdTpHiV8vvvv+Pq1atigPDOO++gQ4cOyM3NRZUqVXDp0iWEhoaiTp06WLVqFQYMGIAVK1bg5MmTJi8Ql39Zgvy9NsaodKu41pWhkralsHK48BmGhoaqnQZcs2ZNXLp0SfKzy4YPHw4A2Lhxo9JJzdbWFn369BHv10bd5whIJ4+vuIyxLphQ1ygmJkbt4sOJiYkGP8bUrVsX8fHxAFSTke3t7ZGdnS1uZ22KFOisXr0aixcvRqtWrZS+TLVq1RK76BjThdBr4+joiI0bNyp1wQ8bNgwdOnRAVlaWSm+PQLjqzs3NRVxcHPr164ewsDAkJycjLi5ODITs7e3F6sqrVq0CAKxatapQVaZ1UdRehuKubaYPQkJlamqq2qTt1NTUYidU6vOkU9Tcs9DQUDg7O6v07gkuXboEZ2dns5hdNnz4cHz00UdYs2YNnjx5grJly6J58+YIDAzU+TnU5QlKKY+vuBRndqrLC9PX0gi6VrI3VG5a7dq14e7ujtTUVI3LyLi7u6N27drFfi1zU6RA5969e6hSpYrK7bm5uUpRJGPavHr1CoDmcWPhdmG7/EqWLCn+/+zZs0pJgIrTzUuWLClWV969ezd+/PFHjB07Fu3bt9frVVZRexmkcEWYP6Ey/8FaHwmV+lyMsqi5Z3K5XOP+JHj16pXZFFZ7+PChUm7bhg0bCtUboy5P0BJ6cgRCz9zWrVuxc+dOteUEFLcrjvDwcDRq1EilTIYwhGjI3DRbW1uMGTMG0dHRGidmjBkzxiz2aX0rUqATHByMw4cPiwcZwaZNmyRbd0IdKdeXsRZCd+rr16/V5hoIUyGF7fILDQ3F0aNHARQ860q4Ore1tUVQUBAAICgoSO9f+uLMcAsPD8fEiROxYMECpSCjTJkymDhxosGTdI2RUKnryuGGHDbasmWLztv16dPHYO3QFynPqpQCoT7UkiVLVPLC1qxZgyVLlsDd3V0vPXgJCQmYN2+eUu7gpk2bxO9zTEwMGjVqhN69eytNP9dHQjTwfws552+Dp6enVSf6FynQiY6OxoABA3Dv3j3k5uZiy5YtuHbtGlavXo1du3bpu40GI+X6MtaiZs2aOHLkCNzc3JCenq6Sa+Dm5oa0tDTUrFlT7eO7deuGRYsWITc3V2OgY2Njg27duhnuTSgo7gw3Pz8/PHv2TOm2p0+fGuXEZYyESikM0R0+fFj8v2LuQv7fDx8+bBaBjpRnVUoNEeH69eu4e/cusrKyxGNE/rWhiiIhIQHR0dFqC5dGR0fD3d0d1apVQ3JyslLPs7e3N6pVq6a3atzmsJCzsRPgixTodOnSBTt37kRcXBycnZ0RHR2NunXrYufOnXj//ff13UaDMUYNG3148+YNFi1ahP/++w8VKlTAp59+qjRkY86EQCUtLQ3BwcHw9vbG27dvYWdnh7S0NJw5c6bAQMXe3h69evXCunXrNM7a6tWrl9mUwTdlvoQxhs+kMESnOGxVr149jYXVtA1v6cpU9YJYHqF0Q+vWrXHgwAGlBHQbGxux6nhxkpHlcrm4RE3dunXV7lOpqalIS0tTO9swMTERRKS38hFSXx/R2AnwRa6j895772Hv3r36bIvRFbeGjTGi0okTJ4pDMwBw+vRpbNu2DU2aNBGn+5ozxUDlypUr4kKFwP9dZWkLVISEeMU8BUGPHj10nn0iBabOl9A1oVLqr1EQDw8P3LlzBzKZDNHR0bh69SoSExPh6emJ6OhotG/fHkQEDw+PYr+WtpwMS5/aLQVCvte+ffvE4SKBnZ0d9u3bp7RdUZw/fx6pqamoWbMmpk2bpjSbcNq0aejfvz/+++8/BAUFqZ1tOH78eJw4cQJPnz4tchvMibEv6IoU6Jw6dQq5ublo2LCh0u0nTpyAra0t6tevr5fGSZ2ho9L8QY6io0ePiuPy5m748OHIycnBli1bVOrg9OzZU6dAZfjw4QgPD8fIkSPF23Jzc9GmTRud28E5W3mM0fVtyu51If+HiMSgRqC4AKO+6gU1bNgQTZo0UarVI+RkeHt7W/TUbilQrASsqbcl/3aFJRQu/eSTT9TOJqxbty7+++8/uLu7q72/adOmOHHihF5qN5nDcczYF3RFCnQiIyPx9ddfqwQ69+7dw3fffYcTJ07opXFSZ8io9M2bN2KQ06hRI3z88cfil/PXX3/F8ePHcfToUbx588YihrFGjRqFYcOGYenSpdiwYQN69eqFIUOGFGrIKTAwsFhJmZyz9X+M0fVtqu51b29v8f8FJbArbldYQr0gHx8fnDp1Smm4xNbWFj4+PliwYAGWLl1q0VO7pUC4eHJxccGUKVOU6kNNmTIF3bp1w8uXL1XWyisKTcu0lCpVCkDeMSY3N1clN+3IkSMAihdsCfg4pqpItaCvXLmituhQnTp1lIYeLJ0QleZPBNRH5Lxw4UIAgK+vL6ZPn46QkBA4OTkhJCQE06dPh6+vr9J2lsDe3h6tW7cGkLeKd2HzatQlZRbmbyEErhMnTgQAyeZsseLRtY5IceqNCPWC7t+/D1dXV4wbNw6bN2/GuHHj4Orqivv37+PBgwe4fv26wY4hLI9QLykjIwPR0dFISkrC69evkZSUhOjoaGRkZChtVxTCvrJy5Uq1iwsLvUb3799HVFSUUhuioqLEzoEyZcoUuQ0CPo6pKlKPjoODAx49eqRSlOrBgwdKBd9Y0f3zzz8AgKFDh6rt6hw8eDDi4uLE7VjxGWPdMWZ6it+n/LOuFHM4irMm0OPHjwHkXaErFsLs2LEj2rVrhx49eiA1NVXcjhle//79sWfPHpW8sP79+4tFRItKKNZ36dIljB49Gu3btxcrvB88eBDJycmwsbFBlSpVcOvWLaU2eHt7IygoCOnp6XqZbcjHMVVFikratGmD8ePHY/v27XBzcwOQN4VuwoQJZjXrSspcXV0B5FWrbd68ucr9Qs+ZsB1jTDeKeRD56zMpJqoWJ19CuABp3769ysVfiRIlEBERgd9++w3//PMP2rZtW+TXYdrVrl0bv/76K86ePYtff/0Vly9fFvPCatSogTFjxojbFZVisb5Lly6J66UBecG0TCZDr169sH79ejRq1Ah9+vRRqqNz/Phxky9DY8mKFOj88MMPCA8Ph7+/vzjGfv78eZQrVw6//vqrXhtorXr27InTp09jy5YtGDp0qNIwTnZ2NrZu3Spux5i+GWNKtKmmXeuaZKyPooXXr19Xm5Nx48aNYj83041ib0t0dLTSMjFCYOLh4VHspRHCw8PFtdoUa2F5eHggMjIS4eHhCA4Oxvz585Xq6BhrtqE1K1Kg4+vri4sXLyI+Ph4XLlxAyZIl8cknn+DDDz+EnZ2dvttolerXry9G/O3atcP777+PJk2a4OjRo9i7dy9yc3Ph4OBgNTPcmPEYsky9MV9Dk5CQEHFl+3fffRclS5ZERkYGSpUqhTdv3uDUqVOwsbEp1uKlQg7d6dOn1dYLOn36tNJ2zHCE3paYmBi1y8TIZDJ8+eWXegmyW7dujRYtWmhcZiY8PBzvvvuuxdZFk6oiJ9Q4OzurnRbJ9MPW1hYTJ05EdHQ0cnNzsWfPHuzZs0dpm4kTJ3JXJ9MrYUq0uqJm+ipTb4zXKMilS5fEhNFTp06p3SY3NxeXLl1CvXr1ivQaXbp0wcKFC+Ho6IibN28q5WSUK1cOzs7OyMzMRJcuXYr0/NaoONOmhdpN+ZdG8PDw0HtwXdAyMwsXLsTGjRvFYqanT5/Gzp07xTIaXFfJMHQOdHbs2IGIiAjY2dlhx44dBW7buXPnYjeMae4KLV26NEaMGMFdnUyvhCnRYWFhaouaCfticcrUG+M1tBFqnuiyXVEDHXt7e/Ts2RPr1q0Ti2L6+PjgwYMH2Lt3L169eoU+ffqYTcVuKTDEtGlN08ENYeHChVi3bh08PDwwePBgcU2/ZcuWYd26dQCAli1bcl0lA9A50OnatSsePnwILy8vdO3aVeN2MplMpRQ/KzptXaGM6YswJXrSpElqZ/r17dsXkZGRxSpTb4zX0Ebx+NSoUSM0bNgQjo6OyMzMxIkTJ8SaN8U9jgmFLjdu3KhUtdvW1hZ9+vQxq4rdUlCcxUuFXsT8gWVqaqpRehGzs7OxceNGeHh4qJ2F17NnT2zcuBEfffQR11UyAJ0DHcXaAPoorMR0Z+gVtxkD/q8EfkBAgNr7hduLUyrfGK+hjVA3xdHREVOnTlWaFdWpUyd07NgRmZmZ4nbFMXz4cAwaNAjbt2/H/fv3Ub58eXTp0oV7coqgqIuXCutQEZHGysizZ882aC/i9u3bIZfLMXjwYLWz8AYNGoQff/wRe/bsUZpgwou06kehc3Tevn2Ldu3aYeHChahataoh2sQYMwFhllFycrLaRNzk5GRxu6LmSxTmNQxFGAbOzMzEpEmTVE58mZmZStsVlzCMxUxD2zpUo0ePxqVLl4o1VKnN/fv3AQBhYWHIzs5WCXzDwsKUtmP6VehAx87OrlgVJBlj0hQaGgpvb2/Ex8cr5c8Aeb248fHx8PHxQWhoKG7dulWkfInCvIahODk5if9XNwtH3XbMfAk5WQMHDkROTo5KkDFw4ECMHTvWoIFO+fLlAQAzZ87E2bNnlYZFFy5cKA7TCtsx/SpS6c9+/fph2bJl+m4LY8yEbG1tMXLkSCQmJqotU5+YmIgRI0bA1tZWzJcA8mb/LV68WKc8AsXXmDhxIrZu3Yrdu3dj69atmDhxotJrGIqw0Kujo6NKMOPm5ib2ShVmQdiCyOVynDt3Dvv378e5c+c4h9FEdu3ahYiICMybNw9bt27FvHnzEBERgZ07dxr8tbt06QKZTIZTp07BxcVFaUkQFxcXnD59GjKZjGfhGUiRppfn5ORg+fLl2LdvH+rVqwdnZ2el+2fNmqWXxjHGjEuYhjt//nyVUvmKCZtFzZcQXqN3797YuHGjUm+Kra0tevfubfDZhHXr1oWzszNevXolDlMJXr9+jczMTDg7O6tdz6+wTFkviOURKiMfPHhQ7YynQ4cOidsZg0wmAxGJPzKZzCiva82KFOhcvnxZPAhcv35d6T7+ozFm3sLDw9GkSRODVS1OSEjA+vXr0bBhQ/j6+iI7Oxv29va4d+8e1q9fj+DgYIMGAba2tvjmm28QHR2tcp+QgPzNN98U+/0KM30aNmyIJk2aKL1PY8z0YXmCg4PF/wcFBSEgIAAlS5ZEQEAAgoKCxFl2itvp2/bt20FEqF+/Ps6dO4cff/xRvM/W1hb169fH6dOnsX37ds7nMoAiBToHDx7UdzsYY1ZAqKNTrVo1JCcniycZIK+QXrVq1QxeRwfIC+bi4uJUCsjpq7dFeJ8+Pj44efKk0kxVGxsb+Pj4GOV9srwhK8G5c+eU9jnFnKxdu3YZLMgQkozHjx8PJycnlcrIr169Qo8ePTgZ2UCKvdT4v//+CwCoWLFisRvDGDM9Qw63CHV0Hj58iMaNGyM6OlqpMvKxY8fE7QxVR0cg9FwZokaV8D4BqB0uEU5oxnif1k74rL/66iusXr1apTJyv3798MMPPxg0yBCSjFetWoUTJ06IbTh9+jQSExPRsGFDpe2YfhUpGTknJweTJk2Cm5sbKlWqhEqVKsHNzQ1RUVF4+/atvtvIGDMSYbjlxYsXSre/ePECMTExSEhIKNbzP336FADQsGFDTJ06FSEhIXBychIrIwsHfGE7QzNUjarHjx8DANzd3bFx40Z07NgRpUuXRseOHbFx40a4u7srbWdImZmZuH79utJP/twkSyYED9nZ2YiNjcXYsWMxZMgQjB07FsuWLROrIxsyyOjSpQtsbGywY8cOtd+tHTt2wMbGhpORDaRIPTqfffYZtmzZgv/973/i/P/ExERMnjwZz549w4IFC/TaSMaY4RmjsFpqaioA4L333lNbGblp06Y4ceKEuJ25+ueffwAA7du3V1sgLiIiAr/99hv++ecftG3b1qBtMcTSCeZEWHds+fLlePnypdJ9lStXxvLly2Fra2vQIMPW1hYlSpRAdnY2srOzle4Tfrezs+NhTAMpUo/O2rVrsXLlSnz66acIDQ1FaGgoPv30Uyxbtgxr167VdxsZY0aQv7CaYm/LtGnTULNmTbx48ULntaLUEXoyDh8+rFJhPTc3F0eOHFHaztxdv35d7fu8ceOG0drg5+eHxYsXK5UDsKYlBYSCjS9fvoSLiwsiIiIAABEREZgwYQJevHiBnj17GrRa9fnz51UCnPyysrKK9d1imhUp0HFwcEClSpVUbg8ICODS5kwtS+g+f/ToEa5fv467d+8CAO7evYvr168rjfmbM8XCaup6WwYOHKi0XVGUKVMGAHDy5Em1tXpOnjyptJ258vX1BZCXg6HufZ4+fVppO0NydHREtWrVlMoBWNtK2MOHD0efPn3w+vVr/PHHHwCAP/74Ay9fvjTKumPnzp0DkDez688//0RkZCS6deuGyMhI/Pnnn+KML2E7pl9FGroaNWoUpkyZghUrVohZ61lZWZg2bRpGjRql1wYyy2Du3eePHj1Cv4/74212lnjbtGnTAAB29g5Y8+tqlCtXzlTN0ytDlogQKiO7ubnh9u3bKrV6qlWrhvT0dINWRjYGYbjE0dERt27dUnqf3t7ecHZ2RmZmJudkGJGw7tjSpUuxYcMG9OrVC0OGDDHKxblwMdS6dWs4OjqqzO5q1aoVrly5YjEXTVJTpEBHqPJZoUIF1KpVCwBw4cIFZGdno1WrVujevbu47ZYtW/TTUmbWirPysBSkpaXhbXYW3gQ2Q66jm3i7TWYacPtvpKWlmX2gIxRWW7FiBWrXrq2yPMPKlSvF7YpKqIwcExODRo0aoXfv3nBwcEBWVhZOnjyJ48ePIzY21uxzFYThknXr1sHe3h69evWCj48PHjx4gL179+LVq1fo06ePVfSAP3r0CGlpaQCg1BsK5FWiLleunLiNpvv1xd7eHq1bt8aGDRvQunVro33+wnvYt28funbtqvLd2r9/v9J2TL+KFOi4u7vjgw8+ULqNp5ezghSnkq6U5Dq6IdfZvIdVNKlduzbc3d1x6dIlTJw4USUZ+dKlS3B3dy92BVnF6suKlZHzV182d8JwyMaNG7FhwwbxdltbW6MMl0iBup5QQLk3dM7sWfjiyzEm7y01ZLBVp04drFmzBleuXFH73bpy5Yq4HdO/IgU6K1as0Gm7o0ePIisrS6koE2NMmmxtbTFmzBhER0drXOxyzJgxeultMXT1ZakYOHAgwsPDcejQITx58gRly5ZFv3794OrqauqmGYWmnlDg/3pD79+/b/LeUkMPTQsXEampqRq/W/q4iNCVXC63+O+eomIXDCxIREQEzp8/j8DAQEO+DGNMT8LDwxEVFYX58+cjK+v/DvqlSpXCV199pdfeFltbW4u/gk1JScHIkSOVbmvdurXVBDoCXXpCTdlbauihacWLCE30dRGhjTWuv1akWVe6EgoxaTJjxgy8++67cHFxgZeXF7p27Ypr165pfd6NGzfinXfegaOjI2rWrIndu3frq8mMWT0/Pz88f/5c6bZnz56ZVU6VVFj71G5zIwRb4k++XqjiEJYdyV86wcPDA3FxcUYJMoSCoIGBgZg3bx52796NefPmITAwUC8FQaXKoD062vz999+IjIzEu+++i5ycHEyYMAFt2rTBlStXVFZEFxw7dgwffvghZsyYgY4dO2Lt2rXo2rUrzp49ixo1ahj5HTBmeYST8927d802eVwqhKndAmuc2m0pNOXwALrn8ZhyyFZYfy0sLAxTp04VE6KFquRRUVEWu/6aSQOdP//8U+n3lStXwsvLC2fOnNEY3c6dOxft2rXDV199BQCYMmUK9u7di19++QULFy40eJsZs3TqTs7mmjzOmD48e/YMkaM+U5vDAxQuj8dUQ7bC+muTJk1SWyerb9++iIyMtMj110wa6OQnTEH09PTUuE1iYiLGjBmjdFvbtm2xbds2tdtnZWUp5Rqkp6cXv6GMMcYkJTMzEykpKUq3+fn56aUHLSMjQ2tStdRLTAjD0QEBAWrvF27PP2xtCQwa6BSm8Fhubi6++OILNGnSpMAhqIcPH6rsTOXKlVNKrFI0Y8YMxMbG6twOxhhj5scYRUmLmzCtLhgD9BeQFUToQEhOTkZISIjK/cnJyUrbWRKDBjrakpEVRUZG4vLly+JaN/oyfvx4pR6g9PR0rvnDGGMWRl1umdTyytQFY4BxqsQLVcnj4+OVcnSAvI6G+Ph4+Pj4mH1VcnWKHOjk5OTg0KFDuHXrFj766CO4uLjg/v37cHV1RalSpQBAZaVYTUaNGoVdu3YhISEBFSpUKHBbb29vlTLZjx49gre3t9rtHRwcuI4PY4xZOHNI/DZlor9iVfKoqCj07dtXLFoYHx+PxMREi6hKrk6RAp27d++iXbt2SElJQVZWFt5//324uLjgu+++Q1ZWls5JwUSEzz77DFu3bsWhQ4c0jh0qCgsLw/79+/HFF1+It+3duxdhYWFFeSuMMRMwZD4FY1Jl6kT/8PBwTJw4EQsWLFBaf61MmTKYOHGixdbRKVKgM3r0aNSvXx8XLlxA6dKlxdu7deuGoUOH6vw8kZGRWLt2LbZv3w4XFxcxz8bNzQ0lS5YEAPTv3x++vr6YMWOG+NrNmjXDjz/+iA4dOmDdunU4ffo0Fi9eXJS3whgzAXNf5JUxc+Xn54dnz54p3fb06VPJDfPpU5ECncOHD+PYsWMqC6JVqlQJ9+7d0/l5FixYAABo3ry50u0rVqzAwIEDAeQdEBXHEhs3boy1a9ciKioKEyZMQNWqVbFt2zauocOYGTGHfArGLJE11skqUqCTm5sLuVyucvt///0HFxcXnZ9Hl2TlQ4cOqdzWs2dPlWXuGWPmwxzyKaTAWKt6M+th6uEzUyhSoNOmTRvMmTNHHC6SyWTIyMhATEwM2rdvr9cGMsaYNTL0QpP6UlDF4PxDJMz86aNCtLEVKdD58ccf0bZtWwQHByMzMxMfffQRbty4gTJlyuC3337TdxsZY8zqGHqhSX0oKBgDgBIl7EzRLGYg2v7eUgrAFRUp0KlQoQIuXLiAdevW4eLFi8jIyMDgwYPRt29fMYmYmWfkyxiTFlOu6q2NpmAMyAvISt7+20QtY4ag7e8tlQA8vyLX0SlRogT69eunz7ZYFHONfBmTAs5NMS9SDsaY/pnb37tIgc6OHTvU3i6TyeDo6IgqVaroVBPHkplr5MuYqZlLbgpjzDwUKdDp2rUrZDKZyqwp4TaZTIamTZti27Zt8PDw0EtDzZW5Rb6MmZo55KYwxsyHjfZNVO3duxfvvvsu9u7di7S0NKSlpWHv3r1o2LChuJTDs2fPMG7cOH23lzFmJYSLBPEnX88oY4zposiVkRcvXozGjRuLt7Vq1QqOjo4YNmwYkpKSMGfOHAwaNEhvDbVEz549w/Xr1wGAcxEYY5LE08eZuStSoHPr1i24urqq3O7q6orbt28DAKpWrYqnT58Wr3UWblJ0NHLevlW6jXMRGGNSwdPHmSUoUqBTr149fPXVV1i9ejXKli0LAHjy5Am+/vprvPvuuwCAGzduoGLFivprqQXKefuWk5UZY5LF08eZJShSoLNs2TJ06dIFFSpUEIOZf//9F4GBgdi+fTsAICMjA1FRUfprqYXiZGXGmNTxcYqZsyIFOkFBQbhy5Qr++usvMcckKCgI77//vrgAZ9euXfXWSMYYY4xZj8zMTKSkpCjd5u7uXqTnKnLBQBsbG7Rr1w7t2rUr6lMwxphBCAm0ACf6M2aOUlJSMGzYMKXbZs2aVaTnKnKg8+rVK/z9999ISUlBdna20n2ff/55UZ+WMcaKRV0CLcCJ/oyZEz8/P0ycOBHTpk3DxIkT4e/vb9wenXPnzqF9+/Z4/fo1Xr16BU9PTzx9+hROTk7w8vLiQIcxZlDapjxzVXLGzJujoyP8/f0BAP7+/qhWrRrS09OL9FxFCnS+/PJLdOrUCQsXLoSbmxuOHz8OOzs79OvXD6NHjy5SQ1jR8JpAzNo8e/YMkaM+0zrlmRNoGWNAEQOd8+fPY9GiRbCxsYGtrS2ysrIQGBiI//3vfxgwYAC6d++u73YyNXhNIGaNMjIyeMozY0xnRQp07OzsxNlVXl5eSElJQfXq1eHm5oZ///1Xrw1kmvGaQMyaGbrHhntLGbMMRQp06tSpg1OnTqFq1apo1qwZoqOj8fTpU/z666+oUaOGvttoEI8fP8bDhw8BmP+sjOIc8Hl2inXhv7duuLeUMctRpEBn+vTpePnyJYC8L3///v0xYsQIVK1aFcuXL9drAw1l6LBPQblypdus7UDGs1OsC/+9dce9pYxZjkIHOkQELy8vsefGy8sLf/75p94bZmhvs7Pwtlorq56Voa28u/A5CNtyD4D08Wwk/eKEZsbMX5ECnSpVqiApKQlVq1Y1RJuMhg9ieQr6HAqa4cI9ANKi6wKMvN8zxqxJoQMdGxsbVK1aFc+ePTP7QIdpp2mGC/cASA8vwMgYY6qKlKMzc+ZMfPXVV1iwYIHZJB+z4uFeAPPBfysmNTZvUnW6jTFDKFKg079/f7x+/Rq1atWCvb09SpYsqXT/8+fP9dI4U+PppYwxVnwlkxNM3QSLUFAOnr7OS9ry/MxRkQKdOXPm6LkZ0qNLbgqgOUlXKixxp2XSZoyDMTMvbwLCkVvSXek2mzepHAAVgrYcPH3kTOqa52duihToDBgwQN/tkBxtuSm3b99GdMxkjYFQXOxkYzdZha6l8ovLmk5s+bvbuftdmTEOxsz85JZ05+HUYtJ1lmxxvluWmudX5NXLb926hRUrVuDWrVuYO3cuvLy88Mcff8DPzw8hISH6bKNJacp30BYIZWRkGLOZahmjVL62YMrSTmx8BVowYxyMGbNmxsjBs7Q8vyIFOn///TciIiLQpEkTJCQkYNq0afDy8sKFCxewbNkybNq0Sd/tlCxz2CEM2UZtwZSlndjyd8Ebu/u9oLwxKTGH7wVjzDoUKdD59ttvMXXqVIwZMwYuLi7i7S1btsQvv/yit8Yx82HqE5uxhs9M2QWvbVkCKQyXMsaY1BQp0Ll06RLWrl2rcruXlxeePn1a7EYxVhjWkheibVkCKQyXMuOypvw4Zh6ePXuG69evA9C8np6xZzQXKdBxd3fHgwcPEBAQoHT7uXPn4Ovrq5eGMaYra8sLMXXvGdOf4gxFWlt+HDMPk6KjkfP2rdJtij3Pc2bPwhdfjjFqtf0iBTp9+vTBN998g40bN0ImkyE3NxdHjx7FuHHj0L9/f7020NqZS06GFHAAYFksfYZbcYcirS0/Tup06cmwFAUVgMx5+7bAffL+/ftGr7Zf5NXLIyMjUbFiRcjlcgQHB0Mul+Ojjz5CVFSUXhtozbTV8uGcDGbJLH2Gm76GIjnAlwZtPRmW1Lum7bupyz5pzP22SIGOvb09lixZgkmTJuHy5cvIyMhAnTp1eO0rPTOHKeyMGYqpZ7gZCwcqlkFbT4Yl9a6ZWwHIIgU6R44cQdOmTeHn5wc/Pz99t4nlwwfC4itugpw+CM9fUBvMgbGqbXOROetiCUOVxT1Wm0uqgrl9N4sU6LRs2RK+vr748MMP0a9fPwQHB+u7XYwpKe4BoLgJcsUdJlSXj5H/Ncyha9tSS8SzghljUU6p9gYYC5ePMJwiBTr379/HunXr8Ntvv2HmzJkIDQ1F37598eGHH6JChQr6bqNF41V9tdPHAaC4CXLFHSbUdWaYsK1Ur+gstUS8NdPlIsIYQUhBQ5XWMI2ey0cYTpECnTJlymDUqFEYNWoUkpOTsXbtWqxatQrjx49HeHg4Dhw4oO92WiwpXMVIPdgyZtKmoYcJC3p+c0o+5+FUy6DrRYQxcjI0DYdY2zR6/m7pX5HXuhIEBATg22+/Ra1atTBp0iT8/Tdf0RWGFJK6pBBs6cLSDwCcfF44Ug/QzYGuFxGmzMngafSsuIoV6Bw9ehTx8fHYtGkTMjMz0aVLF8yYMUNfbbMKUkjqMnWwpS1J19pYekCnL+YSoJsDc9jnzKGNTJqKFOiMHz8e69atw71799CmTRvMnTsXXbp0gZOTk77bx4xAaus3AdIdsmHSYeoAXRsO4BmThiIFOgkJCfjqq6/Qq1cvlCnDETYrOl2SdHnIhqkjhd5QTTiAZ0w6ihToHD16FABw5coVnD59GtnZ2Ur3d+7cufgtY1aFu6WZJeEA3jxZQi0fpqpIgU5ycjK6deuGixcvQiaTgYgAADKZDAAgl8v110LGGDOR4p74OIA3L1IZ9mT6VaRA5/PPP0elSpWwb98+BAQE4OTJk3j27BnGjh2LH374QefnSUhIwPfff48zZ87gwYMH2Lp1K7p27apx+0OHDqFFixYqtz948ADe3t5FeSvFxlcAjFmugk58xqoQzYzHWpYdsTZFCnQSExNx4MABlClTBjY2NrCxsUHTpk0xY8YMfP755zh37pxOz/Pq1SvUqlULgwYNQvfu3XV+/WvXrsHV1VX83cvLq9DvAdDP9FT+EjAmTfr4fms68Wmr7SKVCtHalj5hyqSc98WKrkiBjlwuh4uLC4C84oH3799HUFAQ/P39ce3aNZ2fJyIiAhEREYV+fS8vL7i7uxf6cfnpI0jhKwBmacxlvR1ttH0PdXmfmk582mq7SKVCtLalTzghmlmDIgU6NWrUwIULFxAQEICGDRvif//7H+zt7bF48WIEBgbqu40qateujaysLNSoUQOTJ09GkyZNNG6blZWFrKz/u+pKT08X/6+P6al8BcAsiTlVZ9amoO+3vt6n1HNwtC19Yk0J0ZYSwEuBTWaaTrdJRZECnaioKLx69QoAEBcXh44dO+K9995D6dKlsX79er02UJGPjw8WLlyI+vXrIysrC0uXLkXz5s1x4sQJ1K1bV+1jZsyYgdjYWLX3WUqQoi1PiCvIMl1ZUnXmgr7flvQ+tZF6MGYMvGCm/pSws9PYY1mihB1yct6qvc+UihTotG3bVvx/lSpVcPXqVTx//hweHh7izCtDCAoKQlBQkPh748aNcevWLcyePRu//vqr2seMHz8eY8aMEX9PT09HxYoVDdZGQ9AWuGjrgeKhNFZY1nJytJb3ae14wUz9mRIXh9KlS+Pu3buYNm0aJk6cCH9/fwB5PcLjx483cQtVFXutK4Gnp6e+nqpQGjRogCNHjmi838HBAQ4ODkZskf5pC1S05QlJvYKsvnDPFWOmYS7fPQ5si6906dKoVq2a+Lu/v7/4u5D4LjV6C3RM5fz58/Dx8TF1MwxKWyCjbQjOUobotDF14MbTjZm1MvV3TyrMJeCTOk3H0qL2vJk00MnIyMDNmzfF35OTk3H+/Hl4enrCz88P48ePx71797B69WoAwJw5cxAQEICQkBBkZmZi6dKlOHDgAP766y9TvQWjsJZApbhM2XNlLtONGTMEa+k11sba3q8hFHQszcnJKdJzmjTQOX36tFIBQCGXZsCAAVi5ciUePHiAlJQU8f7s7GyMHTsW9+7dg5OTE0JDQ7Fv3z61RQSZ9TFlQGgu040ZMwS+GMtj6oBPW92kcuXKGaUdxVHQsZTSHwP/fwmqwjBpoNO8eXNx+Qh1Vq5cqfT7119/ja+//trArdIv7sq0LpwDwJgqQ09HlkphRFMHfNrqJq35dbVZBDuA+mMpZWcW6bnMPkdH6rgrkzFmSFK/mCpoOrKdvQNKlSpV7Ncwl8KIhq7lo61uUlpamk6BjtT3qcLiQMfATN2VKQXC1RYn6TJWeMUtL2FqwnRkACpTkt3c3JCWVvyeHXMojGisYpzaepV1Cbakvk8VFgc6BmbqrkwpyH+1xUm6jOmusOUlAGldTOWfjgwoT0nWR6ADSH/YWApFKnUNtqS+TxUWBzrM4Aq62uIkXfNkaV3bhmLIhUUFfDFlXrQFZLpUti8qXYMtS9unONBhRiH1qy1WOOZ6ZWds+vicLO2kwwpmjO+WtR2POdBhTIHWdcPyzRSR8kJ2hlScrm2pzJAxBksbAmCGp60HjxUeBzrMaugyjKDpgFKqVCnY2TsAaoba9DVzxJwUp5fBXGbI6IMun5MhhyosiRSGS43RBkvowZPC30oRBzomZm7L3ZszXa6KNF1NlS5dGmt+XS3OVjDEzBFrYQ4zZIyJr9Z1I4XPSQptMAdS+5w40DEhY9SXYP9Hl2GEgq6mypUrp1SDwhAzR6yFLjkC1jJMyEMVupHCMKAU2mAOpPY5caBjQsaoL8H+jxS6hKXWpStF1jZMKIX9Ugq0BbZS+Jyk0AZzILXPiQMdEzJWfQkmHXzlpx0PE1oXNzc3qwpsi4svlgqPAx3GjMgYXbqWcCDkYULrUa5cOQ5sC4EvlgqPA51ispY8AqYf+ujSNfclARjLjwNb3Ukt/8UccKBTRNaWR8CMp7iBjD4OhDzlmTFpklr+izngQKeIOI9AmSUMl0hFYQOZwi4JUJx6QowxZm440CkGa+pulcJwibX0Mhh6baPi1BNijDFzw4EO06looRRWULaWE62hu6aLW09IKrjYpvFYymdtLRdLTBkHOlZO16KFUlhBmXsZ9MMcgpiCFDQdGQBKlLBDTs5btfexwikoFxEwv8+ajxfWiQMdK6dr0UIpnByl0AZmegVNRwbyFg0dP368iVspHcXJnysoFxEwv8+aL5akw5i9axzoWDmpFC3kZGZWGAXlxwkro+vCGoYyinsi19dnLQV8sSQdxgwwOdDRQgoHwuLW6jGH8XV97PTm8D6ZtGjb7yyhThbXXWFSZMzeNQ50tDDlwaC4pdG1ja/b2TvAzc1N7X3GVpyDsaXlETDj0XSwtaQ6WdyLYTx8saW7opTBoDdF+yw50NHClGO6xS2Nrm183c3NTalL2pSKczC2tDwCS2AuQ5Ga9jt91cniE5/10HViB9ONuvNsTk5OkZ6LAx0tTH01VNxaPQU93pJYUh6BJbCEYZHifvf4xGdddJ3YwXSjrpef0h4BR48W+rk40GGM6R3nhZjXiU8KuYjmTioTOyyFuk4Gys4s0nNxoGMBLCFhklkWU/eESoE5nfisKQA1NQ4qjY8DHTOmLVlZKonGjFkqKeQi6SMPiOvL5DHGRaMUPldrC7asOtAx90RBbcnKUkk0ZswUjPH9NuVJS5+zDa29B86Ys+ykEFRKIdgyJqsNdOzsHVDCAhIFrSXZmFkWQ/aEaFsiQp/fb1PmIklptqG5XzTqa5adLqQQVEoh2DImqw10lixehNzcXADSTxRkTGqKe2Iz5EFVsacTMOz329QnLVPPNtQlqDSXIfTizrIzJ6beb43NagMdLy8vuLq6Kt1myTs20w0ndhdMX8Mlhu4JyX/SAvj7bQja1h3jIXQmBVYb6BiLuXfpWgttY/TmclWqL5oCPn0Nl1jbFaUl4+FzJnUc6BiIJXXpWgNtY/TWclWqS8Bn6uESxhgrDA50DIS7dM0PX5lywCdFPJzKCkMKJQ+khgMdA+ITp7TwMKJueL+VBh5OVcbfX91Y8uypouJAh1k8axtG5BOCZeDetTzavr9CAjz3ZOTh5VdUcaDDjMKUByFdphtL6aRR1KEKfRaQY9LAvWva0wCEBHhrPpEr4kR/VRzoMKMw9UFI23RjKShudVYpFZBjTJ90SYA3Rk+GMXpLOScrj7r3TZnpRXouDnSYUXB3qnb6qM7KM6LMD5/Y9EOXnoyiftbGGP425jIUUlbQ55CTk1Ok5+RAhxmFtXSnFneIzpqqs1o7XpTXeIqb2G2MWbTGXIZCygr6HDIyMlCvXr1CPycHOkwSLCWBlnuozIspe1OMtSivpXy3ikMfid3GyJfiC508mj6H9HQeumJmqoSdHUrqsACjOXTx8xCdeZBKb4ohT57GXNzUHHBit/XiQIeZ3JS4OJQuXRqA+hlRACRxUtKFtiE6vrqWBmP1ppiSMRc3ZUzKONBhJle6dGmVK6v8V1uWcFLS1nNlrICNg6081nCFz4ubSo859Exb2jGCAx0tzGGnNAZTfw6WcFLS1nNl6IDN2gonMiYl+houNWQQoq0Wl7keI0wa6CQkJOD777/HmTNn8ODBA2zduhVdu3Yt8DGHDh3CmDFjkJSUhIoVKyIqKgoDBw7Ue9ukMoZvato+B035M5pus2a69FzpoqhBp7kVTmTGY+oLGWtQ3OFSXStE60LT31tbLS5zPUaYNNB59eoVatWqhUGDBqF79+5at09OTkaHDh0wfPhwxMfHY//+/RgyZAh8fHzQtm1bvbbNGsbwdaHtcwA0588AXI1Xn/QRfJtD4URmPHxBZ1zF6ZnWtUJ0QXSZZq+P3nOpXfiaNNCJiIhARESEztsvXLgQAQEB+PHHHwEA1atXx5EjRzB79my9BzqAZQyX6IO2z4Gr8RoHB99M33ifMi/FLQhq6PXTpDrTz6xydBITE9G6dWul29q2bYsvvvhC42OysrKQlZUl/l7UefhMM67GazwcfDN9433Kuhjy7y3VmX5mFeg8fPhQJeIsV64c0tPT8ebNG5QsWVLlMTNmzEBsbKyxmsgYg/aua6l1bTPG9EOKM/3MKtApivHjx2PMmDHi7+np6ahYsaIJW8SY5dKaMGlnDxlgcbM6GGPSZVaBjre3Nx49eqR026NHj+Dq6qq2NwcAHBwc4ODgYIzmMWb1dFkTCADP/GLMjGVmZuLu3bsAIP7r5+cHR0dHUzZLI7MKdMLCwrB7926l2/bu3YuwsDATtYgxlp8uOQA884sx85WSkoJp06YBgPjv4sWLJfsdNmmgk5GRgZs3b4q/Jycn4/z58/D09ISfnx/Gjx+Pe/fuYfXq1QCA4cOH45dffsHXX3+NQYMG4cCBA9iwYQN+//13U70FxhhjzKr4+flh8eLFKrdJlUkDndOnT6NFixbi70IuzYABA7By5Uo8ePAAKSkp4v0BAQH4/fff8eWXX2Lu3LmoUKECli5dapCp5brIzMxESkqKWXXhMcYYY8Xh6Ogo2d4bdUwa6DRv3hxEpPH+lStXqn3MuXPnDNgq3aWkpGDYsGHi7+bQhccYY4xZE7PK0ZEadd13wu2MMcasi7pefu7hNz0OdIrB3LrvGGOMGY66Xn7u4VfPmOurcaAjcZwHZDx8NcYYKw5zS9I1BVOsr8aBjsRxHpDx8NUYY6w4uJdfO13XV1NXq8fd3b1Ir8mBjsRxHpDx8NUYY4wZni61ttTV6pk1a1aRXo8DHYnjKwTj4c9ad+ZWGZUVD/+9mbGpu/DkHh3GmNGYQ2VUzrnSH3P4ezPLou7CMz09vUjPxYEOY6zQpDDMp62XgXOu9EcKf29t1M3aMeRMHqniz0EVBzqM6aigGXDWRgrDfNp6Gczh5GwupPD31qSgWTyA4WbySA1/DppxoGNi3L1uPgqaAceMT1sgI+WTM9MfxVk8AAqcyWPJ+HPQjAMdE+PudfNR0Aw4xTXZmHFwIGM+DH1Bl38WD6B+Jo+l489BPQ50TMxautctYdxYlxOrJbxPxvSNL+iYKXGgY2KWflVqLePG1vI+mfSYw9Rva7mgY9LEgQ4zqIKqYAKwmHFja3mfTJm2Hjxj5OCZw9RvS7+gY9LGgQ4zOF2qYFoCa3mfTPcePGMM2XBvCWMF40DHCphD1zZj5kTXHjw3NzeDByHcW8JYwTjQsQLm0LXNmNQUVDfJ0dFRpx48DkIYMz0OdKwAd20zVngF1U0yp+CFa3Uxa8eBjhXgq0pmbrT1phhDQXWTCkMul+PixYt4/vw5PD09ERoaCltbW301Uyue2s2sHQc6jDHJkUJvij4uEBISEjB//nw8fPhQvM3b2xsjR45EeHi4UQI67tE1H1II8C2RVQc63KXLmDTpqzfFlBISEhATE4OwsDBMmjQJAQEBSE5ORnx8PGJiYhAbGwtvb2+DB3Tco2s+pBDgWyKrDnS4S5cxaTL3k7NcLsf8+fMRFhaGqVOnwsbGBgAQEhKCqVOnIioqCgsWLMDSpUvNPqCzFFLoTbGEAF+KrDrQ4S5d6yKFHjwptIEZ3sWLF/Hw4UNMmjRJDHIENjY26Nu3LyIjI3H9+nXUqVPHRK1kiqTQmyKVAN/SSpJYdaAjlZ2KGYcUevCk0AZmeM+fPwcABAQEqL1fuF3Yjpke96b8H0srSWLVgQ6zLlLowZNCG5jheXp6AgCSk5MREhKicn9ycrLSdsz0rOXCV5chuuIep6TWc82BDrMaUjiQSaENzPBCQ0Ph7e2N+Ph4pRwdAMjNzUV8fDx8fHwQGhpqwlYya6TLEF1xj1NS67nmQIcxpkQKSZnmztbWFiNHjkRMTAyioqLQt29fpVlXiYmJiI2NNWo9HU2k8PeWQhushTGG6KTWc82BDmNMiRSSMi1BeHg4YmNjMX/+fERGRoq3+/j4IDY2FuHh4SZs3f+Rwt9blzZYWoKsqRijV1lqPdcc6DDGlHBSpv6Eh4ejSZMmRa6MbKqCgsLtxqJLGywtQZYZDwc6Zo67fJm+Se1qzNzZ2toWeQq5MXpbpPD31qUNUhsOYeaDAx0zJ4VuZ8aYYUiht0UqpBCQSYElDOEZ+wKdAx0zp48DodSmAjLG8vDJneVnCUN4xr5A50DHzOnjQCi1qYBFZQlXOowxVhBLGMIzdk8lBzrMIr44gGVc6TDGWEEsoZfP2O+BAx1mEV8cwHICNimQy+VFninEGGNSwoFOATh3xbxYSsBmagkJCZg/fz4ePnwo3ubt7Y2RI0dKpvYLY/lpO17z8dx62WjfxHoJuSuKwyEpKSkmbhVjhpOQkICYmBgEBgZi3rx52L17N+bNm4fAwEDExMQgISHB1E1kEpQ/P+769evIzMw0ahu0Ha/5eG69uEenADwUoj/aEoX5asv05HI55s+fj7CwMKX1mUJCQjB16lRERUVhwYIFaNKkCQ9jMSVSyI/Tdrzm47n14kCnADwUoj/aDoSWMvPLnF28eBEPHz7EpEmTlBahBAAbGxv07dsXkZGRuHjxYpEL4DHLJIUgQtvxmo/n1osDHQPjKc95+GpL+p4/fw4ACAgIUHu/cLuwXXFIoQdPCm2wFNYSRPDx3DxxoGNgUujSlQK+2pI+T09PAEBycjJCQkJU7k9OTlbarjik0IMnhTYw88LHc/PEgY6BcU8FkxpNPRmhoaHw9vZGfHy8Uo4OAOTm5iI+Ph4+Pj4IDQ0tdhuk8L2QQhuYeSnuPsNrE5oGBzoGxj0VTGoK6skYOXIkYmJiEBUVhb59+yIgIADJycmIj49HYmIiYmNj9ZKILIXvhRTawMxLcfcZXpvQNDjQYczKFHRVGh4ejtjYWMyfPx+RkZHi/T4+PoiNjeU6OowVAy/Sahoc6DAmIdq6tvXR9a3tqjQ8PBxNmjThysiM6Rn3IpqGJAKdefPm4fvvv8fDhw9Rq1Yt/Pzzz2jQoIHabVeuXIlPPvlE6TYHBwejF6dizBC0dW3r0vWtj5khtra2PIWcMWYRTB7orF+/HmPGjMHChQvRsGFDzJkzB23btsW1a9fg5eWl9jGurq64du2a+LtMJjNWc5kGPO1SP7R1bevS9c0zQxizXlw2QZXJA51Zs2Zh6NChYi/NwoUL8fvvv2P58uX49ttv1T5GJpPB29vbmM1kWvDJNU9xAz59TMOXwmwiDnwZMw0um6DKpIFOdnY2zpw5g/Hjx4u32djYoHXr1khMTNT4uIyMDPj7+yM3Nxd169bF9OnT1db9AICsrCxkZWWJv6enp+vvDTCRFE6uUiCFgE8KeQBS+BwYs0Z8LFZl0kDn6dOnkMvlKFeunNLt5cqVw9WrV9U+JigoCMuXL0doaCjS0tLwww8/oHHjxkhKSkKFChVUtp8xYwZiY2MN0n72f6RwcpUCPsjk4c+BMdPgY7Eqkw9dFVZYWBjCwsLE3xs3bozq1atj0aJFmDJlisr248ePx5gxY8Tf09PTUbFiRaO0lemPuRTa4oNMHv4cGGNSYdJAp0yZMrC1tcWjR4+Ubn/06JHOOTh2dnaoU6cObt68qfZ+BwcHODg4FLutzLS40BZjjLGiMGmgY29vj3r16mH//v3o2rUrgLxS8/v378eoUaN0eg65XI5Lly6hffv2BmwpMzUutMUYY6woTD50NWbMGAwYMAD169dHgwYNMGfOHLx69UqchdW/f3/4+vpixowZAIC4uDg0atQIVapUQWpqKr7//nvcvXsXQ4YMMeXbYAbGQyFMinh2GWPSZ/JAp3fv3njy5Amio6Px8OFD1K5dG3/++aeYoJySkqK0uOCLFy8wdOhQPHz4EB4eHqhXrx6OHTuG4OBgU70FxpiV4tlljEmfjIjI1I0wpvT0dLi5uSEtLQ2urq6mbo5ZUEwEnjZtGiZOnAh/f3++cmVWT/huKOLvBWOGUdTzNwc6TKvr168rJQIL+MqVMcaYsRT1/G3yoSsmfZwIzBhjzFxxoMO04kRgxhhj5spG+yaMMcYYY+aJAx3GGGOMWSwOdBhjjDFmsTjQYYwxxpjF4kCHMcYYYxaLAx3GGGOMWSwOdBhjjDFmsTjQYYwxxpjF4kCHMcYYYxaLAx3GGGOMWSwOdBhjjDFmsTjQYYwxxpjF4kCHMcYYYxbL6lYvJyIAQHp6uolbwhhjjDFdCedt4TyuK6sLdF6+fAkAqFixoolbwhhjjLHCevnyJdzc3HTeXkaFDY3MXG5uLu7fvw8XFxfIZDIAeVFixYoV8e+//8LV1VXlMYa+n9tgWa/BbZBOG6zlfXIbrOt9WmsbiAgvX75E+fLlYWOje+aN1fXo2NjYoEKFCmrvc3V11fgHM8b93AbLeg1ug3TaYIzX4DZIpw3GeA1ug2naUJieHAEnIzPGGGPMYnGgwxhjjDGLxYEOAAcHB8TExMDBwcEk93MbLOs1uA3SaYMxXoPbIJ02GOM1uA3SaYOurC4ZmTHGGGPWg3t0GGOMMWaxONBhjDHGmMXiQIcxxhhjFosDHcYYY4xZLKsrGGitMjMz4ejoaOpmMA1ycnJw6NAh3Lp1Cx999BFcXFxw//59uLq6olSpUqZuHmPMAJ4+fYpXr17B399fvC0pKQk//PADXr16ha5du+Kjjz4yYQsLTy6XY9u2bfjnn38AACEhIejcuTNsbW1N1iarnHV18OBBtGjRwtTNKNDbt2/x6aefYtKkSQgICNC6fWZmJrKzs5VuK1WqFKZNm4aFCxfi0aNHuH79OgIDAzFp0iRUqlQJgwcPFrf977//AEBt1ej9+/dj//79ePz4MXJzc5XumzdvHogITk5OAIC7d+9i69atCA4ORps2bbS2OycnB9OnT8egQYM0VqzW5s8//0SpUqXQtGlTsU1LlixBcHAw5s2bhxMnThR4v4eHR5FeVx9SU1ORlpaGdu3aISUlBVlZWeLfafTo0cjKysLChQtN1j5jSU1Nhbu7u87bJyQkoHHjxihRQvlaLScnB8eOHUN4eLhOz3PmzBnxgBwcHIy6devq3AZzkJ6errHi7M2bN1GlShWdnufJkye4du0aACAoKAhly5YV77t16xbmzJmj9DmOHj0alStXVnkeTceZ1NRUbNq0Cbdu3cJXX30FT09PnD17FuXKlYOvry9evXqFv//+GykpKSrHuc8//1xr+wcNGoS5c+fCxcVF6fZXr17hs88+w/LlywEA2dnZSE5ORuXKlVX2LUXp6ek4cOAAgoKCUL16dfFzWLFiBW7duoW5c+fCy8sLf/zxB/z8/BASEoL//vsPO3bsUHoPu3fvhrOzM86cOQMAePz4Md555x2UL18elStXxh9//IFly5bh448/RsuWLbFlyxaV70l6ejq6du2KAwcOIDU1FcuWLVMKMgYNGlSkasJFcfPmTXTo0AH//fcfgoKCAADXrl1DxYoV8fvvv6Ny5crF/lsWCVkhe3t7CgwMpClTplBKSorabTZu3Eg9e/akhg0bUp06dZR+CmP16tXUuHFj8vHxoTt37hAR0ezZs2nbtm1aH+vq6kq3b9/WeP+rV68oMjKSypYtSzY2Nio/sbGxFBgYSGvWrKGSJUvSrVu3iIho3bp11KhRI5LL5RQbG0uurq7iY9zc3CguLo7kcjkREU2ePJlsbGyoQYMG1KVLF+ratavSz/vvv08LFiwgIqIXL15QuXLlqEKFCuTo6Ejz58/X6TMqVaoUJScna7y/RYsW9OLFC5Xb09LSqEWLFlSjRg36/fffiYjo4sWL5ODgQOPHj6dGjRrRwIEDtd4vePHiBe3Zs4d+/fVXWrVqldKPrgp6jpkzZ9K6devEbXv27Ek2Njbk6OhIHTp0oKysLCpVqpT4dzp48CBVqVKlwNdLS0ujrVu30pUrV4iIKCUlhf7991/x/hMnTtDo0aNp0aJF4m1v376lvXv30sKFCyk9PZ2IiO7du0cvX77U+X3K5XK6du0aHT58mP7++2+lH+FzWLJkCX377bf07NkzIiI6c+YM/ffffxo/h/Lly9P58+dp7dq1Gl933LhxRERkY2NDjx49UvkskpOTSSaTUVpaWoE/jx49ohYtWpBMJiMPDw/y8PAgmUxGLVu2pMePH+v8ORTHypUradeuXeLvX331Fbm5uVGlSpUoJiaG5s6dq/WHiCgnJ4c2bdpEU6ZMoSlTptCWLVsoJyeHiIiaNm1KmZmZKq999epV8vX1JSKihIQE6tu3LzVq1Ij+++8/Iso7bh0+fJgyMjLok08+oRIlSpBMJiOZTEYlSpSgQYMG0atXr+jPP/8ke3t7atCgAX355Zf05ZdfUoMGDcjBwYH++usvIiKtx5kLFy5Q2bJlqUqVKlSiRAlx/584cSJ9/PHHdPbsWfL29iZXV1eytbWlsmXLEgCytbUlJycn6tatW4E/ROr3FyKiJ0+ekK2tLb169YoGDRpEtra2ZGtrK7Zh1KhRNGPGDOrZsyf9/PPPRET0+vVrqlq1KtnZ2VGJEiVo06ZNdOjQISpZsiS1bt2a7O3txcfPmDGDPvjgA9q3bx85OTlRjRo1qESJElS7dm1yd3cnmUxGtWvXFtvz/fffU+XKlent27fi7w0bNiQiIplMpvY9PHr0iEqUKEGnTp0iT09P8vX1Fd97hQoVqHTp0nTmzBkiIlq+fDm9evVK266plaZ9plGjRtSuXTvxO09E9PTpU2rXrh21b99e7d9SJpORs7MzBQQEKL1GQceQwrLKQOfJkyc0a9YsqlWrFpUoUYLatGlD69evp6ysLCIimjt3LpUqVYpGjRpF9vb29Omnn1Lr1q3Jzc2NJkyYID7Pw4cPqV+/fuTj40O2trYqgcb8+fOpTJkyNHXqVKVAY8WKFdS8eXPKyMigqKgoCgsLo8qVK1NAQIDST//+/WnWrFka38fIkSOpevXqtGnTJipZsiQtX76cpkyZQhUqVKA1a9ZQ5cqVad++fURESifQf/75h9zd3enbb7+lsmXL0vz58+nChQt04cIFmjdvHpUtW1Z8n97e3rR69WqNbShdujRdvnyZiIiWLFlCoaGhJJfLacOGDfTOO+8QUd6BeOnSpfThhx9Sq1atqEWLFko/nTt3ppUrV2p8DW1fcGdnZzFQiomJoQ8++ICI8r4U5cqV03o/EdGOHTvIxcWFZDIZubm5kbu7O7m7u4sHvvzBrrofTc/h7u5OHh4eVKlSJTp69CgREf3111/k7u5Oe/bsIQcHB2rcuLHK3yk5OZlKliyp9J61HXCbNm0q/r0ePHhArq6uFBYWRmXKlKHY2Fi6c+cOvfPOO+Tk5CQe0L/88ksaMWIEffrpp+LJStMPEVFiYiIFBASQjY2NePITfmxsbLSeuDR9DoMHD6b333+f3NzcaPfu3Sp/7y+++IK8vb3FfSJ/QCK8PgC1gb/iT69evah+/fpigEhElJSURPXr16c+ffoQEdG///5L8+bNo2+++Ubt56Dt+69tv69WrRrt37+fiIiOHTtGTk5OtGjRIipZsiQ5OTlRpUqVqFKlSuTs7KwSkAknhhs3blC1atXIyclJ3A+dnJwoKCiIbt68Se3ataOIiAjxxElEdOXKFfL29qbPP/9cPHYMGTKEHBwcxL/Vzz//TBERETRs2DAKDAyk3bt3i0Hi77//TpUrV6bhw4dT7dq16ZtvvlH5W33zzTfiRaG240yrVq3oq6++Utn/jx49Sv7+/tSsWTMaOnQoyeVy8f6ePXtSuXLlqEWLFjRw4ECNPx999BGlpqaSTCajmzdvKgW7z58/p1WrVpGPjw99/vnnVK9ePTp8+DA5OzuLbdi2bRvVrl2bypUrR+fPnyciovj4eKpSpQq9evWK5s+fT7Vr16ZGjRrRjz/+qPIeTpw4Qb6+vvTuu+9SdHS00v0vX74kGxsbmjJlivi5RUREiJ8FEdG1a9fI1dWVLly4QDKZjA4ePCh+hhcuXKCzZ8/S9OnTyd/fn5o2bUoDBw5U+lu/ffuWBgwYQO+99x4REXl5eZGLiwsNGjRI/A4SEdWuXVunY1ydOnUK3GdsbW3p4sWLKvvD+fPnydnZWe3fMiUlhcLDw2nz5s3i9tqOIYVllYGOojNnztCoUaOodOnSVLp0afrss8+oUqVK4lWl4k47adIkioyMFB/brl07Cg4Opvnz59PWrVtp27ZtSj/Vq1enrVu3qjzPpUuXqHTp0tSnTx/y8fGhr7/+mmbPnk1z5sxR+pkyZQq5u7vTBx98QNOnT1e5mqtYsSIdPHiQiIhcXFzoxo0bRJQXWUdERJCjo6PYi6T4+klJSeTs7Ew+Pj60fft2lc9k27ZtVL58eSIi8vT0pJs3b2r8/EqWLEl3794loryT8OTJk4kor2dBOElHRkaSs7Mz9erVi0aPHk1ffPGF0s+CBQvI29ubxo4dS2vXrqXt27fT9u3bxfep7Qvu4eFBSUlJRETUpEkTsfdCCBS03U9EVLVqVRo9erTK1c7kyZPFn2+//ZZcXV2pUaNG4gkvLCyMXF1d6dtvv9X4HAJHR0exB/Hzzz+nYcOGEVFez52Li4vK3+nw4cPk5eWl9BzaDrju7u509epVIsoL2IUAas+ePRQQEEBdunShfv36KfUeNW/enHbu3ElVqlSh5s2ba/xp0aIFERHVqlWLevbsSVeuXKEXL15Qamqq0o+2E5emz+HatWvk7u5Ou3btIjc3Nzp8+LD4vkeNGkXly5en1q1bU7du3cjGxobat2+vdOXeuHFj8vb2pnfffZdWrlxJ3t7e9O2334r707fffks+Pj60cuVKcnV1pZMnT6r8jU6cOEFubm4ar8Dd3NzEz0Hb91/bfq/43fn666/FA/jly5epTJky4t+4SZMm4t+UKK835r333qM1a9ZQREREgVfQr1+/psaNG1OvXr0oNzeXLl26RF5eXmKwVrt2bbHHUvFvdfbsWSpXrhyVLl1aPMYoOnDgAJUpU4YcHBzo+vXrKvdfu3aNHBwciIi0HmdcXV3FY4xiG+7cuUMODg7k5uYmvn83NzcxOD1+/DgFBQWpPK8iIfjV9GNra0tTp04lPz8/SkxMVGnDjRs3yMXFRWmf/fjjj8Xg7u7du+Ts7EzOzs5i73v+ixUHBwcqVaqU+B7d3d3Fi0NPT0/y8fER21u6dGnatGmT+Pv169eVAvf8FxYymYycnJxo2bJl5OjoSP/884/KZ5CUlCQe596+fUtbtmyhzp07k52dHQUFBdHMmTNp3LhxOh/nCtpnZDKZUgAlOHLkCHl4eOj8t9R2DCksqw90iPK67WNiYsjBwYGcnZ0JANWvX58uX75MZcuWFU8s169fJ09PT/FxpUqVonPnzml8Xk2BxvXr18nR0ZHc3NzoyJEjGh8vXNGp+wkICCBnZ2fxQOnr60snTpwgIqLbt2+Ts7Mz1a1bl3799VeV14+NjaWmTZuSg4MDXbt2TeV1r169So6OjkSUdwCOi4vT2MaaNWvS3LlzKSUlhVxdXenYsWNERHT69Gmxt6R06dLi0JE66r68MpmMAIhf8oK+4J06daK2bdtSXFwc2dnZiV2be/bsoapVq2q9n4jIyclJ/Hw0GTx4MEVFRancHh0dTZ988onW5/Dx8REPAtWqVaMNGzYQUd5VnJ2dHRHl/Z1u375NL1++pJYtWyoNrRGRTgdcofeqU6dONHPmTPF+R0dH8vT0FA802nqPNHFychKDanW0nbg0fQ5Xr14VA774+Hjy8PCg06dP04gRI6h8+fJ07do18UpdJpNR7969la7ehw0bRtOnT6cnT55Qy5Yt1Q6BxcfHU7NmzTR+d8+ePUsuLi4ar8A7d+4sDslq+/5r2+/Lli1LZ8+eJaK8gEPoibt58yY5OzsTEVFgYKC4jaLTp09TpUqVyMnJqcAraKK8IYBatWpRjx49yMvLSxz+I8q7UBH2F8W/1a1bt8jBwYFKliyp1OsluHz5Mjk5OVGFChXEv5+i9evXU8WKFYmItB5nFD8HxTb89ddfVKFCBSpTpowYTFWtWpX+/PNPIsrrmXZyclJ5XkWHDh2igwcPkkwmoy1bttChQ4fEn2PHjtG9e/fEz0F4XcU2nD9/nlxdXalq1aq0fv16ysjIoLJly4o9cefPn6fSpUuTr6+vuE8rPn7Lli0UGBhI5cqVEz/H6tWri4Ff8+bNqUSJEiSXy2njxo1kb29Pz58/F9u/a9cuqly5sjgke+rUKbpz5474c//+fXGY0svLi/bs2aPyGfz5558qF0xEeT2SP/zwA9WsWZPs7OyoU6dOtG3bNho0aFCBx7mC9hkbGxsKCQmh48ePU25uLuXm5lJiYiLVqFGDBgwYoPPfUtsxpLCsNtDJzs6mjRs3UkREBJUoUYIaNWpES5YsoYyMDKpYsSJFRERQ9erVqV69erRw4UIiyjsxenh4iM9RvXp1tQchxfuFXBzFP9ZPP/1EderUoUqVKqk9iOiqZs2adOjQISLKi4DHjh1LRHlX8r6+vrRt2zZyc3OjmTNnkpOTE33//fc0ZMgQsre3p7/++osaNGhAn332mcrzjho1ShwX/vzzz8nd3Z3Cw8Np1KhRKl34GzduJDs7O7KxsaH3339ffI7p06dTu3btiCjvBK/uQKfNnTt3dPqC3717lzp06EChoaG0dOlS8fFffPEFffbZZ1rvJyLq1q0brV+/vsD2uLq6qr16vX79Orm6ump9jsjISPL396fWrVtT6dKlxZyYX375hRwdHal69erivli6dGkKCgpSGbLTdsBt0KABffPNN5SQkECOjo5ikJ6YmEi+vr7k7u4u9m5p6z3SpEWLFvTHH39ovF/biUvT5/Dbb78p5cDNmzePHBwcqEKFCiqB1eTJkykjI0NjG0qWLKmxp6FkyZLUuXNnCg8PF090RET//fcfNWvWjLp27arxCvz8+fPiFaW277+2/f6jjz6iunXr0uDBg8nJyYmePn1KRETbt2+nkJAQ8X1o6nkSeivzX0GnpaXRnj17yN3dXRymuXr1KlWsWJFGjBihNHwTEBBAe/fuJSLlv9WqVauoevXq1LJlS+rZsye9efNGfP7Xr19Tz549qVWrVhQbG0vu7u40c+ZMSkhIoISEBJoxYwa5u7uLF0jajjODBw+mrl27UnZ2thjo3717l+rUqUOjR4+m999/n+Lj44mIaMiQIdSgQQNas2YNtW3blho0aEBE2nMq79y5Q7m5uRr/Fu+99x799NNP4ucg9M6MGjWK2rZtS/PmzaMSJUqQu7s71apVS8xh/Omnn6h58+Y0duxYatq0KT148EDsXT9y5AgFBgbS5MmTqUuXLrR48WIiIho7dixVqVKFpk6dSu+88w7Z2dmRvb092djYqAQY/fr1o08//VRjuxV99tlnVKFCBVq3bh2lpKRQSkoK/fbbb1ShQgUaPXq02sccP36chg0bRg4ODlSpUiVyc3MjmUwmXiArEo5zBe0z1apVo86dO5NMJiN7e3vxfXXt2pVSU1N1+lsSaT+GFJZVBjrCUJWnpyeNHj2aLl26pHT/4MGDady4cSSTyeiXX34Rk8zc3d1p0KBB4nZ79uyhNm3aaEykXbJkCfn6+tK6devI2dmZfvvtN5o6dar4/19//ZV69OihNTksKyuLrl69qjT2SkQ0a9YsMSFx79695OjoSA4ODmRjY0Nz5swhoryksdatW1PZsmWpZMmS1KRJEzHqP3ToEDk7O1P16tVp0KBBNGjQIKpevTqVKlWKEhISiIh0Gsp48OABnT17VvzyE+UdiIVu1B9++IFGjhxZ4IFGoHhANaalS5eSn58fxcTE0KZNm8ThDuGHKG/YaMWKFSqPXbFiBXl5eWl9juzsbPr+++/p888/VzpBzpo1ixYuXEi//vorffXVVzRixAhasmQJvX79WuW1tB1wDx48SO7u7mRjY0OffPKJ+Ljx48dTt27dqFevXjR06FAiUt979ObNG/rf//5HERERVK9ePfFk8c4779A777xDFy5coC1btlBwcDCtWLGCTp8+rTSkeOHCBa0nLnWfw5dffknNmjWj1q1bKwXSFSpUoM6dO6vkx7x+/Vrpe3Pnzh2aPXu2uG9Xq1ZNKddB8NVXX1G1atUoJSWFateuTXZ2dhQYGEiBgYFkZ2dHderUoX///VfjFbhiT4m277+2/f7FixcUGRlJnTt3Vgoco6OjaerUqURE1LFjR6pTp46YTEqU15tTt25d6tSpE3388ccqV9BCb2j+YRvFPCrh3+nTp1NwcDAdP36cXFxc6PDhw7RmzRoqW7Ys/fTTT3Tx4kUqX748lS5dmlq2bEktW7YUezAuX75Mubm5NGvWLPL19RWf39fXl+bMmSO+b23HmdTUVPH4amtrSxUrViQ7OzsKDw+njIwMOnXqFB04cICI8vLy2rZtSy4uLlS3bl06f/68TjmVf/zxh9JQ6C+//EK1atWiDz/8kJ4/f06HDx+mUqVK0fDhw8nR0VEMsJydnen06dNERHTq1CnasmWLUtL+rl276MiRI5SVlUVDhgwRk7aFi79+/fpRTk4O3bp1iy5cuEBERBkZGfTpp59SzZo1qXv37nT27Fnatm0bHT9+XGUf2bVrlxh0aUpeDwsLozt37lBWVhZ9/vnnYnBhY2NDDg4O9MUXXyglpD98+JC+//57Cg4OJkdHR+rTp48YuGRkZJCzs7PSyIVAOM5p22eI8oKiHTt20I4dO5QuUgr6Wyr2jmo7hhSWVU4vb9WqFYYMGYLu3burXRU1NzcX2dnZOHHiBJo1a4Z169bh2LFjqFq1Kj799FPY29sDADw8PPD69Wvk5OTAyckJdnZ2Ss/z/PlzxMfHY/Lkybh16xYAoHz58oiNjcXgwYNRp04d3Lp1C0SESpUqqTz+yJEj+Oyzz7Bq1SoAEKcdf/bZZ/D19cW3336rtP3du3dx5swZVKlSBaGhoTp9Fvfv38e8efNw9epVAED16tUxcuRIlC9fXqfHa9K9e3el3w8cOABPT0+EhISovM+NGzdi+vTpStPgL1++jOPHj6Ny5cpKU1kFr1+/Fv/fvn37Atvi6uqqdeqnjY3m2pkymQxyuRwzZ85EbGwshg4digYNGgAATpw4geXLl2PSpEmYMGGC1ufQhzNnziAlJQXvv/++WGPn999/h7u7O5o0aQK5XI709HSlafN37tyBk5MTsrOz0bZtWxARbty4gfr16+PGjRsoU6YMEhIS8OWXX+Kvv/5Cjx49UK5cOchkMgDA5MmTxf9ren9EBJlMhufPn6NHjx44ffo0Xr58ifLly+Phw4cICwsTp9Pmp2u5B5lMhgMHDqBNmzbo3r07hg8fjtTUVAQFBcHe3h5Pnz7FrFmz4O/vjw8++ABVqlRBw4YNAQAnT57EjRs3sHnzZrRv3x5EhH379int+61btwYAdO3aFR06dMDQoUMxbtw4bN++HQMHDsSWLVvg4eGBffv2qf3+Z2RkiG3t2LFjgfv9li1btL7fJ0+eYMCAAfjzzz/Fx+fk5KBt27ZYuXIl7O3tMWDAAOzcuVO8/+3bt2jSpAm+/fZbrTWYwsPDMX36dMyYMUP8Tjk4OGDcuHGYMmUKgLzvWnx8vNLn1LdvX5QsWVLpuV6+fAkAKlO4AeDevXuYP39+gceZI0eO4OLFi8jIyEDdunXFv4U277zzDmJiYvDhhx/CxcUFFy5cQGBgIKKjo/H8+XP88ssvqFmzJr777ju0b98ely5dQv369TF27FgcPHgQ77zzjnhsmDlzJi5cuCC24ZtvvkHNmjV1agcA/Pvvv7h06RIyMjJQp04dVK1aVefHahMUFIQFCxagZcuWSExMRKtWrTBnzhzs2rULJUqUEPen169fi+ebypUri6U/AKBTp07Ys2cPqlWrhiFDhqB///7w9PRUep2oqChMmzYNn332mdrj3DfffKN1nymutLS0Qh9DCmKVgY42KSkpqFixosqBnYjw77//ws/PDwDEAESTAQMGiP9//fo1MjIy4OXlJd4WGxtb4OOfP3+Oo0ePYs6cOWjXrh0uXryIwMBAbN++HZMnT8a5c+cKfHxgYCBOnTqF0qVLK92empqKunXr4vbt2wU+Pj91NTBatGih9gQo1HFo166d1ucNCAjAqlWrEBcXh6FDh+Ly5cuoUqUKFi5ciBUrVuDEiRMqj1HcbQsKUoC8ICsiIgJNmjRBQkIC/vnnHwQGBmLmzJk4ffo0Nm3apLWNgg0bNmDu3Lni+6tevTpGjx6NXr16qd1+x44diIiIgJ2dHXbs2CHeru49CSfk/Dp37qxz+wDtxQdzcnKwbt06pZOKcOJyc3PD7t270aRJE6XnvHv3rs6vLxQ/K+jEdePGDRw8eFBtbabo6Gitr1GmTBn8/fffCAkJwdKlS/Hzzz/j3Llz2Lx5M6Kjo/HPP//gv//+Uzm5Dh8+HBUrVtT6/Ldv30ZGRgZCQ0Px6tUrjB07VrzYEQIpdd//pUuXiv/XVqNmxYoVSE1NxcmTJ1U+B5lMho8//lj8/fr16+L7eOedd1CtWjXxeFS2bFncu3dPaZ/UtT7O27dvYWdnh+zsbNy8eRMZGRkIDg5GqVKl8PTpU1y5ckUv9YoMycnJCf/88w/8/f3h5eWFvXv3olatWrhx4wYaNWqEZ8+eoVSpUrh8+TIqVaqEyZMn4/Lly9i0aRPOnj2L9u3b4+HDhyrPO2bMGEyZMgXOzs4YM2ZMgW2YNWuW0u9yuRyXLl2Cv7+/0gXH6dOnleoNxcfHq30+Nzc3VKtWTeli3MnJCVevXoWfnx+++eYbPHjwAKtXr0ZSUhKaN2+OmzdvQi6XqwQuz58/R4kSJeDq6orBgwdjyJAhCAsL0/heiAjz58/H2rVrCzzOCfvM1KlT4enpKXYAFOT8+fNaawEpKmrwm5/VBjoFHWhjY2Px4MEDpaAEAJ49ewYvLy+dr8zfvHlTrGJ6/v7+WL9+PRo1aiReqezatQutWrVCWFgYpk6dWuDjv/jiCzx8+FDlfTx69Ah+fn44deqU2sfJZDI4OjrCz88PdnZ2mDp1Kn788UfxatXFxQVjx47FxIkTMXbsWKXHvn37FufPn8fly5cxYMAAzJ07V+v7rFKlChYtWoRWrVopXZFdvXoVYWFhePHihcpj/v77b/H/d+7cwbfffouBAweKX+DExESsWrUKM2bMwMKFC9GzZ0+MGTNG6flPnjyJ7t27iwGcIdjY2Ih/A8WATN3XTl3AqK4nSF3hMcHo0aOLVXwwODgY69atK7BHsLjF+pYsWYIRI0agTJky8Pb2Vnnfly5dwvnz51GjRg2Nz6F40O/VqxdCQkIQExODf//9F0FBQUo9foKffvqpwHYpMljhMgU7d+5E3759kZGRAVdXV6XPQegZK0hubi4cHR2RlJSk1HNw8eJFndsQGxuLTZs2qfwNHj16hFatWuGff/4p8FgYGhqqcb91dHRElSpVUK5cObz77rvo2bOneP9PP/2Ec+fO4e3bt2KvgSa9e/fGuHHjxKKl+b87/v7+2Lx5M+rUqYP69etj6NCh+PTTT/HXX3+hT58+eP78OTw9PXHkyBEEBwejadOm6N+/P4YNG4Y7d+4gODgYr1+/Rm5uLm7evCmeE0aPHo2pU6fCxcUFMTExGtsnk8kQGhqKmjVrYvDgwZDL5WjWrBmOHTsGJycn7Nq1C1WqVMGHH36Io0ePiif51NRUuLi4ICQkRGVkITU1FTdv3kS5cuVw4MAB+Pn5wcvLC3v27EGdOnVQp04djBkzBh9//DFu3bqFWrVq4b333kOnTp0wcuRIpedauHAhduzYge3bt6Ndu3ZYuHBhsXqa0tLSlAIqoTc2JycHMpkMFy5cQE5Ojlgw8Pr167C1tUW9evVw6NAhteekx48fw9fXF2/fvi1yuwpilUtAFHSgVeyCzy8jI0NlGYWCyl136dJFqXu9QYMGSt3rI0aMAKBcnTUkJAR16tQBkNdtnX+HmD17NmrVqgWZTIbZs2erfX+KB/k9e/YoVcWUy+XYv38/KlWqhNq1a4vvUzh4KL5vOzs7VK1aFY8ePcLMmTPFq/wjR45g8uTJyMzM1NiGyZMni4GRtoqe9+7dU3sFmpubq3HHb9asmfj/uLg4zJo1C/+PvS+Pq2l/2772bp4nTdJoqhQVMkUTKpTMKUNFOCIc83RUhoyROEJSQobMjiFDyTxEAyEdQ45jToai8X7/6Nnr2au99hDO+z7vc37X57M+tNZe81r3ur/3cF3Dhw9n5vn5+cHe3h5btmxBQUEBdu/eLbINAwMDvHv3jvn7woULWL16NWvENXPmTHTv3p3zGLjQcBv9+vXDw4cPYWBgIOJQfw/OnTsHPz8/xhG0s7PD06dPQURwcnLClClT0KFDB+Tl5TGRvKNHj8LAwAAbN26UmuZbs2YNZs+ejYSEBBYtvTDc3d1FPn7r169HeXk55s+fj3Xr1kndx9KlSzF79mzO5VZWVlIHEy1atMDhw4cxYMAAnD59GtOmTQNQbzAFTMANoyXCYXV1dXW8ffsWFRUVrA+PqqoqDAwMZHZ0foTufvr06QgNDcWyZctY6YWG209OThbLTN6yZUu8f/+e9eESvNfSxrA8Hg9OTk4YO3Ystm3bxsx/+fIlPDw80KZNGxQWFnLawvfv30NNTQ3e3t7YtGkT7O3tGYfl5s2byM/PR3BwMAoLC7Fjxw6RlMbatWvx7ds3vHv3DpcvX5Z4jCdPnkRJSQkWLlwIY2NjkeM5duwYjh49CkdHR4SEhGDatGlIT0/HrVu3mBS6i4sLfv31V3Tr1g03btzA3r17AdR/hJs1a4Zr164hMDAQz549Y103X19fmdLOzZo1w4gRI5jjefz4MR48eIDU1FTMnz8fGhoaqK6uxv3791mMwSEhIdDU1MSpU6dEtvnp0ycEBQVhzpw52L17N3r16oWxY8fC0dERRUVFzLt87949WFhY4Pr16yKRJQBwc3PD/PnzoaCg0CgnWBwCAgJYDlVmZiaAeocqLi4Orq6uSElJYSJZHz58wMCBA+Ho6IisrCwUFhayImi1tbU4deoUNDQ0ZB6MNHog0uiqnv8FMDMzY9puhSEoduTz+SLkaREREdSpUyeGl4SonmOhZcuWYsm6pJHpSWNnldYJIA7i2rUFlfCtWrWiY8eO0eHDh6l169aUmJhI+fn5lJ+fT4mJiWRjY0N79uyhnTt3Ep/Pp/79+4vsQ5hrhwuPHj1iOtSkEf5Ja4Mnqi9o7NevHzVv3pyaN29Ovr6+TMG0tA4baa2fRESpqakkLy9PQ4cOZfh7hg4dSgBITU2NuT+SJnHbUFBQYDoNfhTS2p652seF2/UlPRt8Pp/evHlDbm5uxOfzSV1dXeQcBfezIVmfhYUFU5AqjRZBQ0NDYht+YmIi9enTh8UN0xDSuv2kkTdy8dNoaWlR586daefOnczvxE1E0t9/cSRsTk5O1LVrV5KXl6edO3dKvN/SuHiOHj1KLi4urIYK4e5EadObN2/I2tqaKfJ+8eIFtWrVikxMTMjf35+Tr8jPz48sLCzIy8uLxo4dy0k/sXjxYho7diwREcnJyZGdnZ3Ib548ecLQWEiCtDb+2tpaVqNGWloaTZ48mdavX8+QwErrvJTGDSUNSkpKDCN5WFgYUzD7+PFjhodHHE2AJFqH69evk5mZGRFJL14XRzWQn5/P7GPq1KmcBI/SnveGE1e38P3794nH4zHfPGEI7I8kqpAmTZpItB3CNqSx+FdGdD58+MAKowogqHkhIhQUFLByjoqKimjXrh1mzJjBzIuIiEDz5s1x7do1Joz3/v17jBgxAhEREaioqGAK8zIyMjBw4EDw+Xx07twZz549w+TJk/H582fcu3eP0UspLCzE6NGjERERgWXLlsHHxweFhYWoqalBXFwcCgsLceXKFVbqpiEEoz5LS0vcvHkTTZo04fyds7Mz4uLi4OXlxcyzt7dHs2bNsHDhQty4cQMhISGMDoswrK2tJYbWr169Cjk5OWYEIc6LNzExwW+//YbRo0fjxYsXqKurw8GDB/Hw4UPs2LEDx48fx86dOxESEoKBAwcynvzly5fh6emJ5ORkmJqaYuvWrVi5ciXrGBITE2FqagpfX1/Mnj0b+/fvB4/HQ11dHS5fvowZM2Zg1KhRAIClS5di5cqVTGQAqL+/fD4fFy5cQExMjNhzFYBrG0B9LnvatGki0aOGEI5SCUN49HL//n2kpaUBAOTl5fH161eoq6sjOjoa/fv3R11dncjos66uDpcuXcKgQYPw+vVriefQs2dPvHjxAsuWLWMVIwNAfHw8Bg4cCB6Ph+DgYFa4vW3btsjPz0fv3r05R6fCGDNmDDIyMjBhwgTO5Rs2bEBxcTGaNm0Kc3NzkcLD27dvY/DgwXBxccHLly/Rrl07ZpmnpycGDBgAPz8/idGS5s2bIz09nRldA0BcXBxatWqFwMBAqVEpQPr7Ly3aUVxcjJEjR0JdXR39+/fn3MeePXuwb98+sZE4QUF0u3btoKioKFIgLC39BdTbJoEO3PHjx+Hk5ARlZWUmKqShocHarqKiIjp37oywsDA0b96c0z4EBASgffv22Lp1KwwMDFBcXCzyG0HUMTo6GjNmzBC5T1+/fsWqVatgamoqNjrFpZUXEBCAgIAA1u/MzMxw/PhxkfUFEWk1NTWkp6eLrW0SV4sogKGhIQoLC2FsbIxTp05h06ZNAOqj63JycjAyMuKMTtfW1kps/GjSpAlzD7W1tbFhwwaR3whqPc+ePYstW7YgPj6etTwhIQHt27cHUH+9kpKScPbsWbRv3555twTPpywCohMnTkRNTY3I/OrqahAR3r59K7Js165dGDt2LL5+/YobN26wGkwUFRVhYGDwj4p+/itrdMaMGYOOHTuKNbQhISGIi4sTK4YngJqaGq5duyZSlZ+Xl4du3brBysoKY8eOxYABA2BnZ4dTp06hS5cuyMnJQd++ffH161ecPXsWHTt2ZK1/48YN9O7dG2VlZRI7AaSFtYODgzFs2DCR/G9VVRX27NmD8ePH486dO7C2tmYtf/DgARwdHfH161c4ODjg7t27Ig/25MmTcfPmTZGXlIjw8uVL3Lp1C7W1tUxdCtdjpqKigvj4eISGhuLixYuIjo5mnedvv/2G3r17w8bGBuPGjRNxIGJjY7F161asWbNGYodNz549ER4ejuTkZNTW1kJeXh61tbUIDAxEcnIy5OTkoKSkhHv37okYuuLiYtjZ2eHbt28ix98QXNuwtLRETU0N/vrrL1hYWDDzueqCuERNeTweq2jcyMgImZmZsLGxga2tLZYvXw4/Pz/mmevbty+0tLSwZcsWaGhoID8/H/r6+ujfvz/MzMywfft2ieegqqqKq1evspwHAUJCQgDUF+EPHTpU5ONnYWGBsLAwsY61ADExMYiNjUXfvn1hb28v0o3EVZMlDEn1EgKoqamhoKAAVlZWnMtVVVVx4cIFznfPzc2Ns8aHax+S3v/hw4fDzMwMCxcuZC1fsmQJnj17hs6dO2P69OlQVVVFfHy8yHXw8/ND06ZNkZWVhVatWnEegywNEbKIbhYVFaF79+7o1asXUlNTmY96VFQUZsyYIbbLxdDQEKtWrWIGDALs2LEDM2fOxOvXrzFmzBgkJyfj7NmzTP3WhQsXEBoaisGDB2Pt2rUS64BOnjyJNWvWYPPmzax3SADhQmNZwCWA7O/vj1mzZoltnmhoexrWIuro6GDdunUwNjZGRUUFioqKoKSkhKSkJGzduhVz5szBsmXLsHHjRnTo0AFAfWHy5MmTMXv2bPj7+3Pud/fu3Vi5ciVyc3MBABcvXsTmzZvx+PFj7N+/HyYmJkhNTYWlpSV4PB569uyJjh07wtPTE0B9qvvmzZvIyMhA9+7dJXY3CjoapcHd3R12dnYiDlV4eDj2798PNTU1rFmzhtWxJSgBkPa8/lP4Vzo60gytrPk/XV1dHD9+HF27dmXNv3z5Mnx9fbFlyxYEBgaitrYWnp6eyMjIYPafnZ2NS5cu4eLFi3BwcGCtf+fOHbi6uuLTp08S9z9p0iQkJyejb9++nLnr9evXSy0kbNeuHbZs2cJEr6qrqxEWFoa8vDzcuXMHGzZsQEREBKytrVmFvs+fP8eJEycY1V8B+Hw+9PX14eHhgdatW4OImMLf7/XiZXFCnj9/jk2bNknssOFq/fz69StUVFTQokULzJw5E+PHj2ftIyEhAWvWrMGjR48ASFYo7t+/v0zb+BFIa3tOTk4WaR/Pz8+Huro6IiIiOFt/hZGcnIzff/8dnTt3Fvsbro+ftK4UYRw6dEjssoaOnSTcunUL+/bt4yzKBupH9uK64Xx9ffHixQskJiYyiuU5OTkYN24cTExMcPToUZHiVGH06NFD6vtfW1vL0D0Io7i4GO3bt2fasYmjJlBQF7JmzRo8fvwYGzZskBhREIfTp0/Dz88PDg4OTI3d+vXrUVtbCw0NDVZBeUVFBZSUlFjvpLSI0JIlS7Bs2TKEhYUxTuPNmzeRmJiIefPmYf78+Vi1ahXWrFmDN2/eMPurq6vDqFGjkJCQAGVlZbx+/VqERuL8+fMYNmwYampqJNJ4dO/eHQMHDmR1uTZEeXk5Zs+ejX379uH9+/ciy9PT07FgwQLMnDmT85sgrjhfUIu4evVqpKen4/nz5xgyZAgzaElJSYG2tjaCg4OZcxBcg5qaGvD5fJEo3KVLl/Dx40fk5ORg2bJlWLRoEcLDw3HgwAGMHDkSQUFBSE1NRWFhIaysrLBhwwacOHECJ06cQG5uLlatWoXc3FyoqKigbdu2mDt3bqOLjyXZubKyMrEO1dGjR3Ho0CEkJSUxESw+n4/Q0FDExsbi3LlzEvcr3GEqqemCqxZJEv6Vjo6lpaXYZTweDwUFBVi+fLnYSInAEI8aNQq3b9/Gtm3bWN5rWFgY2rdvj+TkZLx69YoJrwuiGzdu3ICmpiZmz56NsrIypKWlMZGRFy9eICgoCDo6Ojh69KhER0VHRwc7duwQG9bm8/mcBiQvLw/u7u44fvw4/Pz8wOfzmRe5oKAAtbW1OH78ODp37ozU1FQ8fPgQRPRdXDvV1dUYN24cfvvtN7HXfezYsRgxYgTc3Nw4l8vqhIhDREQEZ5FbeXk5+vXrh8zMTGzatAlTp05FaGgo8+G6fPkykpOTERcXh/Hjx+PChQsS29Q9PT2lbkMA4ij+lgWytD03bB/ft28f1NXVpe6Lx+MhISEBUVFRWLp0KafBFxflbCwPjiwQV6QP1Kd0Ro0aBS8vL2RkZKB3794oKirC69evMWDAALi4uCA6OhohISGc59GlSxeJ/DSPHz/mLE4VnENtba3U9//kyZNSox2FhYVwdXXlDPcDwIABA5CZmSmRi0dSQbSjoyO8vLywfPlyZp2UlBTs27cPd+/eRXR0tMR74O3tLbHjqba2Frt27cKGDRvw8OFDAPV8L5MnT2bSIF+/fgWPx8Pz58+ZD7C9vT1TNP3x40eRrrPa2lp8+fIFEyZMkNqV9fXrV0RFRSEoKIiVjhHAz88P4eHhyMzMxOLFizFy5Ehs3LgRL168wObNm7F8+XJWK78Awo0p4oqRi4uL4ezsLNUhFBfJEERJudCkSRP8+uuvmD17Nng8HhwdHTFt2jSMGjWK1T16584d+Pj4cLbIi0NxcTH+/PNP9OjRAyoqKixnW5qdS09Pl+pQlZeXM1w+Dg4OnJ2nDSF8naU1XchqQ5ht/xsdHWkYPnw4Lly4gJEjR3JGSqZMmQKgvkujIVlXTU0N/Pz8sH37dpEuo4Z4/vw5/Pz8cO/ePSby8Pz5c9jZ2eHo0aMwMzPjbMX7+++/0bx5c+jo6HCGtR0dHZk2vzZt2rBGbbW1tXjy5Am8vb2xb98+fP78Gbt27UJRURGAeiMl4F4BxHMKCZYJOIUa8kMIcsJAfW75zp07Yh2d/v374/Tp09DX10dAQACCgoJYUS4uJ+To0aM4evQo1q9fL5ETAqj/WIwYMYLFW1ReXs6EqS9evAigPtKwZs0aFnfEzJkzmfqJLl26SG1Tl7aNHTt2YNWqVbh//z7k5OTQunVrNG3aFLa2tmKPv7Gjlx+BwBBxcUgJDJEgTC4OjeVnaog3b94gICAAWVlZrI4od3d37NmzB/r6+mjbti3Gjx+P8PBw5l5YWlpi/PjxMDY2lkhcJmxQufhpgHrj3KpVK0RFRXHaAC0tLYnvf3JyMuLj46VGO9auXYsTJ07gzJkznMcq6UMIAPPnz0efPn3w4sULVjePqakp/vjjD7Rp0wYFBQUiI/qioiK0bdtWakrWx8cHJSUlmDRpEud1EFdbJAkCjhlB+3VoaCjWrVvH6g4VpEKlvduAZB4twb02MzPDjh074ObmBk1NTdy+fRstWrRAamoq0tLSmJoacRDXgZiamorZs2eLLYMQQBw3lDh+Kk1NTRb/DlCfbi0sLISFhQXzzDdp0gTv3r2Dra0t3rx5I/EYNDU18f79ewwdOhSZmZng8Xh49OgRrKysEBoaCh0dHaxZs0YmOycNkhwpWeDs7AwfHx9ERUUxx2BgYICgoCB4e3szHcuy4j+ODge0tbXxxx9/iJCmiUNxcTHzYYuPj0d6ejo0NTVF2IEb4uDBg5zsrIWFhQDq88KLFy9msZvW1tYiOzsbT58+xYgRIzjD2oIPelRUFKZPn85aX2BABg0aJBPBk5ycnMSo0rNnzzj5Ibp27Yo9e/agWbNmGD16NBwcHETy3ML48OED9u/fj927d+PixYuwtrZGUFAQAgMDYWFhIeJAlJaWIjk5GaNHjwafzxfbTsvj8Zj6g1mzZmHq1Kn4/PkzvLy8IC8vj5MnT8rMsqmuro6CggJYWlqyDMDTp09hbW0t9aMRGxuLhQsXYtKkSThx4gTmzp2L3NxcrFmzBpaWlpxEdrJEQISJCKVBGvmgpCJ3oL5guiE3UnV1Ne7cuYNTp05h5syZIozdXJAUln7x4gUeP36MHTt2iBTpt2jRAmlpaVBTU2PaavX09JCVlQV7e3vcv38fHh4eePnypdRjkAQ1NTXk5eXJRLwn/P43JOtrGO3Q1NREZGQkgoODsX79eia83zBSA8iWQhcwPO/atUukIJrP5yM/Px+xsbEizRf79u3DjBkzUFJSIjEipKGhwZleF0ZZWRnS09Px+PFjzJgxA7q6urh9+zYMDQ1hYmKCqVOnSuSY4fF46NatG2tA9unTJyZ6KC2FL62WEqh/dwsLC2FmZoZmzZrh4MGDcHZ2xpMnT2Bvb89itOZCQ1suXIu4cOFCHD58mLW8uroaT548gby8PJo3b47bt28DqHfiubIEsjDZW1lZQV9fH4cPH0arVq2Ql5eHli1bIi4ujiHG5HImhAcpo0aNwps3b5CYmAgbGxvGhp0+fRq//vor7t27J5OdE5fW/fjxI9atWyfRkZIFGhoayM3NZQb0ly5dQps2bZCXl4f+/fvj6dOnMm1HgH9l1xUg2dDq6OiIsEtyQdAt0KJFC8a4HTx4EN++fRMZoXBhx44dGDZsGHr16oVevXox88eOHYvy8nIQERISElg5c4GjkpCQgOXLlyMzMxMnT57kDGtv374dw4YNE+H+aYjCwkLO6+Dn5yeVU2js2LFi+SHGjh2LU6dOoWXLloiOjsbly5c5Q8sRERHQ0dHBuHHjMG7cOPz1119IS0tjKMcXLVqE0NBQXLp0iVnn2bNnTDTpyZMnEs/P3Nwcp06dgru7O/h8PtLS0qCkpIQ//viDORZZWKS1tbXx8uVLkcjUnTt3YGJiInUbRIRNmzZh1KhRWLFiBYD6Loc2bdogMjKS4aOQBB0dHZH70bB4lysaA9SPfAXRSHGQJXrEtY2BAwdi7ty5uHfvnlQHPzw8XGJYOicnB2fPnmWcHKA+Srhx40aGaFNHR4epcTExMcHdu3dhb2+PsrIymQqJpRXyd+rUCcXFxTI5OoL3XxCp+PDhAzQ0NJhuoKCgIOa3lpaW8PX1BQCxHFRA/T2UxdG5cOECq+sLAPT09Bjeq1mzZmHcuHF4/PgxK526YsUK/PrrryguLhaJCMXExDARIUkdT0A9OWHPnj2hpaWFp0+fYuzYsdDV1cXBgwdRUlKCHTt2ID09XSLHzLVr10QGUzo6Orh37x7atGkj1gYJ5gvsnLimi1GjRsHKygpPnjyBmZkZrK2tsW/fPjg7O+PYsWOsyLs4W9jQlvP5fLRu3RrR0dHo3bs3Z4H8p0+fEBwcjAEDBiAnJwejR4/G/fv3xaZCpSEsLAwLFizA1atXwePx8Pfff2Pu3LmIiorCb7/9Bnt7e6lRk4yMDJw+fVqk8aFly5ZMdEmanRPHOQTU3xMvLy+UlJSw3t9hw4bh119/xZo1a3Du3Dmx752g5lNNTY25B8bGxvjzzz/Rpk0bAGB1r8qKf2VER1r+LzQ0FEeOHEFKSopYIi9AerRD2sMrbf0ePXowRaZckBbWFnTYiKt1ePz4MQYMGICCggJWRETQgj1t2jTExcUhLCyMdR1qa2tx/fp1yMnJ4fbt27hy5QqrfkKwz+7du6OiokJqTZRwqqO6uhp//PEHdu7ciT/++AO6urr4+PFjo7oqxOHq1avo1asXOnXqhOPHj7OKAIUZjIUhYJGurKzEjBkzcP36dezfvx+tWrXC7du38fr1a4waNQqjRo1CVFSUxG3weDxG3kIYq1evxvz581FZWSn1HNauXYulS5fCx8eHqV24ceMGTp06hWnTpuHJkydITU1FfHw8wsLCANTXzxw6dAja2toyd11UVFRwGnxxI08BUZuLiwsGDRok8Rzu3bsnMSw9a9YsqUX6gYGB6NChA0PTHx8fj/79++PMmTNwcnLCwYMHUV5ejgsXLnCeR1FRkUghv3CdzKBBg6QWp0qLVPTr1++nPLfp6elii66fPn0qsSD6/fv3WLduHdasWYO///4bQL3e3syZMxEREYG+fftKjAhNmTJFYsdTz5494eTkhJUrV7JG/1euXEFgYCCePn0KZWVlFBcXo1mzZhg3bhxUVVWxbt06PHnyBO3atcOXL19E3psLFy7A0tISrVu3lkpXIIjgSbLDa9euhZycHCIiInD27Fn4+vqCiFBdXY3Y2Fj4+vqKtYUAvlunrqCgAL6+vtDS0kLz5s0xe/ZsEdoGQHxqDKgfyFlaWoKIoKyszNBKAI3XmNLQ0MDt27fRsmVL1v26desWvLy88P79e6l27tChQ2LTuq1atUJGRgbatWvH2v7jx4/Rtm1bzJw5E9HR0ejQoQNnKlTQqCCL1lyj0Gjmnf8FkEa65uDgQBoaGqSurk52dnYihF8CcBGnERGdO3eOmjRpwvz95s0bunjxIl28eJH1e3Hr5+bmMqRkwqipqaE7d+5QaWkpVVdXU0pKCr18+VLseUojJOzXrx/179+f3r59S+rq6lRYWEgXL14kZ2dncnR0JDc3N+LxeNS1a1eWannv3r1p3LhxVFRURC1btqTr16+L7Pv69evUvHlzscfWEOfPn6exY8eSjo4OaWlpUUhICJ09e5bq6urIz8+PkpOTJa7/4MEDCg8PZxSWmzRpQra2tiL3TldXl6ytrZm/rays6MiRI8Tj8WjHjh0stfGDBw9SeHg4tWrViohIrEKxq6srHTp0SOo22rRpQ0uXLhU5dlVVVeLz+TR8+HD6448/qKamRux5Dhw4kDZt2iQyPyEhgQYOHEhE9UrmdnZ236UE/+bNG+rbty9L9Vp4koQVK1aQubm51H2oq6tTcXExEdUTlQkIxnJzc8nc3Jz8/PyoR48e9OLFC2adv/76i1xdXcnf35+IiN6/f88sr62tpZiYGPL19aVff/2VSktL6fbt22RkZESampokJydH+vr6xOPxSE1NjSwtLUlPT4/++OMP1nEJSBMlESoK/iUiMjExoZs3bxIR0aFDh8jY2JgePnxICxYsoK5du8r03EqDNGVuLvXylStXUps2bWj06NGsbX369Ik+ffrEmieOZE6g0q6trc2oYXMRSGpqajL3UpiM8+nTp6SkpERE9QStp0+fppqaGjI1NWUUuOfMmUMqKirE5/Np6dKlDMlmXFwcxcbGkr+/Pzk4OEi9Ro21o4LjO3DgAKMoLskWCohJieoJ/lJTUyk1NZWTALAhLl68SNra2qSurs5S8W4MBCScISEhpKSkRBcvXqR79+7R9evXWUrqixYtotraWpH1y8rKKCAggIiIfHx8aMGCBUT03yS0tbW1NGTIEBo0aBARibdzAiV2VVVVseeirq7OkLcKPw83b94kXV1dMjIyoh07dkg9Z0lq70+fPpX10jH4V6aupJGuSYuUCNIHPB4PrVq1EtstUF5ejsmTJ2PHjh1MiE5OTg6amppMga+np6fYYuGGI8YePXrg6tWrzIhxwoQJTKSGC9IICa9evYrz58+jSZMm4PP54PP5cHFxQUxMDKPsK41TaNWqVZg8ebIIP8SUKVOwevVqkd8TR7eRiYkJSktL4e3tjS1btsDX15cVhvbx8cGcOXNQUFDAmfqqrq5GQEAAOnTowBQvCopMBw8eLLHQNzIyEv7+/uDxeCLtqQoKCrCwsGDyyoqKiti6dSsWLlyIu3fvMm3qrVu3RnZ2ttRtVFZWYtiwYcjOzmbqvy5fvozKykrMmTMHT58+xdChQ6GqqoohQ4YgKChIZKR++vRpJu0lDE9PT0yfPh21tbV4/Pgxk2sXaF0tXLgQFhYWUFJSwsCBA8VGKqdOnYqysjJcv34dbm5uOHToEF6/fs3onQH/XewuABHh1atXePv2LX7//XcsWbIEQUFBYiN54sLSFy9exLt377Bhwwb4+fnBwsJCpEh/586dAMBK1fD5fJG6oAEDBsDX1xcJCQnQ0tLCtWvXoKCggBEjRmDKlCmYNGmSSGRNWgq0Id69ewcjIyMAwIkTJzB06FC0atUKoaGhiIuLw8qVKyU+t35+flJbaH///Xds2bIFw4cPR3JyMmbNmsVS5l6/fj1Gjx6NLl26MFGnqqoq+Pj4IC4ujhU15qIWUFJSYlKAwvjy5QsUFRUlptcAYObMmZw1NEVFRUy3Z0hICIYOHcqM4AXCjImJiairq+NM0RMRmjZtiunTp4uVLRg6dChjhyXZ0Yb49u0bzM3NWVEUSbYwIiICp0+fllggL/ieCB//y5cvkZqaCh8fH1RUVMhc89UQ58+fR1ZWFrKyslBZWQlXV1dYWVnBw8MDHh4ecHNzg6GhIbZt24aMjAzs3LmT4Y/KysrCqFGjmOd05cqV8PT0xK1bt1BVVYVZs2bh3r17jIA0IN7OCQraJaV1u3fvzpL8EGQHVq5cCXd3d2RmZorYNC4I81+pqalJ1eiTika7Rv8LYGhoyFBY29jY0JEjR4jov0cx0pCcnEzbt28nHo9HcXFxlJyczEy7d++mK1euEBHRuHHjyMrKik6cOEEfP36kjx8/0h9//EE6OjrUoUMH4vF4NGPGDIqMjGSmZcuW0e7du6myspKaNm3KGjE2bdqUNWIURBLEQVNTk27cuCEy//r16wwtvkBWwsrKis6fP09ERMXFxQxleFJSElVUVLDWb0gXLhjxKSoqsv4vPJpKSUkhOzs7UlJSIiUlJbK3t2c8+y1bttCHDx/Enoc02QIrKytauHChyHq//fYbI/EgDRYWFvT27VuZfvsj27h16xYFBQWRk5MTOTk5UVBQEGtkWF5eTjt37qQ+ffqQoqKiyPGbmppSbGysyHZjY2PJ1NSUoqKiqFmzZqSpqUkqKirMiGrPnj3UuXNnatKkCampqYmNHhkZGTEROg0NDXr48CERER05coS6detGRMR6XiMjIyk6Opo2bdpE9+/fJyKitm3bEp/Ppy5dutDGjRtFrkn//v1py5YtREQ0ffp0atGiBS1ZsoR4PB41bdqUPn/+THV1dZSRkUHr16+n9evX05kzZ0TOubi4mObPn08BAQGMxMiJEyfo7t27pKWlxcg7aGlpMe/7tWvXqHXr1rR69WqaOHEi1dXVSbxfkiAuUnH37l3S1taW+tyePXuWVFVVyc7OjuTl5cnBwYG0tbVJS0uL3N3diahe3kQwgtXX16fc3FwiIioqKiJdXV3mWIqKiujIkSN09OhRatKkCR09epSIxEc7BOCKCF29epXs7OxEIkJcGDNmDPn7+1NVVRUTIXj27Bk5OjoyMghE9ZIdsbGxjEwCUb0dPXz4MLm5uVFpaSlru9Kia7wGkiaS7ChRfTQ8OjqamjZtSnJycsx7sWDBAkpMTJRqC4cOHUodOnRgSR/cu3ePOnToQAEBASIyBVZWVtSpUyeaO3cuffr0id6+fUt9+vShyMhISk9PZ0V9Bd8fWaCmpkapqam0cOFC6t69OykpKRGfzydbW1sqLS2lIUOGkIaGBm3ZsoVmzJhBCgoKNG/ePJZERllZGS1ZsoSGDBlCPj4+NH/+fPr7779lPoaDBw+Sra0tbd++nW7dukV5eXnMlJ6eTgYGBuTt7U2Kioo0ePBgsrGxIUNDQyouLqZZs2ZxSob80/hXOjriDK2TkxN5enrKvJ2srCyqqqoSu1xPT48yMzNF5p8/f56aNGlCycnJ9O3bN7HrS9NP2bt3L1lZWVF8fDxduXKF9cDl5eWJ1Yi5ffs2aWhokIuLC+MoDR8+nLy9venSpUs0atQoatOmDRERGRgYkIaGBoWGhjJ6UcKOnbSJiGjNmjWkqqpKs2bNYl7smTNnkqqqKudHu7FQUVHhDKUWFRVJ1JGRBdOmTaMvX74w/5c0cUGSAycOb9++pfj4eGrTpo1IumjLli0kJydHvr6+tHjxYlq8eDH5+fmRvLw8JSYmUvPmzWn8+PE0dOhQVuj4/v37pK2tTdXV1XTs2DEKDAwkNTU10tfXp4kTJzL3VkNDg548eUJE9R/yS5cuEVH9M9eYa3n37l2aO3cuWVpakoKCAvXp04d27dpF5eXlYsPSHh4eZGtrS5aWlnThwgWJ28/KyiIVFRXq2bMnKSoqMucZExNDgwYNoiZNmjAh9JYtW9KpU6eY66Cqqkr+/v6kpaVFlpaW1K9fP5aW04ABA4hINB0aHh7O0sZatGgRaWlpkbW1NZmZmTHv8rZt26hz585Sr5G0FDoRkaWlJeMIt2/fnhISEoiI6PTp0yJpGYGjsmjRIsZRkDZ9+PCB/Pz8GB08wUDF39+f0XiS5FCWlZVRz549SVtbm+Tk5MjU1JQUFBSoR48ezHvzPWiMXldycrLUNG1UVBRZWVnRzp07OQcA0myhtEGjNBw9epS0tLTEOr2yQvCcVFZW0vnz52nmzJmkqanJ2sbcuXOZlNPZs2dl2m5j7Jy0tG5DR8rZ2ZnGjRtH06ZNoylTppC2tjb16NGDJk2axNqukpKSzFpbjcW/shhZGulas2bNsHbtWrEFgAJyKHFtjzweD0pKStDW1kZOTg6r+hyoL8Z0dnZm2gEFFfA3btzA7t27YWtri3HjxsHc3Bxbt26Fp6cnLC0tsWnTJvTt2xf37t2Di4sLPn78yLlv+q9uhH79+kkkJBSk1wYOHIji4mL069cPRUVF0NPTw969e+Hh4YGamhocO3YMycnJOHnyJKysrBASEoLRo0cz4VBpsLS0RFRUlAhxWkpKCiIjI3H37l2JBI2RkZESuyr27NmDIUOGiKQct2/fjj179uDEiRMy3U+uboCTJ0/Cw8MDu3btgpubm9iuBh6PBy8vL1hYWGDYsGEAgCFDhuDAgQMwNjbGiRMn0K5dO9TW1uLQoUMszqH+/fujqqoKhw4dwq5du3Du3DmYmppi+PDhCAoKEpHouHz5MidBW9euXaGiooIHDx7A3NycVQxYWFgIZ2dnVhttRUUFDh06hN27d+Ps2bNo1qwZdHV1sWTJEnh5ecHPzw/a2tqIiYnB+vXrkZ6ezpCANUa1+/Lly9i9ezf279+Pb9++SWwXrqmpwZIlS7B8+XKEh4djwYIFItvU1NSUyvVha2uL4OBgBAYGIiwsDPn5+YiIiEBqaio+fPggMZ0J1KvON0yHXrt2DTdv3sSePXuYgmtJbLjSOGZkaaEdO3YsTE1NsWjRImzcuBEzZ85Et27dGGXubdu2Ydu2bVi7di1DnNmyZUsMGzYMjo6OUjm9BMf46NEjFsWFIC0hC3kcUM/mKyCodHJyQmFhIcaNGwdlZWWpitQRERE/hQW3qqqK036YmZmhRYsW2Lx5Mzw9PVnPy4MHD9ClSxfs2bNHrC3cs2cP/P39JRbIP3/+HLW1tSLduqWlpZCXl0fbtm3Rr18/LFy4EIaGhjKdT8Nzu3btGqKjo1FZWYmcnByYmpqiR48e6NGjB1xdXWFmZob4+HjMmTMH/v7+yMnJgZycHHbv3s2SdPn27Rvy8/NZ12r+/PmYO3cuAgMDpdo5aTIyDQurZSUTffXqFZOCfv/+PWOHhBn5T58+jYULF0qkKuFEo12jfwEWLlxIxsbGtHr1alJWVqbFixfTmDFjSE9Pj+Li4pjfSRs1KSkpka2tLZWXlzPrVFRU0JAhQ8jT05NcXFyY9M3Lly9JQ0ODunTpQk2aNKGoqCipI0ZpI52SkhJycHAgBQUFsrKyIisrK1JQUCBHR0dWCFkY79+/FxvOf/XqFa1evZrs7e1JQUGBfH196fDhw1RbW0uvX7+mgoICkagSUX1kSlzERUlJiQICAsjY2JhmzZpFa9eupXXr1rEmPp/PqX7+7t074vP5tGnTJtLX16fw8HCmUDA8PJwMDAxo06ZNNHToUNLR0aGQkBCx9zMyMpL4fD45OztT//79yd/fn/z9/cnd3Z1TvZ0LFhYWTGQkIyODtLW16fTp0zRmzBjq1asX3b17l6ysrFhq12pqaqSqqkoqKirMOQhSn98DWZTghdEwepSamkrbt28novo0W5MmTYjP55OysjLt2bOHiKSrdjfEnTt3aPr06WRiYsKoVX/48IG2bt1Kc+bMYVTKc3Jy6K+//iKi+oiFnJwc630SHv2qqakxqQbh83zy5AkpKSnRzZs3mfTD69evycvLizQ0NMjJyYlJ/0jCz0iHRkVFSZxkSaFLU+ZeuHAhqamp0Zw5c5ho6Zw5c0hdXZ0WLFhAwcHBrILVxqJz5860Zs0aImJf5+vXr5OJiYnY9SwsLOjdu3fM/yUpUcuSwisuLqZJkyaRp6cneXp60uTJk5lnraioiFxcXETsr/DzoqyszKQAhc/j3r17YssVBLZQ0BAhqUDe29ubNm7cKLKNTZs2kY+PD6sAX4CG6Stxk729PamqqlKbNm1o4sSJlJaWxplq8vLyIj09Pdq/fz8R1X9rJkyYQMrKyrRixQoiIjp58iRTmM+VBvweNLT5kiZZMXDgQIqPjxeZHx8fL7M9Fsa/2tG5efMm7dixg3bs2EG3bt1i5ltZWTH5duEHNC4ujoYPH878LiUlhZo1a0YLFiygo0eP0tGjR2nBggVkampKmzdvpsmTJzMS9ILwt56eHjVt2pTJ4wtC4XFxcdS1a1ciqjfyAil6SbltWSCp1qGsrIz5yAjj/fv39PHjR87tXbt2jcaNG0dKSkpkYWFB6urqTFW+uJCsuG6jxYsXk52dHWlpaTEpEi5I66qQlMcXvMQAmM4RrvsprhtA2MmytLRkjDcXlJWVqaSkhIiIIiIiaNy4cURE9PDhQ9LW1qbOnTuTr68vqx6htLSUTExMyNraWmK3lTAEqYThw4eLpBIOHz5MWlpatHz5clJVVaVVq1bR2LFjSVFRkTIyMojov+uAfHx8SFFRkZo3b04LFixgamyEUV5eTjk5Oaw6Gx8fH/L29mY9O+/evSNvb2/q06cPEdWnupYsWUK2trYkJydHHh4elJiYSGVlZZSXl0f6+vrUokULkpeXZz468+fPp5EjR9KBAwfIwMCA3N3d6ezZs5SVlcWaiOo7ngROpfCH6+DBgzI7IpIgSzp08uTJrIGPAPHx8TRlyhRycHBgTW3atCFVVVXS1NQkR0fHn5JCb9KkCe3evVtk/u7du0lXV5cUFBSYFB4XampqKDExkYYPH06enp7k7u7Omrgcyri4OHrw4AEpKSmxOqW4JlkgLYV36tQpUlRUJGdnZybN4ezsTEpKSpSRkUFdu3alHj160IkTJ+jOnTuUm5vLmoikDwBWrlzJeWy1tbUUEBAgcdBYUlJCOjo6rPodAe7fv0+6uro0atQo2rp1K2uZNLslbL9MTU1p8uTJdODAAbE2qGfPnixHTIDjx4+TkZERERG1aNGCJk6cSK9evWL9pjF2johox44d1LVrVzI2Npapnko4rSXLN0dNTY3z/Xv06JFMdbQN8a90dJ4/f04uLi4ibdfdunWj58+fk6qqKj179oyI6j+AOTk5RFTf8qapqclsx8PDg/bu3Suy/b1795KHhwcREW3dupUMDQ3p119/pV9//ZW2bt3KFPeqqakx9RC+vr60fPlyIiJ69uwZM/IVQFwOWtJIRxqkjUIEePXqFa1atYpsbW1JWVmZAgICGIfJzs6OWrZsSYaGhvTkyRORqBIRUXp6OsnJyZGXlxdFR0dTdHQ0eXl5kby8PB08eJAsLCw4jYSDgwM5OjoSn88ne3t7Vpt427ZtSUNDg4YMGSL1PGW5n7q6upzXTVdXl65du0ZE0gs7jY2NmY9vq1ataN++fURUX+uhoaFBysrKTCu1MAoKCkTutzhIq00hIsrOzqaePXuSvr4+qaioULdu3ej06dNERDRs2DCmNud7o0fSWpI7depEfD6fHBwcaNWqVUyURgBPT0+aOXMmEbE/OqdOnSJVVVVSVVWldevWSTyG6dOnk4uLCxMJffToEV26dImsrKwoMjJSpvPYv38/DRkyhDp16iRCQ+Dj40NJSUki6yQlJVHv3r2JiKhp06asAZIAOTk5YqMdHz9+pAEDBtCOHTvE1ip5enrSyZMnZRoha2lpcToyDx8+JC0tLbK1taWrV6+KvQbh4eGkpqZGQ4cOpSlTptDUqVNZE5dDaWFhQSkpKWRlZSU1WiMLpNENODg40OzZs0XWmz17NhNN5HLShSFtAKCvr0+JiYmsdWpqamjw4MFkbW1NRJIHjeLeifz8fFJRUaElS5ZQkyZNaPTo0bR69epGOYRfvnyhkydP0uzZs8nZ2ZkUFRXJzs6OwsPDaf/+/RJtkgCCgYqGhsYP27nff/+dmjRpQkuWLCEVFRXKzs6mp0+f0qpVq6RmGmT95piZmdHq1atFfrd69WoyMzOTer4N8a90dLy8vKhTp06swsIHDx5Qly5dyMvLi1q1asXc9G7dulFMTAwR1Reu6evrM+soKytzGhnBqO/du3dMEeezZ89o4cKFNGPGDIaXwdnZmWbPnk3Z2dmkrKzMjD6uXr1KJiYmUjsFuEY6ZmZmJCcnR7/88ovU0Za0UQhRPb+EgoICtWnThtauXSvijaurq9O1a9ekhj0ldRulpqbS4MGDWSk+ov/u7pGlq0ISZLmf4roBwsLCmOgVn88nMzMzsrS05JzCw8PJ3NycevbsSXp6ekzKIC0tjXHOzp07J7KPc+fOkYWFBc2dO5fGjBlDISEhrEkY35tKECAwMFCk26qxBdc6OjrMx08Yly5dIh0dHZo3bx7du3dP7DGI414xMDAgHo/Hei/FgYvrAwDp6OiIOC1ckzR+Gmnp0CNHjpCCggJTHCyMR48eMRwyXMjPz5fIN9SYEbKgoLMhpk+fThMnTqSjR4+Si4sLFRQUcO6Li0+o4XZ+1KEcOHAgM4gTxooVK2jw4MFSU3hKSkpinTklJSXq0KEDXbx4UepxSBoA3Lhxg7S1tZm0T3V1NQ0YMIBsbGwkcpXdv3+fWrZsSW5ubjRp0iSR5RMnTiQXF5ef4hAK8OnTJzpx4gTNnDmTOnbsSIqKikzzSHZ2NgUFBVHnzp2ZAcaOHTuY6xMSEiLi0BE1zs7Z2NgwhdvC729BQQHp6elJPHZZvjlERNu3byc5OTnq168f03TRr18/kpeXZ1LrjcG/kkfnwoULuHLlCkN5DtQXdMbHx6N79+6IiIjAuXPn0KlTJ0yePBkjRozAtm3bUFJSwiqCMjU1xbZt21jKwACwfPlyVFdXw8DAAKamplBXV4ezszPKy8vB5/Oxdu1apKenY8WKFRgwYABWrVqF0aNHMwVjR48ehbOzM5YuXYqUlBSsXLmSYbkFADs7O6xbtw7fvn3DtGnTWPs/dOgQ1NXVsW3bNonq4jweD5WVlaipqRFZVl1dzTBvGhgY4MKFC2LF9Tw9PfH8+XNODpJFixbB09MTnTt3Rvv27RkOlIZYs2YN/vzzTxgaGsLCwuK7pCwkseAOGDBA6v389u0btmzZgrNnz6Jt27bMMairq6NPnz7w8PBAREQEwsLCOPlIAGDixImwsLDA8+fPsXLlSkZj7OXLl4zae0REBCIjI9G5c2cA9QWu4eHhePfuHTIyMmBkZAQej8fiBBFGQUEBdu/eLTLfwMBAJmr0Xbt2icy7efMmo7l0584dqdvo168fxo0bJ6LaPWHCBPj5+WHp0qUS11dSUuIsSPbx8cHZs2dZ76U4KCoqwsPDA9OnT2eaCy5duiQivyEO0vhpYmJimN/9/vvvrHUnTpwIoJ4r5ZdffmGp0gNgivbF4ePHj5yNBAJI4/MRZsHl8XhITExERkYG80xdv34dJSUlDJNtRUUF2rVrB0VFRRYbOAAoKytL5HZZtmwZwsPDYWpqitraWtja2qK2thaBgYFYsGCBxOMUIDs7G5GRkSLzfXx8GBHJS5cuwcbGBn369MH06dNRUFCAgwcPonPnznj48CFyc3NFhElzc3NhYGCAFStWYNasWVi2bBkni7WAA6x79+5ixVM7duyIAwcOwN/fH4qKiti2bRuKi4uRmZkpsXi4srISf/75J7Zv346ePXsiLy8Pnp6eAOqbG27evImMjAx0795d6nWSZMOE5UDU1NSgq6sLXV1d6OjoQF5eHvfv38eBAwcwcuRIBAUF4c6dOwzT+sePH7Fs2TKcOHECGzZswJAhQ3Dx4kXWtbKzs0NISAjatGkj1c7NmTNHhAkfqH+vBarl69atYzVcTJkyBc2bN5fpmwMAwcHBsLGxwfr163Hw4EEA9UXyly5dQqdOnaRey4b4V3ZdtWrVCjt37mSMtAA3btxAYGAgiouLWfOvXr2Kq1evomXLloxODVDvkAwZMgTW1taMOvGtW7eQn5+PDh06YO3atZgzZw5yc3MxdOhQbN26FUA9kV9OTg6uXbuG2tpafPr0iSXz8PTpU6iqqqJr164SOwW+fv36Q8rE7u7usLOzQ3x8PGt+eHg48vPzGVVvSXj37h1Gjx4NZ2dn2NnZsYxMWFgY3r59C2VlZXTp0gUeHh5wd3eHs7Mz60MurCrOhUWLFjHCgX/++SdmzpzJEg588+YN+vTpg4qKCpSXl0NXVxfv3r2DqqoqDAwMRNS0r127xnTZCe6nLNIIISEhWL9+vVgDIA3CKsuCrgaqj6oyxGeC/4ujnG/WrBn27duHrl27sp6JQ4cOYcaMGSgtLeXsmODxeFBWVoaSkhK8vLwYteahQ4fiwIEDMDIyYjrDpEGaare6urpEHSkrKyu8f/8e+/btg66uLvLz8yEnJwd/f3/06NED69atk+l6ampqIjc3V6JTIQ6qqqq4f/8+zM3NYWBggDNnzqBdu3Z49OgROnfujPfv30vdRlJSEiZNmoSZM2fCw8MDQP3Hbc2aNVi3bh3LcAP193r27NmoqqqCgoKCVDHZ0tJSZGdno2vXrqz3xd3dHUSEjx8/iu2mAsBJYNkQ79694xQGboiSkhIR8rjy8nKsWLECBw8exNOnT8Hj8WBpaYnBgwdjxowZDCmliooKcnNzRRzYBw8ewNHREffu3ZPYBZuSksLYUi69LoHOVMPj53qXJHVmAcDhw4cxZMgQ2NjYMASCkpCXlwcnJyfU1tYiNzcXq1atQm5uLlRUVNC2bVvMnTtXxD5z4c6dO2JtmL6+Pvbu3YusrCxkZmbi8uXLKC8vh4mJCdzd3ZnJ398f06ZNw6hRo1i24c6dO/Dx8cGrV6+wbds2TJgwAcrKytDT02NdM95/yfFIs3O2traIiYlB//79WfuJj49HXFwcnj9/DgcHBxYpal5eHo4dO4Zly5ZJ/eZUV1dj/PjxWLhwoUT5oMbgX+noHDlyBMuWLRNh8508eTJmz54Nf39/mbf15MkTbN68GUVFRQDqI0ObN29GVlYW2rZtiy9fvkBTUxM3b95E+/btAdS/4J07d0ZZWRkA4O3bt6xWYQGjqLRWYR0dHbHKxNOnT4eioiKOHz8u0t4uwOXLl9GzZ0907NhR4ihE0kjD0tISI0eO5Byh83g8/Pnnn8jMzERWVhazDTU1NXTr1o15QRs6nA3RUDjw4cOHsLKywoIFC1BSUoKSkhK0atWKYcHNy8tjseCKE5kUqPjOmzdP4v5lxY4dOyQuF6dn4+fnh02bNsHExISZ5+rqyvlbaTo0mpqaErWwYmJiUFlZiY0bN8LCwgJDhw7F3r17MWnSJJSXl8PLy0vs8fN4PGzbto35W5xq96RJk0R0pIQRGRmJwYMH49atW/j8+TOaNm2KV69eoUuXLjhx4oRMavK1tbVQU1ND7969UVFRIfLhkqb4bmVlhQMHDsDR0REdOnRAWFgYxo8fj4yMDAQEBDCUA9KwadMmLF26lNGRsrCwQGRkJEaNGiVipAWOro2NDfr16ycSXWmI0aNH/7CenjQMGDAAmZmZ0NXV5RQGFoymG6Kqqgpdu3bF3bt34ePjA2traxAR7t+/j1OnTsHJyQnZ2dlQUFCAs7Mz+vXrh99++421jcjISBw7dgw5OTkSj5GIJOp1ZWdnS1zf1dUVjx49QmhoKK5cucLMF35mBgwYwPz/2rVraNGiBcvJEXcdhB0daZDUQn/79m2xNuzmzZuorKyEkZERYzPd3NzQvHlz1jZUVVVRWFgICwsLEZ0pW1tbfPv2DUZGRoiIiMCcOXNYA6/GIDExEZGRkVizZg3GjBmDxMRE/Pnnn4iJiUGTJk0QEBAgkuWYM2cOMjIyEB8fL9M3R0tLC7m5uf9xdBqLhqrP5eXlqKmpYUZK1dXVkJOTg5KSEmdqQBh+fn4SlzcUiBR+6IB6kcemTZvi06dPnBIRo0aNYtJo06ZNw4gRI1jbiI6OxpkzZ9CrVy+JI52EhAQRFeiGkDYKkTTSMDAwQF1dXaP4IZ48ecI4PkeOHGHug6SIzahRo9C+fXuxwoECyYLWrVtDW1sbV69ehY2NDa5fv47Ro0cz/CAN0RgjBUCswySIlhw8eBCKioqMAamurkZFRQUUFRWhqqoq9uM5e/ZsqKurY+HChVKPoaqqCuHh4UhOTkZtbS3k5eWZVEJycjKGDh2KXr16YcKECaz1Nm/ejIyMDJw4cQJz587F/v374eHhgW/fvmHz5s3g8/ng8Xjo37+/RLVqgeieMASq3ebm5tDR0UGTJk2wY8cO9OnTR+K5NOReEUgDyIJJkyZh48aN6NOnD1q2bCniTCUnJ0uMbNXV1aFTp044fPgww09jamqK58+fo23btggMDJS4/4bK4m/fvoWKigqTrpSE2tparF69GkePHkVVVRU8PT2xaNEiTseHz+fj9evXzOBHgKKiInTo0EFkgPHp0yecP38e1tbWDP+SJM4jaXI3SUlJSE9PR2ZmJisSUlxcjKKiIuTl5XFGatzc3DB//nxMnjwZx44dw8CBAxEYGMiKfKWlpWH//v3w9/cX+/7r6enhwoUL8PLygqGhISNX0dioardu3SAvL485c+Ywzrew49WQ/6YhxHHHcNmQb9++iTgyN2/elCgkffv2bbE2rH///sjOzkarVq0kHqOVlRW2bNmCnj17suzkjh07sHz5chQWFkJXVxc3b94UcZKEIc3OtWjRAhoaGti8eTPDq9W0aVNERUUhPDxcapZBlsjX6NGj4eDg0Hi+HHFodFXP/6eQxuAra6tfQxbLDx8+0OnTpyk1NZVSUlIoJSWFeDweiwNAQI0uwKtXr4jP54uViGjevDlNmDBBaqdAXV0dxcbGkomJCXN8JiYmtG7dOqqrq6OlS5fS6NGjWTwcjYWrqyuFhYVRbW0tU3hWUlJCPXr0oAMHDnDyQ4iDgMV01KhRZG5uTioqKuTu7i613ViacKA0FlxxyM3NZd3Pmzdv0syZM2nYsGGcTLmjR48mLS0tMjc3p4EDB9LAgQPJwsKCtLW1aejQodS6dWtSUlJitcoXFRWRp6cnc0xE9S3b9+/fZzpnAgMDSUNDg5MtVFBoOmjQIDp58iTDcVRSUkJ//PEH7d27l1WoKa0t09jYmPbt20eqqqqszrDAwEACQA4ODhQXF8fZAirAlClTmILGmpoa6tatGyOYmZmZyYhb/pPQ09MjZWVl5lloiNjYWNLT06MRI0YwXTIjRoygJk2a0NKlS2nMmDGkqKjItHenpaWRpqYm6erqkrm5+U8tHiWqv18C6oHo6Gji8/nUu3dv6t+/PykrK4sUnQueOz6fT3369GE9i35+fmRhYUFeXl40ZMgQxtZUVFRQy5YtSUFBgeTl5Sk9Pb3RnEcNERERQUpKSuTt7U2jR4+m4OBgCg4OJkNDQ+rUqZPY9davX089evRg/j5+/Dh17dqVVFVVSU9Pj9zd3RmqAGnvv7AMhjgIinC7dOnCWYQrS2cWFxrK3TScNDQ0iM/nU3l5OYWHh5O+vj4np5q0FvrvtWHCWLZsGdna2tK1a9dIQ0ODLl68SDt37iR9fX1av349ERFNnTqVk+pDGI2xc+Xl5SyOs2bNmjE2RRh79+4lU1NTmc6DqJ56RFtbmwYNGkTLli37LtoCYfxrHJ1/AkePHiUNDQ3i8XiMdpS2tjYBIHl5ecYwycvLU+/evZm/+/TpQ3w+X6pEBJFop4C1tTVnlwSXMrG/vz9paGiQsbExs39hunuBcyVuIiKpmkFc/BACPHv2jFJSUig4OJjh3OnduzctXbqULl68yHRMiWs3vnz5Mpmbm5O+vj7ToSW8PCMjg5o1a0a9evWiXbt2ERHR2LFjydnZmXbu3EleXl7k7Ows9v4JOzppaWmkoKBA/fr1I0VFRerXrx+1atWKtLS0KDg4mIjq21l/+eUXlkJwbW0tTZo0iebOnUt1dXU0btw4RhNKgJs3b1Lr1q3FKoPjv3h+hBXiBZOAMM3Dw4P4fD41a9aMFi5cyHKchSFNCys8PJyaNm1KioqKIp1h7dq1o927d1PPnj1JVVWVhgwZQqdOnRIhkJSm2s2lIyWtA7CxRszY2JhUVVXFOjqNUXn/XgicHnFTdXU1LViwgKHo5/P5pKmpSTo6OqwW2zNnzpCioiLruRI4FDwej4YNG8b8HRwcTOPGjaNly5bR27dvydDQkOnW3LVrF7Vo0YLKy8vp999/JwcHB5k4jyRBR0eH0940adKEkypBgIKCAsaGSYO091+apl96ejqpqKjQ2LFjSUlJiVk/Pj6eaVmWtTPrzZs3dPHiRbp48SK9efNGZqmbiRMnko2NDXMsSUlJtHjxYmrWrBnt3LlTagv999owYdTV1dGSJUtITU2NGfgqKyszauVE9dxPWlpaEgdV32PnoqKiqLy8nKKiokhbW5uWL19O2dnZlJ2dTYsWLSJtbW2Kjo6W6ZtDJJ1ksrH41zg60i6w8JSSksKpQVVZWUkpKSnM3y1btqQpU6aItEULGyVJk4qKCmer3d27d8V68Xw+n+E4EMcYLOk4hA2nOGZn4ciVtJGGJH4IHo9H5ubmtHz5crp+/bpYQjxpERtpwoGSWHC5tL4EEHZ07O3tacOGDaxjqKuro7CwMGYk1qRJE85IxcOHD5m2yvz8fBHtmzt37pCGhgYFBgZSt27d6ObNm6SmpkYZGRmUmppKrVu3ZggqJeHp06e0aNEisrS0JD6fT+7u7rRr1y7WsypNC6uqqor69etHLVu2ZImJxsbGshzWp0+fUmRkJFlZWZGZmRmLXZdLg23AgAHUu3dvxsFvqCMl4MdRVVX9KUZs9erVpKCgIDYqwRXZysvLo2PHjpGKigrl5eXR8ePHSVlZWSKDa2VlJT148IAzKtqQwXvVqlUUGBhIurq6FBMTQxMmTCADAwNKSEhgtpuQkEAAaMSIEaxtCV9TAerq6qQyGwuTVI4cOZLhm3n27BnDui2J84hIMp+QhYUFZyREXl5eYtv133//TQoKCqx5lZWV9Pz5c3r27Blrkvb+S9P0c3BwYOyy8PrZ2dmkr69PHz9+pHPnzlGXLl0oMzOT3r17J2Lzv3z5QiEhISQnJ8c4CfLy8hQaGipi37lgampKmZmZtHv3bqYNn6g+quTj4yO1hf57bRgXKisr6d69e3T9+nWRZ4drMNVwUMVl5xwcHBjyT0dHR7K2tiY+n888JwDIzs6OHBwcRLIMAGjx4sVUV1cn0zfnn8C/xtGRJtcgfLGlSQ4IIGlEKQs8PDxoyJAhLDJAYYkIAYQNhL6+Pm3bto2ePXsmldiJC1lZWYzRbsg4y8VAK22kIemjpaamRkZGRqSjo0O+vr60evVqysnJEYkQSIvYCIQDtbS0GiUcKI0TZsSIEcz9VFVVZcgbdXV1mY9DYWEhwyqqra3NqTR85MgRZtmmTZtITU2Njhw5QocPH6ZNmzZRmzZtyNvbWyZl8OfPn4uV5xDGuXPnKCgoiFRVVUlHR4cmTpzIkNddunSJAgICGCMUEBDAyXsjCSUlJRQVFUWWlpZkYmLCMphcqt3BwcHk7+9PioqKUh3870XDdCKfzydTU1NOUU6uyFZDuvuG/xdOT5eXl1NoaCjJycmxOKwmTZrE8DCJw4YNGyg4OJg0NTXpxIkTIssFDN3CaJjeJqofRUtjNm7ZsiXt3buXvnz5Qvr6+gxPU25uLunp6UnlPJLGJ5ScnEwBAQEMyanwOUiyPYL0PJF0iQZp77+4EgLBvyoqKsy7K7y+4P5y2feG86SVEUiDmpoaPXv2jDQ0NFjv+dSpU0lVVfWnCUn/3wCXnYuMjKThw4eTsrIyIzEiJyfH2FIApK6uTnPmzGHWEWQZsrKymGdYlm+OMCQNNBqDf00x8oULF2T6XUFBASIiIjgLAPPy8uDu7s4UlQ4cOBABAQEYOnTodx3T3bt34eXlhcrKSqatNy8vD0pKSsjIyICioqLETgFpVfM/2pEBgOmMcXd3x5s3bzBq1Cim9TMpKUmmduQHDx6wOq++ffsGFxcXuLq6ws3NDZs3b5ap3VjQpihr8WqHDh3w5MkTtG3bVuLvMjMz0axZM5w8eRL29vZMcdzw4cNx9epVeHt74+PHj4iIiEBaWhrmzZvH0AncvHkTy5YtQ2BgINMySULt4vr6+vDw8MCaNWvQunVr5Ofnw8LCAubm5ti9eze6deuGP//8E9bW1lBVVWVENzU0NDB9+nTMnz9f4n3+/Pkzdu/ejXnz5uHjx4+cHBVHjx6Fj48PFBQUcPToUbHbqq6uRlVVFZKSknDp0iX069cPISEh8Pb2Zh1DZGQk1q1bB2NjY1RUVKCoqAhKSkpISkrC1q1bcfXqVYn7sLa2ltgN+Ntvv8Hd3R1dunRhcSdJK5wVRteuXfHLL7+gT58+TPfZhQsXkJmZiWXLlmHYsGHYsmUL8vLysHHjRpH1Y2NjcfnyZaxbtw7e3t7Iz8+HlZUVjhw5gsjISIl8Q48fP4aDgwOUlZVx4cIFkfPk8/mQl5dHv379mHnHjh2Dh4cHq+Ps4MGDaNOmDbZt28Zw5DTE77//jilTpkBdXR3m5ua4ffs2+Hw+4uPjcfDgQZiamuL27dsinEdhYWFo3749rl27hkWLFmH48OGsAlYBn9CqVaswYMAAXL58mcVxdefOHSgrK4u9hzU1Nbh37x5qa2s5C4GFER8fL/H9l1aQ6u7uzlmEO2/ePOzatUtqNyQADBo0COnp6XBzc2PNz8zMxNChQ/H27VuJ67dt2xbx8fHo168f2rZtiy5dumD16tXg8/kwNDTE5cuXJbbQh4SE4ODBgyJ0AZ8+fYK/v7/ELsLQ0FCp5wfUF5YL46+//gIARoxWAGl2rry8HK9evUJZWRkuXboEoP6Z/vXXX1FaWiqyH8Fyc3NzVjt8w/0Ko6KiApMnT0ZKSgqA+mJmKysrTJ48GSYmJoz4p6z41xAGimvXBeo/FmlpaZg2bRoqKirA5/Ph6enJ4q6ora3FkydP4O3tzczr27cvZs6cicLCQk6iKmndWXZ2dnj06BF27drFdAYJFKtVVFQYA3H8+HGWgXjy5AmeP3+OKVOmSFQmBurVlcWpdt++fRtlZWW4ceMGJ7fEqFGjmPZ7oJ6U7tSpUxLPiQuCDpBffvkFAFBYWIjdu3djyZIlmDt3Lt6/f4/BgwdDX18fX79+haurK9NuvHjxYiQlJYlwdRgZGYGIkJGRgTNnzkBRURFjx45luhrmzJmDO3fuwMvLCydOnJB6jD169MCZM2dgb2+PIUOGYMqUKTh//jzOnDnDtEGuXbsWhoaGWLlyJV6/fg0AMDQ0xLRp0zB79mzExcWhpKQEfD6f8yVu3bo1Hj58CAsLC7Rr1w6bN2+GhYUFgoKCUFdXh+XLlzPcE5cuXUJkZCS+ffsmloDvyZMnSE5ORnJyMj5+/Mg4fnV1dSguLmbuqb+/Pw4dOgQdHR2x1AmC8U7btm0RGhqKtLQ0sRwikZGRsLOzY1S7BarycnJymDNnDr5+/QoiYnhUnj17hkOHDsHW1ha9e/eWyu909epVxMbGoqamBh07dmQc4t9//11qS7YwbG1tsWHDBqY1uHXr1sjOzkbHjh2l8nQcPnwYe/fuRefOnVkf5jZt2jCdJuKQnp4OXV1dhIaGYvHixdi+fTtzjSorK2FpaQlNTU1oaWkx64wYMYJzW8uXL8fMmTOxadMm2NnZiSyfOHEinJ2d8fz5c/Tq1YtxSK2srLBkyRK0adMGo0ePRpcuXUQ4j+Li4mBsbMx0bKqoqDBdTSNHjkTnzp3x5s0b5OTkYMSIETA0NGSuheDYGzoGwhAovOfm5iInJ4fpAmuINWvWYPDgwTAwMGDe/5cvX6JLly5YunSpVLqBsLAwTJkyBUlJSeDxePj7779x9epVJCYmYuHChXB1dUVJSQlMTU05uXaeP3+OiooKzq5RAwMDVFRUSNw/UO+E5+XlAQAmTJiAcePGYcOGDSAihIeHs7ie1NTUkJCQwFo/KytLxD4D9R1c0vjMkpOTYW5uDkdHR4kdk0C9bViyZAnWrFkjdlAlzc7p6uri6NGjIp1bW7duxadPn3D48GGR/aqpqeHVq1d4/Pgx0tLSUFVVBSsrK4Zbzd3dnXX9586di7y8PGRlZbG+uT179kRkZGSjHZ1/TUSHC9nZ2di2bRsOHDiApk2bwsDAALa2tkhMTMT06dNZraKKioqwsLCAnZ0d7O3tAUiOqEgifRPg/fv3DJNrSUkJEhMT8fXrV/j5+aF79+5QU1OTaCCioqIwc+ZM5oPSEOvXr8f8+fMRHByMLVu2ICQkBH/++Sdu3ryJ8PBwdO7cGUFBQQzXT0PyKEHk6t27d4yTYWFhwWKflTaaEHj3r1+/RlZWFkN6JYgCdO7cGZmZmQBEIzaenp7w9fVliOyEuToKCgrQrl075OXlQVdXFx8+fICenh5iY2MxefJkDBs2DFOmTJHYWi+M0tJSmJmZMRGXlStXMiOuBQsWsAgdATBtvQLW1YYQvFbC13Tnzp2oqalBcHAwcnJy4O3tjdLSUtTV1WHGjBlYtWoVaxtHjhzBxIkT8eLFC2bet2/fkJ6ejqSkJGRnZ8PU1BQhISEICQmBqakprl27hsDAQDx79kzE6El6Jvl8PszMzODo6CiROE4cn4gwevfujYEDB2LChAkoKytD69atoaioiHfv3iE2NhYfPnxAUVEREhMTxTJA19TU4Pr168jOzmaYzCsrK9GxY0dcunQJHh4e3z0CBqTzdKiqquLu3buwsrJiRQny8vLQqVMnvH//Hi4uLqxrJXg2Kysr4eDgAEtLS5w9exZKSkqsiK2gpVyWa6mjo4OKigrU1NRwMhvLyvfz6NEjZjAlzHkkjU+osrISp0+fhouLi0z74ULHjh0REhKCMWPGMA4fF4TpBtq3b88MMAQoLCzkHLD5+vpi2bJliImJYZwSJSUlzJgxg2GRlsZH5ObmBj09PezYsYOJIn79+hWjR49GaWkpzp49K9O5Cp4VOTk55OTkYPDgwZzZAQHy8/MBAA4ODjh//jyrzb22thanTp3C5s2b8fTpU7H7DA8PR1paGszNzRESEoIRI0aIbZefO3cutm3bhqioKJFBVVhYmMigisvOGRkZYfny5QgODmbm8fl8DB8+HMeOHRMhAxTG6NGj8e3bN1y5coX5Hty4cYOJ9N67dw9APeeYYKAh/P4VFxfDycmJk7dNEv51js6rV6+QnJyMbdu24dOnTxg6dCgSEhKQl5cHW1tbAEBKSgpLckAQ8UlMTEROTs4Pp4QKCgrg6+uL58+fo2XLltizZw+8vb0ZiYjy8nKkp6dj6dKlWLt27XcbGWtra4lh6YyMDPTp0wfLli3jdJbu3buHX375BZcvX2bNd3V1xe+//w5ra2sW0RZQn5q4e/cuysrK0KpVK3To0AFZWVl4+PAhFBQU0LFjR8aD79q1KxQUFJCcnMzJrlpTU4OpU6fiyJEjIszF58+fR69evTBkyBDs2bMHBw4cwJAhQ9C5c2fs27dPYli0IWpqarB792788ssvKCgo+C6mXQF27NiBVatW4dGjRwDqWbhnzpyJkSNHivy2oqICDx48QNeuXZGfny/Ck/Hw4UM4ODjg69evuHHjBpKSkrB37158+/YNAwYMQGhoKDw9PVkfWwcHB7Rq1QpRUVGcaQLhKIIwgoODJTo4hYWFAICgoCCp1yA6OhoXLlxAmzZtkJiYiPj4eNy5cwcHDhzAb7/9Bmtra5w7dw7q6uqwt7cXGbELOwBFRUXIzMzE2bNncfjwYWhpaeHdu3ciXFUCvHnzBiYmJqiurhaJbAlj27ZtEnk6evTogSFDhmDy5MnQ0NBAfn4+LC0tMXnyZGzYsAGvX7/G77//zrpmfD4fJ0+ehJGRkdjrLAxx3CzCEITuxWHEiBESWailOXxjx46FqakpFi1axPAJdevWDbdu3cLAgQNx+fJl7Nu3T2r6VxIE72pqaiq8vLyYyNKNGzdQWlrKSv2npKRg0aJFqKiogL+/P+Lj4/HixQsMGDAABQUFDHs48N+DCIE9rqqqQnFxMb58+QJbW1vWQFUcH9GzZ89ga2uL69evc5YRKCsr4/Tp02jTpo3Y86uuroa3tzcSEhLg5OTE4kzj8/nQ0tIS+259+PCB+R3Xp1hFRQXx8fFSB5SVlZU4ePAgkpKScOXKFfTt2xdjxoxB7969Wftu2rQpEhISRLINXIMqcVi+fDmioqIQFhbGpENHjhwJFRUV/PbbbzJHW6qqqnD58mWcPHkSmzdvxpcvX5h7KWmg0aNHD4kSKlz4Vzk6vr6+yM7ORt++fREUFARvb2/IyclBQUGB5egI0DDiM3DgQAwaNIjJW34vfHx8mJx1amoqjh8/Di8vLyb0N3PmTNy5cwcrV67EggULWBou3bt3x9GjR6GjowNXV1eJH6cHDx5IpLn/9u2b2A/7q1evYGdnB319fUyYMIGJphQWFmLr1q14//497t69K/KhAerDo7/88gtTFyBwbLp168YakRKRxIhNkyZN8Ouvv4p9cRQVFdG5c2dkZ2eDiKCkpITMzExmpNIYqKqqgsfjSXR0Xr9+jRkzZjAflYavzqpVq7Bw4UJMmjSJNVrauHEjlixZIvaj2qlTJ3Tq1Anr169nzZ88eTJu3ryJa9eugc/no127dhgzZgyCgoJEIkwCqKmpIS8vT6x+UXR0tMTr0JC9VoCGkY+3b9+ioqKCiaiUlZUxJJKvXr3CgwcPYGZmhqFDh6JNmzZYtGgRnj9/jtatW2PYsGESj6FLly5MPVdlZSW6d+8ONzc3Jk3C4/GkjoD37NkjMbIVFRWFNWvWwMPDAx06dBBxtpycnODj48M4EuPHj0dhYSGuXLmCiooKTifr/wXEsVBfu3YNQL2tkYQFCxagrq6Oiazt2bOHiWSOHz8eZ86cQXx8PBISEmBhYfFdxyj4iDeMgNfV1YHH4zHOWUFBAdq3b4/Ro0fDxsYGq1atwvjx45GTkwM5OTkkJibC0tISN27cwPv37/Hrr79i4sSJGDZsmEik6+vXr3j06BG2b98OHo+HuLg4hIWFsQZ0tbW1uH79OuTk5HD58mVUVFSwyghsbGyYMgJp0NfXx5UrVzgdnXXr1ol1fN+9ewciwqxZs3Djxg2WI6aoqAgDAwPIycnJcJX/G8+ePUNycjJ27NjB1EoJnD5lZWWpgyppdq62thb79u1DXFwcQ0L54cMHbNmyhaXJ2BBVVVW4du0aU695/fp1mJqaokePHujRowdcXV0ZKQ5JA41Hjx41voTih0qZ/z+DoEq8YReDvLw8o7b88uVLiomJoRYtWpCBgQFNmjSJtTwuLo7pkvpePhA9PT2mhfXz58/E4/GYjhlBFwD+q1ugYaeAcCeBsJo312Rpacl0M7Rv355RWj59+jTp6OjQgAEDaO/evZzHOGvWLHJycmJ1hAlQUVFBTk5OrAr7hnjw4AEZGBiIXU5ElJSURBoaGkxbZUxMDH348IGI6ruKeDwep6K4ADwej6UmL9xx0Vi4urpKJKAjIvL29iZbW1v6/fff6dChQ3T48GHWZGFhwaIfECA5OZksLCyopqaGEhMTafjw4eTp6Unu7u7k7u5ODg4OJCcnRzY2NhQaGkqhoaFkY2ND6urqjNJ9Tk6OTOfh7u5OJ0+epF9++YXevn0rstzBwYE1tWnThlRVVUlTU5McHR1l2seuXbuoW7duLJXxBw8eUPfu3Wnnzp1kb29PcXFxVFJSQpqamnTlyhUiqlewNzQ0lLp9Ho9HBgYGtGLFCpH2WOH3gasbR1VVlbZt20bt2rWjIUOGUGFhIX348IHKyspYkywt7sXFxTR27Fjq2LEj2djYUFBQEOXn58vc7VhRUcFqTX769CmtXbuWUcyWFTU1NZSens7QBRw8eJChahCnPt7wPgtPAtJAWdp5tbW1SVFRkekUa0iYJwuysrJIRUWFdu/ezeqw0dXVZam/z5s3j8XNsm/fPrKxsWHZS01NTea5mzlzJqmoqHDSVlRXV1P79u3JxsaG3NzciMfjUdeuXVnt1L1796Zx48ZJ7GqTFVOnTqXZs2dTmzZtmHZ/ovrnVRIFyD8BSR2Tzs7ONHnyZJF1Jk2axBBASrNzXJB2nu7u7qSqqkpt2rShiRMnUlpaGv39999if3/x4kVSV1enCRMmkLKyMk2ZMoV69epFampqzLeyMfhXRXSuXbuGbdu2Ye/evbCxscHIkSMREBAAY2Nj5OXlYfbs2VIjPpaWlrh16xb09PQk6nAIBNK4IEki4sKFCygtLcWgQYOY2hVxkFRgDXCHpVu1aoXi4mJ06dIFAQEBiI6ORkhIiEgxtUAXSVxH2Z49e7By5Urcvn2bc/mJEycwevRoid0KvXv3hoeHBxOxaSjSKC8vDxcXF2RlZXGuz+fzwefzERsbC6BeSmHmzJkiRbQN6fq5sG/fPgQEBOC3336Dl5eXyAi/bdu20NDQwMWLF+Hg4MC5DWVlZdy9e1ckmvLo0SPY29tj7NixYjWgvnz5AgMDA9ZoUqB43hgcOnQICxYswOPHj7Fnzx6RZ5QrBfHp0ycEBwdjwIABnCm2hmjevDnS09NFFIwFNQmrVq1CYGAgamtr4enpiYyMDABATEwMsrOzcfLkSeTn57P04QR1b0B9IXB2djaysrJw//59ODo6MhEdMzMzKCsrw8rKSuIIWFpkSwCB4rs08UZhSEtHCNChQweJtUqC4nxJKC4uRp8+ffDixQtGauHhw4cwNTXFH3/8ge7duyMrK0uqPIAAubm5mDNnDs6fP4/Q0FAkJCSgrKwM27ZtY0lEhIaGQktLS2rqTJpoqAANZXCA+vfl0aNHMDU1BQC4uLjAx8cH8+fPB1Avbmxvbw95eXncvn0blpaWaN68ORITE+Hu7o6OHTsyNU9c2LdvHzZs2IDs7GyEhIQgLi5ObE0dUH9d4+PjWfptkyZNgrW1NaysrHDz5k1WfSJQH8l0cnJC3759sWPHDrRs2RLt27dn7Me6deswbtw4keJjLkhS/ZYG4dSVpI7JCxcuoG/fvjAzM0OXLl0A1Bf/P3/+HCdOnED37t2l2rnvgYKCAoyNjeHv7w83Nze4urqKXMuG+PPPP7F8+XJW3ebs2bNZtkJmNNo1+l+AL1++0LZt26hbt26koKBAfD6f1q1bJ1PE52eg4YhQnETEj6K2tpbFP5CWlsbJG8I1AeCUEhDg0aNHpKWlJcJNM3XqVBo2bBipq6tTeHi4xOMzNDRkkWE1jMgIODbEoVmzZgTgpxDQcXGqNCSysrGxYZHsNUSbNm046dUXL15MdnZ2YkffPxNc/DCyEHLl5+eTubm5TPtQUVGhGzduiMy/fv06qaioEFF9ZPT27dssdtXr16/T3r17yc7OjhWR4fP5ZG9vz7nNsrIyOnbsGI0aNYoUFBRISUmJqqqqKDg4WCw7NNF/R7a48OHDB5o4cSLp6ekx0SE9PT0KCwujkpISqYSiPB6P4uLipLLl6unpMQy4W7dupbZt21JtbS3t27ePrK2tZbrW0piNuVioufD48WMKCgoieXl5Gjp0KGPjbt68Sbq6umRiYsJwEDVr1oz09PRkjiLKAnV1dbp79y5L+sTY2JiSkpKIqJ4vRUVFhc6ePcusk5+fTzo6OuTi4sIwIw8fPpy8vb3p0qVLpKysTC1btpR4zrKyM6enp5O8vDx17tyZsWVdunRhpDTERSxevXpFioqKYkn4AIgwpXPh1KlTpKioSM7Ozsz+nZ2dSUlJiTIyMiSu+8svv5COjg61bduW1q1bxxnJFcaLFy9o3rx5jLzD/Pnz6cWLF8xyLjuno6PDbFeaLAYXvnz5QidPnqTZs2eTs7MzKSoqkp2dHYWHh9P+/fsbzQfXWPyrIjpcePjwIbZt24bU1FSUlpbCyMgIHz584Iz4NKzh+V7w+Xz4+PgwHQgNOTQqKytx6tQpJCYmQl1dnaVOrqOjg+rqagD1I1hJkLUjgwviuhQEeP36NUxMTBi1WeFzE3DHhIaGiu2qAeqP/9mzZzA2NgYgOuoTjETEtUQLrtPP4AsSFCWeOnWKyRMLw9zcHBkZGVizZg3TFt4QBw4cwLBhw9CzZ0+mRufy5cs4d+4c9u3bh/DwcM7R96lTp6Curs4UnW/cuBFbt26Fra0tNm7cKLYeR9x5ABB7LuIU1C9dugRfX1+mOFISfH198eLFCyQmJsLJyQlAfTRn3LhxMDExEcvVU1hYiE6dOsHGxgbTpk1jOuIKCwuxdu1aPHz4ENeuXYOtrS3ev3+PCxcuMJ0Z9+7dg46ODrp3745Dhw5BW1sbd+7cERtVFUS2Zs6cyYpWfvz4ESNHQ67/jwAAgQdJREFUjsS7d+8QFBTEOoatW7cCkM5PVVdXh9evX0ut0VFVVZVYqyRL27KamhquXbsmMorNy8tDt27d0KtXL4nq41u2bEFUVBS2bNkCFxcXLF++nFVj2L17d7Ro0QJbt25l3tWamhqMHTsWjx8/ZimDc4lVSoqQCPD27VsYGxuL1HoIanOys7Nx+PBhpKSk4O+//2bs2q5du7Bu3TosWbIE5eXlGDhwIIqLi9GvXz8UFRWBiCTWheTn56NLly4oLy9nxETF4dmzZwgKChKpYQsICEBWVhbevHmDlJQUVq1NbW0tzp07hzNnzuDhw4dSr4MkODo6wsvLS6zqt7jIOfBzOyYBcNq5lJQUBAQEQElJSaxgrgCyRPk+f/6MS5cuMfU6Art//fp1mY5RludOGP96R0eA2tpaHDt2DElJSUhLS8PevXuRlJSEGzduoLa2FrGxsQgNDWWp5tbW1n5Xx4OsxGeXL1/G5s2bWR1HKSkpePDgAbZv344VK1ZIXH/06NGcPDmFhYVITU3F/fv3RR6Yjx8/omvXrnjw4AGKiorEtkW+fv0a1tbWP+RkyMnJ4dWrV8w+Gjo6AQEB2Lt3L6uNkQvSuleio6MxY8YMdOrUCSdOnGBC5V+/fsWqVauYAtxLly6hY8eOYltghVt9VVVVRT4qpaWlyMnJwdq1a1nh7+nTp8PR0RFr1qzB48ePsWHDBpahsLe3x4oVK9CnTx8UFBSgQ4cOmD59OjIzM2FtbS1Td05DNLyWdXV1OHHihEg6lYjw8uVLpKamwtXVFbt375a67bdv32L06NE4deoUi5vFy8sLycnJMDAwwK1bt0T4m27cuIG6ujq8ePGCk89k4MCBUFBQwP3793H//n3o6OigR48eTKhbOO0mTd2Yy1kRLnx99eqVCG/KwYMHMWPGDLRv3x79+vXDnDlzEBwczArxp6Sk4NWrVzIVI7dt2xZjx47FgAEDYGdnh1OnTqFLly7IyclB37598erVK4nrA/Wq2sePH2e4bgS4fPkyfH190b9/f871qqurce/ePTx+/BgtWrRATEwMevfuLfI7FRUV3LlzR4TCorCwEB06dMDbt28xe/Zs7Nu3D+/fvxdZX5b3PygoiOmMHDFiBA4dOoTXr18jMjISysrKKCwshLq6OlJSUlhdnJ6enujcuTMnj1RpaSk8PDwwYcIETJgwgXO/v//+O7Zs2YLc3FyR56S6uhq5ubm4e/cuRo8eja1btyI/P18k1SlcSN3wU6mgoAALCwusWbMGb9++RUBAQKN4noShrKwsVfVbHKR1TAqwfft2pp29IXj/pUxuZmYGIyMjqXbuR1FXV4ebN28iMzMTmZmZuHTpEsNhJwsa+935j6MjBcIRn7KyMvTq1YsZsYrreBBg7dq1P7RvZWVlPHjwQCR68PTpU9jY2ODr168S1z927BgnT86XL1+goKAgdkS5fv16TJkyReJDR//F/vsjjk7DyNbRo0fh6ekpEtn60YiNIDrVvHlz1sdfwKFRW1uLmJgYGBoairRxJiUlMcZeXL2C4D4EBgZKPI7Ro0dzjr4F53369GlERkbi7t27SE9Px+3bt9GnTx+ZPogNIXB06urqkJSUhOTkZLx9+1ak7V44Ajd37lyWIy8NRUVFTE2RtbU1E6nas2cPRo0aBS8vL2RkZKB3794oKirCo0eP0LdvXxw7doxzezdv3kSfPn0QGRkJV1dXToI8AQSkZ56enqyaCAHEOQDdunXDsmXLMGrUKM7lp06dwoQJE9C8eXOMHTsWw4cPZy3fvXs3goKCZIropKenM7VKHh4eOHPmDAB2rZI0jBo1SiKzcXJyMud6RkZG+Pz5MyZPnozhw4eL/RAK2r4bOkGnT5/GqFGjMHjwYGRmZmLx4sUYOXIkNm7ciBcvXmDz5s1Yvny5THQDxsbGOHLkCJydnaGpqYlbt26hVatWOHr0KFauXIk//vgD6urqIt1Fb9++RUlJCWxtbTm7qubNm4fU1FScP39epPYsLy8Pnp6emDVrFmbNmiX22CIjI/HlyxcUFhZiyJAhIoPQ7du3Y8+ePSgqKsLNmzfF1nIZGhri69evGDJkCMaMGSPimEqDqakpYmNjWdF7oL7OaMaMGSgpKWnU9sSBz+czzwJxcH0pKCigQ4cOCA4OFnFwBEhNTcWIESMwcOBAmSMrdXV1uHXrFsOjdvnyZZSXl8PExITpylVRUYGRkRGA+m+cuIFGTEyMzLVhDP7RxNj/ItTU1NChQ4fI19eXmfdP11yYmppyaisdPnyYTExMWPO+fv0qUksgTnTUzMyMU0xUgPv375O+vr5YPZIWLVpQy5YtqWXLliIigA0nSWiogSQvL0+DBg36adpIAghqohrWAJ07d47J4Zubm3NqAl27do0sLCykbl+ajhqfzxer/aSoqEj+/v5ERNStWzfavHkzERE9efKEqXlpDCoqKkhJSYk6duxIfD6fXF1dadOmTfTq1atGb+t7IE4gVU5OjqZMmSJ2vZKSElJSUmL+lqRz8711WYqKihK1xJ4/f05KSkqkoqLC2Y3z8OHDRt2Tly9fkqqqKqve7fr166yONUn48OED9e/fn/h8PikqKjIdUP7+/lRWVkZE9R1GZ86coYSEBPr06RMREWetGVfN1uTJk6lZs2a0Z88eKikpoZKSEkpLSyMTExOKiIhgxCqJiFOs8tWrVzRixAgyNjYmOTk5kWdesJ5Ai8rMzIwuXbpERPU1NJKu5fbt26l9+/Ziu6qcnJzIxsaG5OXlydvbm6ZOnUpTp04lb29vkpeXJ1dXV6qqqpJ4fR89ekQ6Ojq0adMm0tfXp/DwcEpNTaXU1FQKDw9ndOSOHDnCTCkpKWRhYUH6+voUFhZG3759o+rqajp48CD5+fmRgoICtW7dmpYvXy5R+JRIsup3TEwMo/r9s3D48GHi8/kUExND+fn5lJ+fT4mJiWRjY0N79uyhnTt3UrNmzWj69OlitxEREUFGRkakoqJCgwcPpsOHD0u9zhoaGsTn86lp06YUFBREiYmJYgV5iep1IHfv3i0yf9euXeTq6irz+QrwH0fnB2BsbMypZv2zMGvWLDI3N6fz589TTU0N1dTU0Llz58jc3JymT59OX758ofDwcNLX1+f8sIoTHVVSUpJaaKysrCx2OVcru6enJ82ZM0dkfmPg4+MjseWwsRAUzfH5fNLW1iYApKWlRTo6OqSpqUl8Pp8mTpxIRPXXhKu4NTc3l/n4iitO/eOPP+iPP/6grKwsyszMJBUVFdq1a5dUwToBfH19ycvLi6Kjo0lBQYH++usvIqqnAZBUbNkQN27coHHjxpGmpiY1adKEoqKiSE5OTmwhvawCokT1AqkCAVVpYqniBFItLCxIW1tb7D72799PrVq1ooqKiu8W1Pzll19Y7bS7d+9mCb8aGxszbbRcyM7OJmNjY2rVqhXNnDlTZPnMmTOpVatWEo9BgJCQEPr06ZOIgy1QypaE2tpaWr58OXXt2pU6dOhAAwcOpCNHjtDRo0dZ7+7Tp0/J2tqaVFVVWdcqODiYAgMD6enTpxKnyspKioiIYBwoHo9HSkpKNG3aNKqoqGDEKomITExMGLHKx48fk5qamkytyB06dKBTp04RUf2zPnLkSPrrr79o1qxZZGVlJfYauLi4UFpamtjle/fupW7dutGKFSuoXbt2pKqqSioqKtSuXTtasWIFVVZWSrzGRPUOm7GxscSmDDRoUpCXl6exY8fSmjVryMjIiBYtWsTa5qtXr2j16tVkb29PCgoK5OvrS4cPH2YV5gsgEJCuq6sTUf02MTGhdevWSS00bww6duzISaNx4MAB6tixIxHVOxMWFhZi7R1R/fN5+vRpGj16NGlqapKOjg6FhYWJtXMJCQmN+lb+rIGGAP9xdH4AsnY8fC8qKytp6NChxOPxSEFBgRQUFEhOTo5CQkKosrKSJk6cSDY2NpSenk4qKiqUlJREixcvpmbNmtHOnTvF8uRYWVkxXQxcOHDggMzdSgJoaGiI5aCRVQ3+ZyM5OZm2b9/OdMkoKSnRypUrKTk5mXbv3s3wuxARtWjRglJTU0W2wePxyMzMjPm/JNV7ARrL5/Ps2TPq27cvtW3blhITE5n5U6dOFeG8OHnyJF28eJH5e8OGDdSuXTvS0tIiU1NTmjt3LtPpQyTaMVhbW0tRUVGMo8fn80lLS4uio6M5DbEAbm5uDMeRuA4TwWRiYsI4N/b29szILDQ0lHg8HhUUFIhsX9D1tXDhQoqIiKD27dvTxYsXSU1NjbmWhw8fJgcHB5F16+rqmHew4bPW8LkMCAggAJwfwW/fvpGrqyuFhITQH3/8QcrKymRnZ0djxoyhMWPGkL29PSkrK8scxRUcS8Pn4e3btyQnJydx3ejoaOLz+dS7d2/q378/KSsrczpH/fv3pxEjRlBlZSVrP5mZmdSiRQuZjpOIaOzYsXThwgXKz8+n8vJyWr16NRkaGpK9vT3z8fL09GRG+nFxcWRiYkLq6uqszkkupKam0vbt24monkupSZMmxOfzSVlZmfbs2SN2PX19fcZh5kJjuqoGDBhAHTt2JF9fXxowYAD5+/tTp06dSE5OTuKAzMjIiG7evMn8LY7rpyGuXbtG48aNIyUlJbKwsCAtLS2ysLBgomMCcHVzCVS//wkoKytzDoD5fD4zoBPmapNk5wT4+vUr7du3j9q1a/fT7PnPGGgI4z+OTiMhaMEUTFpaWmRpaUn9+vUTWfaz8PDhQ9q3bx8dO3aMnj59ysznCisfOXKEpk6dSk5OTpSYmEhmZma0aNEiSk9PZ0Kvffv2JXNzc7FkgHZ2dpykUpKgoqJCa9asodTUVJHWRHGtmS9evJAYOfpZyMrKoqqqKokOyIoVK0hPT4+SkpKY0e62bdtIU1OTFi9ezGxH0iSApP3s37+fhgwZQp06dZIpzVdRUcH6287OjvnQ5ufnk5KSEs2dO5d4PB41b96cMjIyWI53Q0dnzpw5pK+vT7///jvT5rtx40bS19enefPmyXA1pWP48OG0Zs0aIqr/YOvr69PYsWPJzMyMdHV1SU5Ojry9vRk6Ai8vL5KTk6MuXbrQ169fyczMjK5evUpE7Gv56NEj0tDQYPaTkpJCdnZ2pKSkREpKSmRvby/yrDW8F7dv3yYAZGZmRitWrKAjR47Q4cOHKSYmhkxNTcnAwIAhfHv+/DnNmzePeZ/nzZvHIoMTh48fP1JZWRnxeDwqLi4mNTU1ys3NpY8fP1JpaSmlpKSQsbGxxG20aNGCRaZ35swZUlRUFHFGdXV1mTSY8LlKS3t++/aN5syZQ+3bt6euXbsyo/ykpCRq2rQpmZqa0vLlyyk2NpYhPz1z5gwpKyuTkpISQ8khjXKBC+Xl5ZSTkyO1DVpVVZUhCuRCXl4eqaqqyrTPhqnx0NBQmj17Nq1du5aOHTvG+q1wakpOTo4VQevWrRstWbKE+fvJkyekrq5ORPWRnFWrVpGtrS0pKytTQEAAnTlzhojqo3izZs1iBk0CyEo++bPg4OBA8vLydP/+fWZeVVUVeXl5Ubt27YiIKD4+noyMjKTaOaL61OzatWupffv2xOPxJEZLG4OfMdAQxn8cnUZCXJ0F1/QzITxqFYArrMzFoyIuHGtqakorVqxgwszLly8nU1NTatq0qcz1HK9fvyZ3d3dWWojH45GHhwctXbqU4uLiiM/nM/8XTLGxseTv7885Qv+noK6uToWFhZyh2Lq6Opo1axYpKyuzUn9RUVFEVF8TEBUVJVOqR5yjExcXR+rq6jRp0iRSVFSk8ePHU8+ePUlRUZHTyfjy5Qu5ubmx5qmpqTGj3EWLFtGgQYOIqD7So6amRs2bN6emTZvS9OnT6fbt26SgoMBydIyNjcXWfTVt2lTieYWEhEidQkND6f379wwvR21tLcXExJCvry/9+uuv9OrVK1q+fDm1a9eOVFRUmFRDTEwMffv2jYjqnWbB9RO+lrm5uaSpqUlERGvWrCFVVVWaNWsW48DPnDmTADD3jOtevHr1ing8Hnl7e4tw+Xh5eUlM6cqKhpG/hqNjOTk51seSC4qKiiJOlZKSksjzp62tzdxf4XO9ePGiRGbyWbNmkZaWFg0aNIiMjY0JAA0bNozs7e0pLS2Nsy6GqD5VduDAAcYBOX36NPXu3Vts5KWqqoqsrKwk1gSKQ7t27WjTpk1il2/cuJH5OMsCrvfS29ubli9fzvydn5/PSk0JauuIJHP99OvXjxQUFKhNmza0du1aFu+RAK9fvyYej8eax+PxpPLSyMpALQsuX75MAEhXV5c8PT3J09OTDAwMSE9Pj65evUrV1dU0cOBAiYOejx8/UlJSEvXs2ZPk5eWpVatWFBUVJbHm5ntQUlJCc+fObfRAgwv/cXT+h4Nr1Lpjxw4iIqlhZUl4+vQp+fj4iBh7Hx8fiURsDTF06FDq0KEDKxx679496tChA6mpqZGFhQXxeDwyNTVlFYy2atWKevfuTdeuXfuey9IolJeXU3h4OCtd07BgUoDPnz/TjRs3qKCggPnwCqCuri4xlC78O65r2Lp1ayaNI2x0dXR0qEOHDqzffvnyhVxcXMjFxYU1X0dHh/mwiStcPnfuHAUFBZGKigrxeDyaOXMmkx9XUlLizJU/ePBAanSNx+ORhYUFE/oXN/0ounfvTuvXr6fdu3ezruWkSZPIy8uLiEis3IbgWROAy9ER3PPS0lK6fv06Xb9+nfPDRFT/7AiT3AkmSRDUavF4PDp48CBL/uDKlSsscjZx4PP5IiN9rudq6NChFBYWxlr++fNn8vDwkDjYsrS0ZBzegoICAkCDBw9mDaaqqqrIw8NDokSCLBIRTZs2/S5HRxBl5breubm5pKenRytWrJB5e+rq6nT48GGm2Pj27dtSU1O9evUiFRUVys7Opl9//ZX09PRYac+dO3dShw4dKDQ0lJUK50JdXR0rIk9EMpNP/kyoq6vT4sWLmZo64SJ2wXJJdk5ZWZmMjY1p6tSprGv3Pxn/aS//AXz9+hVExAjFPXv2DIcOHYKtrS0nZ0VjERsbK1EkEqhvnY6IiMDZs2fh6+sLIkJlZSUMDQ1RVFQklicnISEB3bt3x4cPH1BcXAwiQsuWLRtFTgfUq2GfPXsWHh4erNbtGzduoHfv3igrK4O7uzsOHjzY6G1LQkMBTEl4+PBho1tknz17hvLyclhbWzNt9v3798fAgQNFWhsHDhzI+rshAaQAp06d4hRZPXfuHHr16oXY2FhMnToVnz9/hpeXF+Tl5XHy5EnWdvz8/FBVVYVu3bph8eLFePLkCUxMTJCRkYFJkyYxsgpA/b3etWsXkpKScPv2bdjZ2UFFRUWsgOiNGzckEnaFh4cjLS0N5ubmCAkJwYgRI1iimsKtq+LA4/FQU1Mj8TeXLl2Cj48PKisrwefzMWHCBEZQ88KFC2jfvr1YuQ3BMUyZMgVAPfniiBEjGKK3iooKbN26VSplwdu3bxESEiK2BVwWyoNnz57BzMwMmpqaIvIHJSUlnMSUwuchTL0AcD9X69evh5eXF4gIjx49QocOHfDo0SM0adIE2dnZYlvgFRUVmWcHqL8vJ06cEBEBFYhVNuR3EUAWiYhly5ahqKgIiYmJEglEG6K6uhq9e/fGpUuX0LNnT4br58GDBzh79iy6deuGM2fOiG2DFsabN2/QtGlT1NXVsYRoeTwecnJyGLmDhjIUt2/fRseOHUFEnFw/HTp0gJWVFfbt28fM27FjBxYtWoTy8nJGgV0cN1dDOaB/GtnZ2ejTpw/y8/NZz2NNTQ2uXLmCHj16iLVzApw5cwaenp4yc95873FKQo8ePRq1vf84Oj+A3r17/7CWjSRYWloiKipKhPMjJSUFkZGRePLkCWv+s2fPkJOTg/Xr16N///5iydTWr1+PzMxMHDp06IeODwCji9K9e3eWMb9z5w569OiBz58///A+uNAYNe2amhrs2LEDbm5u0NTUxO3bt9GiRQukpqZi5cqVCAkJwa+//spsa9y4cdi2bRuAeh2m06dPw9TUFAkJCYiKikJQUBCLuyUuLg4AJH64gHqdmQMHDsDR0REdOnRAWFgYxo8fj4yMDAwePBgKCgpYtGgR0tLSoKSkhD/++EPEWSopKcHEiRPx/PlzREREYMyYMQDqtclqa2vFOoC5ublISkrCoEGD0LdvX+jr68PV1RVycnIiWjeSIKypc+XKFfTt2xdjxoxB7969xTIiA/UcGOvXr0ddXZ1E8jMB/vzzT1hbW8PW1hbV1dUiOjd2dnYIDAzEvHnzWOtZWlri7du3LPZfLkjTkQsKCsKzZ8+wbt06uLm5MSR3Av6evn374u3bt2IJNQsKCuDg4ICXL1+isrISTZs2ZXhihPmbxEFWUtHt27ejpqYGe/bsQX5+PqMJJE11uyFZJ4/HQ1ZWloh+3rRp06CkpCTC2NsYDBgwAOfOnYO6ujrs7e1FnmlJjL3V1dVYu3Ytdu/ejUePHoGI0KpVKwQGBmLq1KlS2eEFGDZsGNLT03Hy5ElmEFpYWAhHR0e4uLjg3LlzqKqqgra2No4dOwZPT08A9ffR1dUVT5484eT66dmzJzw8PJjnsKCgAE5OTggODmYpsEdGRnIelzQG+sbg/Pnz6Nq1K5SVlcX+Rk5ODrdu3ULbtm1Z5yL8TIqzcwL4+fkBqLe5Akbo1q1bi30XvgfiCD8FaDS32v+rUNL/BvwMLRtJENcGnpKSQjwej6kvEUZZWRkpKCgw6S0u3L9/nxXe/xH4+flRjx49yN3dnWkN/+uvv8jV1ZUAsApDZ8yYITZF8COQpqYtqUWWz+czejtE9bUu8vLytHPnTsrJyaEuXbrQmDFjiIjE1jxJ05ESYMyYMUyHx4YNG0hFRYV69uxJ2traTOhbTU2NPDw8RIqQfyZevHhBioqK5OXlxWjdPHv2jEmByIqnT59SZGQkWVlZkZmZmYjSOFH9ffD39yc5OTkaNWqUSOheEiQVdaenp5OcnBzTlh8dHU1eXl4kLy9PBw8ebNR5cMHIyIh5TjQ0NJh035EjR5jUhqGhIR0/flxk3VWrVpGysrLYIvynT5/KXET7T4HH41GfPn2Y+gcA1L17d5GGikmTJpGmpia1b9+exo0bJ0IlIAwuLi8i6XWNPwsNqQSEoampyar9EmDgwIEkJycnNTUlDt/blSXAz1Q3V1NTIyUlJXJxcaEFCxbQmTNnROyIuOLnhw8fMoX+0uxceXk5hYSEkJycHKvlPjQ0VISz7XtRVlbGmt6+fUsZGRnUqVMnVo2UrPiPo/MDUFFRYT6gQ4YMYT5iJSUl39Xr3xDiRCJbt25NRkZGYteTl5ennj17il0ujSdH2IGSJnBYUlJCDg4OpKCgQFZWVmRlZUUKCgrk6Ogo8hJLakH/EVhZWXF2fty6dYssLCwk1jLxeDymFZqIaMKECUyBL1F9m640wkBZISyy6uDgwHR2NGvWjBwcHMjR0ZF0dXXJ2tpaJtJFcR8WWdDQicjNzW10a2hJSQlFRUWRpaUlmZiYsBydFy9e0NixY0lBQYH69evH2VLeENKKeAWFvALcunWLAgMDycnJiZycnCgoKKjRHUDinklZSO5WrFhBSkpKNGHCBKqoqKC//vqLPDw8SEVFhXx9fYnP59P48eNZjkFERAR16tSJunbt2qjjlIQdO3ZQt27dyNjYmHEkY2NjGR4bLjR0Nlq3bk0BAQEi8yXRCLi7u0vk8uLxeJxkj/8UJNkXdXV1srKyEilmPXfuHPPB1tDQEHGSPTw8JBbmKikpsbYpqSvrn0ZVVRVdunSJli5dSr179yZ1dXVSVFSkrl27UuvWrWnAgAHE5/NZDu6AAQPIz8+PLCwsmPo3aRg3bhxZWVnRiRMnWFxizZs3pwkTJvyj55iVlUVOTk6NXk/2hOl/IIIWLVrg8OHDGDBgAE6fPs2kit68edNo0TEuREVFYdiwYcjOzmaJRD58+FBijYqxsTHu3Lkjdnl+fj4jpMkFHR0dJpyqra3NWXdBQhIQt2/fxtmzZxk5ABsbG/Ts2VMk/Ej/UJb05cuXnHUftbW1eP36NSIiIpCXlwdXV1fMmTMHvr6+2LBhA6qrqyEvL8+6V1euXGHSQQBgZWX1XRIMXODz+VKFSqWhvLz8h7WHfgTCqatLly6hX79+2LBhA7y9vcHn8/Hx40csW7YM8fHxcHBwwLlz56SmwwRomEoNCAjAunXrYGRkxEp9CdC+fXvs2rXrh85H3DPZunVrPHz4EBYWFmjXrh0jcJiQkMC8O7NmzUKvXr0wcuRItG3bFqWlpejUqRMcHR3x+fNnEBEKCgpY6RVFRUW0a9cOM2bM+KHjFmDTpk347bffMHXqVCxZsgS1tbVMCmvJkiViRU8FtqqhdEJjER4ejszMTGzatEmk/u3FixcoLS1l0jKdO3fGgQMHmLqgn426ujq8fPlSpA7IzMwMHh4eKCsrY6VrXrx4gejoaPj6+iI5OZkzNbV//36oq6uL3aehoSGePHkCU1NTVFVV4fbt24iKimKWf/78WaYaop8BBQUFdOvWDd26dcO8efNw7949rFq1Crt27UJNTQ26dOkCIoKGhgYrramoqIjOnTuLFUdtiAMHDiA9PR1ubm7MvD59+kBFRQVDhw7Fpk2bfvapMTA0NPw+AdWf62/9u7B//35SUFAgPp9PvXr1YuYvW7aMvL29f8o+bt26RUFBQaxRq6KiosQ22JEjRxKPx/tunpysrCxmJCaOSyE2NpbMzc3Fps9sbW2lcpr8LPTr148cHR0pJyeHmXfr1i1ycnJiSXYIINwia21tTQcOHCCi/yZyu3XrFvPb69evk6GhIfP32bNnqW/fvkz0qm/fvgxXBhfy8vIY7pOGnTuN6eQRQBpJpKz4nojOL7/8Qjo6OtS2bVtat26dCA/KihUrSFdXl2xtbSVGExpzjGfOnGGlvmSR25BGxtdwH1zPpKwkd58+faJhw4aRvLw8ycvLszpkgoODGxVl+x7Y2Ngw5J+CcxFcI3BExCR1HHKhrKyMM938/v17+vjxo0SJCDRIXf9T739RURG5uLiInK9wSpkr8iwvL0+Ojo4ys4NzYcKECdSlS5fvTn39TDx8+JA2b95Mw4cPp6ZNm5Kenh75+/vTunXrKDc3l4jqWe3FpfeEIcnOqaiocHbR3b1796elZBvaxtzcXDp58iS5urqyUoOy4j+Ozg/i5cuXdPv2bRaR1/Xr11mETD8bVlZWnKyRAmzbto3k5OR+Ck/Os2fPOJmffX19aeHChWLXi4uLIwCs0L2ioiKFhoZKzPN/D968eUM+Pj7E4/FYekA+Pj4i+e+Gzl9MTAwZGRlRdHQ0ubm5UZs2bVjL165dS56enkRUz9shLy9PAQEBDB/Q8OHDSUFBgdF2aghhZ49Ld0iY86ghrl27JtK+KU17SFZ8j6PD4/HI3Nyc/P39RWo5BHUecnJy5Ofnx7m8MUSaL168IG1tbZHUV0OJAeFp9uzZpKKiwtLLaux1EAcukrtLly6RhYUFOTk5UWFhIW3dupU0NDRo6NChVFpaKvMx/AiUlZWZdJXgXJ4+fUqZmZmkpKREhw4doubNm1NCQgLz0UhISKCWLVtKZEcXwNvbmzZu3Cgyf9OmTeTj4yOx/u3/lqPTtWtX6tGjBykrK9OxY8coNzeXNQlQV1dHGRkZtH79elq/fv131Xo0xNu3b6l79+7fnfr6meDxeGRgYEBLly6lvLy872bsl2bnPDw8aMiQISxbWlFRQUOGDGFs5c84Fy5b2aVLl+/6tv6n6+p/KGpqavDgwQMoKioyqtAAcOTIEYwZMwalpaWoqKgQqbD/+vUrnJ2d0b59e7x58wanT59mqdR6eXlh48aNYkPaDSGuK8DU1BQvXrxgpRKE8eDBAzg4ODDKs+LA4/Fw/vx5mY5FGsSpadfW1mLZsmVISEjA69evUVRUBCsrKyxcuBBmZmZ4/vw5jh07BiMjI8TGxsLGxobZ5pAhQ+Dt7Y0xY8agWbNmmDNnDiZNmsTa78aNG7Fs2TK8ePFC5JgELcY8Hg/Pnj3jPO7+/ftj/PjxIl16Bw8exIoVK1gt3+rq6igsLISZmRmaNWuGgwcPwtnZGU+ePIG9vT2+fPnCuQ9pLfBlZWW4cOGCxNRXcHCwxPbxixcvgsfjwcXFRexvgPpnx93dHV26dBF5fhumvlasWCE19fXw4UPMmTMHx44dQ1BQEKKjo2Fubi5xHQEEKu/CrbayQklJCdOmTcPixYuZ9ISXlxdKS0vx8uVLRm1cHCR1G8kKW1tbxMTEoH///qxziY+Px/bt2yEvL4/IyEj06dOHtd6JEyewcOFC5OTkSNy+rq4uLl++zHongPr3u1u3bjAxMUF8fDxcXV3Rs2dPODg4YPXq1Vi/fj2mTJmCN2/eMN04gjZ7WW2PrFBTU0NOTg46duwoci+vXr2K9+/fo1+/fsy8lJQULFq0CBUVFVLbv2XFx48fOVNfpaWlUFdXl7k77EcwdepUZGdno7CwEE5OTnBzc4ObmxtcXFwYCpTXr19jxowZOHfuHN68eSOSuq2trZVq506dOgVvb29UVlaiXbt2AOrV4pWVlXH69Gm0adPmh8+loa3k8/nQ19eX2FEmCf+p0flB3Lp1C/v27UNJSQmqqqpYy77XkN29exf9+vXD8+fPAdR/CDdt2oShQ4fi7t27CAwMxP79+9GqVStMmjQJrVu3BlBvfDZu3Ija2lqsWLEChoaGP8yTQ/9Vi9MQb968kWgc5OXlwePxpLbx/ky0atWK5RQKsHTpUqSkpGDlypWsPLSdnR3WrVuHq1evIjo6mnOb+/fvZ/5fVlaG6upqlJeXs1oue/fujdmzZ3OuL/zBFffxLS4uhpeXl8h8R0dHFBYWsuZZWVnhyZMnMDMzg7W1Nfbt2wdnZ2ccO3aM4YrhAtcyDQ0NaGhoMMsb0hg0RHJyssTlskLAGVRTU4OOHTvC1dUVbm5uuH79OmJjY2FkZIS0tDT0799f4nb+/vtvLFq0CCkpKfDy8kJubi7s7OwadSzCz7YwxYA0xMbGIiMjQ6Qdu2nTpti3bx/Wr1+Px48fg8fj/WO1aUD9MYeHh+Pbt28gIty4cQNpaWmIiYlBYmIiQkJCOB0LS0tLkWeLC5WVlZz1b9XV1fj69StCQkLE1r/xeDx4enoyNTMVFRXw9fUV+ejfvn37O8++Hra2tnj37h3nsujoaLi5uTGOTkFBAcLCwjB69Gim/btp06Zi279lhbh3T5hn6p/GunXrANTbqYsXL+LChQuYP38+7t27B0dHR1y+fBnBwcEoKSnBwoULYWxszGnby8rK4O3tLTJfYOfs7e3x6NEj7Nq1ixlYDh8+XCqlQWMg60BFVvzH0fkB7NmzB6NGjYKXlxcyMjLQu3dvFBUV4fXr1yxSqcZi9uzZaNGiBTZs2IC0tDSkpaXh/v37GDNmDE6dOgUVFRXMmDEDv/zyC+bOncsZsTE0NARQX1gsjVOECwKjz+PxsHDhQmZEANR7/TweT+LDKK3gmQuamprIzc1t9Oi6trYWycnJzCilYZSppKQEW7ZsgaenJyZMmMDMb9euHfOiygI/Pz/MnTsX/fv3Zx3jkSNHWCNGYUjilhGAz+cjPT0ds2bNYs3nKqyU9GGJjY0VS2I5fPhwFonl9u3bZT7vn40zZ86gpqYG169fR3Z2Ni5cuID169fj8+fP4PP5cHFxQUpKilgyuu3bt393wXNDCDshkgr4hSH4ODR0cgTHVltbC0VFRRQVFaGqqgoeHh6IjIz8aR8BYYwdOxYqKipYsGABKioqEBgYiKZNmyIuLg4BAQFYuXIl4/QIHIyqqirExMSIRGm44OzsjC1btiA+Pp41PyEhAe3bt2dxdfXs2RMPHjxATk4OWrRoIVJcLs1xbQw+ffrE/H/FihWYNWsWmjRpgi9fvrCW3blzB4sXL2b+3rNnD5ydnbF161YA9dHFRYsW/bCj8z8JtbW1qK6uRmVlJb59+4bKykqmgPfSpUu4ePEiQ5DIBT8/Pxw6dAgzZ85kzT9y5Aj69OmD5s2b4/jx4zIXL38vysvLceHCBc4gQkRERKO29R9H5wewbNkyrF27FuHh4dDQ0EBcXBwsLS0xfvz4Rn/khXHz5k1kZGTAwcEB3bt3R1paGubNm4eRI0cyvzE3N8eJEyd+OGIjDgKjT2I6R1q0aIHq6mp8+/aNM322aNEisR9/cfjeke+UKVOQnJyMvn37ws7OTmSUcvXqVREGXaC+S6O6ulrm/dja2iItLQ1jxoxhCMWuXbuGy5cvY/r06axOOMGL2LC7quEIn8fjoa6uDrNnz8b48eOZkWFZWRnmzZuHXr16sdYX92Fp0qQJdu7cybCaCkgsO3XqBAUFhZ9GYvmzIC8vj27dukFfXx+6urrQ0NDAgQMHoKCgIHEUXFBQACsrK6lRn8ePH8vkMJ88eZLpApIl+rh+/XqMGzeO+T8XTp8+jZMnT6JXr15QUVHB+vXr8fbtWyQlJUndfmNQU1OD3bt3w8vLC0FBQaioqMCXL19YaeaEhAT4+vqiWbNmTIdVfn4+eDwejh07JnUfS5YsQc+ePZGXl8c88+fOncP169dFoqCNYQTmwuXLl9GhQwex61RVVTEDGQsLC9Z7Log8Ozo6suYRETPoA+pJO4XZnzt27MhEzv9/R0REBLKyslBYWAgdHR306NEDYWFhcHNzY4g2TU1NpdpZW1tbLF26FFlZWUzpgbCdy8jIQGpqKoyMjBrtcMiKO3fuoE+fPqioqEB5eTl0dXXx7t07hgS20fv90aKhfzNUVVUZrg1dXV2Gj6WwsFAiz400cHUrSdKb+SchrnPk1atXjMrxjxY8C/C9xYp6enoSFW2dnJwoNTVVZB9RUVEiWlKSINDtatasGUu3q+FkaWnJuf6ZM2fIycmJTp06xfBPnDp1itq2bUvGxsakpaXFcJRoa2tT69atZRaxExQT/9Mklj8DkjpDpBVQ8ng8UlVVlVrwLNC8GjFiBCUmJv4UsU6i+mfg3bt3zP+5Jnl5edLT02PWEac8/jOgoqIilYTxy5cvtHnzZqb4f8uWLTJ13ghw584dCgwMJFtbW2rfvj2FhIRQ9+7dxYphxsbGkpGRES1atKhR5yKOB0fQVdWwowr/VcQvrjM0KyuLDA0N6cKFC0QkWZTzfwMGDx5M8fHxEjmrpImwEol/rgWTtrY2o2P4T8HV1ZXCwsKotraWsdklJSXUo0cPpku2MfhPROcHoKOjw0gcmJiY4O7du7C3t0dZWRkqKiq+e7s8Hg+fP3+GsrIyM1L5+vUrKyQL4Kdw9UiDuBSHoaEhrly5IlP67J+GIMIkDr/99htGjx7NFE8fPHgQDx8+xI4dO3D8+HGZ9/PkyRNoaGjgwoUL31W8OnXqVCQkJLCKdb28vKCqqoqxY8ciMjISeXl5UFFRQUhICIYPH95oDo6Kigqm7iYjIwMDBw4En89H586dxRZD/9/GhAkToK+vj+nTp2PixIkSeUoaYtSoUVL1tADg+fPnyMrKwoULF5jarKZNm8LV1RXu7u4YO3asyDoDBw5EcnIyNDU1RYq3BXB0dERYWBgOHjwoIsEigJKSEisN1rNnT/B4PPz9999o1qyZjGcqG5ydnXHnzh2JaWQ1NTUmCvU9cHBwEOErMjY2ZiI8QH1KqFOnTkxKqFmzZo1OCZGYSENwcDDk5eVx/PhxzroSHR0dmJqaiswnIvTq1Qtz5szBihUrcPjwYaiqqrLSnPn5+WjevLnMx/g/GcL1hOIwbNgwVFRUoHnz5lBVVRWxL6WlpWKfawEEkh6VlZXw8vJqlKSHrMjNzcXmzZvB5/MhJyeHyspKWFlZYeXKlRg9erTY91Mc/uPo/AB69OiBM2fOwN7eHkOGDMGUKVNw/vx5RvTse0H/peci/HfDkKyArO//BiQVXP+T6TNZMX36dMTFxWHDhg2cH8H+/fvj2LFjiI6OhpqaGn777Tc4OTnh2LFjIqmhxqCmpgbfvn2T+UP9559/MlpcwtDS0kJJSckPfYwE+KdJLH8GDh48iOzsbOzZsweLFi2Co6MjZ4cIFxpTEB0UFMQItj569AhLly7Frl27sGfPHk5HR0tLi3l+JBV2S0NNTY1IOldBQaFRaVJZMXHiREyfPh1//fUXpy5R27Zt8ejRI2RmZnLWr/32228y7+vbt2/M+//hwwfWffonU0K5ubnIyclhRD0bQlxnaGlpKXbt2gUXFxe4uroyopzCafikpKSfIsD8PwWpqalISEjAkydPcPXqVZibm2PdunWwtLRE//79mYLlxqChndPW1sagQYN+8pGzoaCgwJCrGhgYoKSkBDY2NtDS0vqu5+o/7eU/gNLSUnz79o1RxV25ciWj9LtgwYLv/uBfuHBBpt9xFUP+bEgruP6ZRa3fW4w8YMAAZGZmQldXF23atGGNUurq6uDk5ITQ0NDvHk0fO3YM79+/R3BwMNPCm5aWhsWLF6OmpgYeHh7Yu3ev1Pvdo0cPKCsrIzU1lYl2vX79GqNGjcK3b9+wadMmTmdSIKInCXl5eXBycsLevXsRGBiI2tpaeHh44MyZMwCAmJgYZGdni1Xj/n+Fjx8/4uLFi9i/fz/S0tLA5/NlEv2UhoqKCly6dAlZWVnIysrCnTt3YG1tzThUP6MwVlwRvOBZFH4/uZTHf8bIV5z4oWAwlJCQgF9++QVNmjSBkZERayDA4/GkdjxVVFRg1qxZIkzcdXV1TH2ZJDHM0tJSmc9FXKt/x44dsXbtWrG0BXw+H/+nvTuPh3L9/wf+mrHviUJORGlFWo7TqRSSFtr3jVTSvhedTkVJPiqtKm1HK2k/7YW0oFKUJFlSnBYtUlEp5vr94ef+GjPDMJu4no/HPB5mu+cabvd93df1vt7v3NxcnqKSL168QNu2bVFYWFgrln9LWvks2WvWrEFycjJMTU0REhKC/fv3VxmDVv44V2bNmjXMcc7Ozo6pGC/pIHtHR0dMnDgRY8eOhbu7O5KSkjBnzhwcPHgQHz9+5Eq5IQza0akBV1dX9OrVC7a2tlVWrJYGf39/TJs2je9ogagsLS3h4eHBBFyX5cEoC7gun+5cVDXNaVJVpedjx44hOTkZzZo1q1G77OzsMHz4cMycORPm5uZYvXo1hg8fjlWrVqFNmzZYtmwZ+vXrh8DAwEq3k5GRgSFDhiAtLQ1NmzYFUDrFYmxsDDk5OTx9+pQrWLnspFRSUlLlUG35PDhv3rzB69ev0b59e+ZEePfuXWhqagq8Kpa2Dx8+4Pr160xH5PHjx9DW1oaNjQ3Pap2aUFRUhLa2NsaNGwdbW1vY2NiIfaRx1qxZTBB8+SmVK1euAECVeXTEcZFQ1XRkjx49MGPGDIHpD6pSVuJh9erVXCUe/P390aRJE+zduxenT5/G/v378erVK6bDcPjwYWzatAnx8fFCf1b5///y0/T37t3D33//DT8/P1hYWDAXMmUVw3fs2AF3d3eelaF37tyBnJwcYmJiavTdfzVt27aFn58fBg8ezPW7TE5Ohq2tLbMEv6SkBKdPn8aTJ08AAO3atcPAgQPh4ODAHOeA0nI4NjY2zHHOw8MDHz58YILsL1++jDFjxog9yB4o/Zt/+fIFdnZ2ePv2LVxcXJhBhL1791a6aowvsUQO1TM9e/YkysrKhM1mE1NTUzJ58mRy6NAhpnq3tEmqWCYhkgm4Li4uJomJiTzZY2/evEm+f/8uUnv5GThwIFdq/upq1KgRV7HI+fPncxXAO3/+PGnRooVQ2+JwOOTy5ctMxtErV64QZ2dnMmjQIPLu3Tuirq5OUlJSyM2bN4m1tTW5ceMGIaTqCtD8KkHn5OSIlN5eUszNzYmcnBzR1dUlQ4cOJVu2bBG6BIawBg0aRHR0dIiBgQEZM2YMCQ4OZiqQC+PNmzdk/PjxxMDAgMjJyfEtnVBVEHxtIOqxQVAm7qCgIKKtrS3WjMDl21qx1Ae/0h8AmIDkrl27chUcdXR0JFOnTpXZIg5Z4Jclm5DSYO6yIs7p6enEzMyMqKqqMkWDVVVVSatWrUjDhg0rPc41adKENGrUiLkvySB7caMxOjUQHR2NoqIixMbGMlekhw4dws+fP2FmZgY7OzvY29tjxIgRUmkPkeCgnDgCrufNmwcLCwtMnjwZJSUl6NmzJ2JjY6Gqqopz584xxeGqyqhbU/369YOXlxcePXrEN45h4MCB0NbW5hvfw2KxkJeXh2nTpmHatGlwc3PDrVu3uP627dq1w6tXr4RqC4vFgqOjI1dcwJgxYxAVFQVdXV2m8Gf37t2xdu1azJkzB4mJiUJf/XM4HPj6+mLDhg1MlmQNDQ0sXLgQy5Yt4zvVIW3Tpk1Dz549q53crzpOnz4NoDTY9Pr167hy5QqWL18OeXl52NraVlkMVJjEalUFwUsSh8PB48ePmWXDO3fu5JrylJOTw/Tp0zFixAhcuXKFK39UdeTl5TEjrJqamsxUVL9+/bBkyRJ8/PixRsUw+Sl/HKtOotGQkBBs3ry51sSgyYqJiQkePHjAE5h+6dIlJmfSnDlz0Lx5c9y+fZtJ4/DhwweMHz8e6enp0NHRYd5X8Tj3/v17ruOHJIPsBUlKSkLnzp15pverJOueVl3x7ds3EhkZSRYtWkQ0NTWFKpgnLpKqIUMIIWPGjCEbNmwghBCyatUq0qhRIzJlyhRibGwsdN0iQ0NDpmbTqVOnSJMmTcjTp0/J33//Tbp27SqWdh47doyMGDGC/PHHH8yVStmtYr2U8reyv1NgYCDR0dEh48ePZ2rhjB8/nujq6pKGDRuSvn37EiUlJbJlyxaiqKhIbt26xXz2/fv3ia6urlDtjIiIIEuXLiWTJ08mbm5uxM3NjSgqKpLhw4cTQkrrmEVFRRFCCMnIyCAqKirV+j14eXmRRo0ake3btzO1jYKCgkijRo2kVnNHWEVFRSQ1NZUpICsJHA6H3L9/n6xfv544OTkReXl5oYp+qqurk8TExEpfs379ejJjxowa1xQSxeHDh4mNjQ1zX11dnSvtgbq6OtmzZw/x8/Mjurq6xNXVlaxfv54ZSSy7VcXCwoJER0cTQgjp1asXWbhwISGktJadoaGhZL5cBYLq7XE4HKbOFlWaTsLQ0JCEhYURNTU1EhoaSnx9fZmfCSkdoS8blS/vwYMHhMVikUuXLhFCCPny5QvPcY7NZpOGDRtyvU9dXZ08e/ZMgt+Kt501ObfSjo6IioqKSHR0NPH29mamtExNTYmbm5vU2iDJjs6HDx/Iy5cvCSGElJSUkLVr15IBAwaQBQsWCF24UElJiZlCcXd3J3PnziWElBb+09DQELmNmzdvJurq6mTWrFlEUVGReHh4EAcHB6KlpSX0yX3o0KFkx44dPI/v3LmTtGzZkrRu3ZqMHz+eaGlpESMjI1JcXMy8Jjg4WKiKut7e3oTNZhNra2syaNAgMnjwYDJ48GCio6NDrK2tCSGlHcu+ffuSW7duERcXF54io1UxMDAgZ86c4Xn89OnTpEmTJtXalqR8/fqVTJo0icjJyRE5OTlm3501axZZu3atWD5jw4YNZMCAAURbW5vIy8uTTp06kfnz55MzZ84Itd+2adOGaxifn8GDBxMtLS1iYmJCnJ2da1S8tKYcHBy4qqhXPAbs2LGD2Nra1ijfU3mBgYFMh+jq1atEWVmZKCkpETabTTZt2iRUW4WZBqwMm83mKc5LCCHv378nbDab2NnZVXqrTw4dOkRatGjBXMgZGhqSPXv2MM9ra2uTmJgYnvfdunWLKCsrk9atW5MDBw6Q0aNH8xznWCwW0dbW5trH5eXliaOjo9T2+5p2dOjUVQ3cuHED0dHRuHbtGu7cuQMjIyP07NkTU6dOxaFDh6Q2jCcN5bPUstlseHl5VXsbenp6SElJgYGBAS5duoQdO3YAKF3RUXHIuya2b9+OXbt2YcyYMQgJCcGSJUtgamqKpUuX4uHDh8zrli5diqKiIua+vLw8Vq1axRSj+9///sez7V69emHBggUYNmwYzpw5gy9fvuDs2bNc7Q4NDcWAAQOqbOfOnTsREhLCleEaKM2kW1hYCADw8fHBgAEDYGNjAx0dHYSFhVXrd5GXl8c34Lh169bVWgEjSV5eXnj48CGio6O5auo4ODjA29u7RvtYRaGhocz/pI2NTbWXi2/atAleXl4IDg4WGMTeoEEDkUq9iCI1NRWdO3cW+HzPnj3x119/ifw3r6zEQ1mm5aoIMw1YGSKg3l5BQQGUlZWZwpJlfv78iQcPHiA5ORmurq7V+qxfXVlKBX5ZsgHA2dkZU6dOxd69e5lg+Tt37mDatGkYNmwY2Gw25syZA319fRw6dIjrOKenpwdDQ0Ou/6Xx48dL54uJiHZ0aqBstZWnpyfCwsKklhhPVjgcDjIyMvjm4ejRo0eV73dzc8PIkSOZg5yDgwOA0n8wcawCys7ORteuXQEAKioqTEyRiooKswIGALZt24Z27doxyyFTU1Ohr6+PBQsWoGHDhjh79izXgR0oXXKpo6ODAwcOICkpCY6Ojjx1lSrGEwhKZf/jxw+mneWVL+hpZmaG1NRU5OXlCYwbqkz79u2xbds2nvIE27ZtE/rEJGmnT5/G0aNH0aVLF67v165dO2RmZorlM6qz2qdMxd93YWFhpYnVZFkv7N27d1z3nz17xhVfoaCgwHSey5AKq/kqw6/qd01LPAhTX4mfqurt3blzB1ZWVti4cSPf93t7ezNxavWNqqoq33xUW7ZsgaurK/78809mny4uLsbAgQMRFBRU6QXB69evue5XVbKjJiomxa2o7NheXbSjUwNLlixBdHQ05s2bhx07djDVl3v27AldXV2pt8fGxkYiuQyA0honY8eOxYsXL3iCnoVNWujt7Q1zc3Pk5ORgxIgRzD+GnJycWK7e9fX1kZeXB2NjYxgZGeH27dto3749wsPDefJjHDlyhAmuPHToEIKCgrBgwQIsX74c06dPx7Vr15grnfj4eFy4cAE7d+4EUFqMUpjcRf369eObD2jKlCk4cuQIli9fDgBCZfeUl5eHvr4+evfuLdSoUUBAAJycnBAREcHUqYmLi0NOTg4uXLhQ5ful4d27dzxXmkBpx6K6HbvK3Lx5E8HBwcjMzMTx48dhaGiIgwcPwsTEhG/ge02TqUVHRyMzMxNjx46FhoYGXr16BU1NzWoH41aHnp4enj59ymT1rZhD5smTJ9DX1wdQ2kFZt24d0tPTAQAtW7bE4sWLeUYWy+NX9Xvy5MmYOHEi2rZti4CAAKGrfgtTX4mfqurttW/fHosWLRL4/vHjx8Pa2hrr16+v9mf/Suzs7Kr8v2GxWIiMjESDBg1w5swZpKenMwWN27RpU6OgekHHOVE0aNCg0u8iaHSvKjSPjggKCgpw8+ZNrqRkLVu2ZNLMDx8+XOTPEJTzQBxTPsKwsrJCy5Yt4ePjw3fYWZQMsuIyZcoUpgpxUFAQFi9ejG7duiEyMhLDhw9HeHg4gNKTQXx8PDMVkZaWht9//x2fPn0CUHqFsm3bNqbSb6tWrTB79my+ozCVEZQPaO7cuThw4AAsLS1haWmJqKgoruf55V3hcDh4+/Ytrl+/jkWLFvEUUuTn1atXCAoK4jqQTZ06Fb6+vti1a1e1vosk9OjRAyNGjMDs2bOhoaGBpKQkmJiYYPbs2UhPT8elS5dE/owTJ05gwoQJGDduHA4ePIiUlBSYmppi27ZtuHDhgsBOX0lJCdavX49///0XP378QK9evbBy5Uq+FxIvXrxA3759kZ2djaKiIqSlpcHU1BRz585FUVER00GWhEmTJuHp06d8c8QQQtCtWze0bt0a5ubmWL58OWbNmoVu3boBKB1hCQoKgq+vL88IZhkDAwOcPXuWmR5btmwZrl+/jlu3bgEoXVW1cuVKpKSkVNnWK1euYMOGDZVOA1bGzc2tRquqDh48CE9PT6FXRP6qBP0NgdIRkCNHjqCoqEjsmfRrmvesMpJKlks7OmKUl5eHwMBAbN26FQUFBSLvWBkZGXBycsJ///2HVq1aAQCePn2Kpk2b4vz581Kp0aKmpoaHDx+KvIy2sLAQ169f55v5V9QKuBwOBxwOB/LypQOUYWFhiI2Nxc6dO3H//n1mCW5FqampsLKywpcvX+Dh4YHly5fDxMREpLYAgg8AdnZ2lb6vsiW1586dw4wZM5CdnV2jNpVlTpZW2ZDK3Lp1C/369cP48eMREhICDw8PpKSkIDY2FtevX0enTp1E/owOHTpg/vz5cHFx4fp7JCYmol+/fnjz5g3f961evRre3t5wcHCoMilaWWK2vXv3QkdHh/mM6OhouLu7MyMokpCZmYmOHTuidevWWLRoEVMy5unTp1i/fj2ePn2K+/fvo3fv3vDx8YGLiwvX+/fv3w9vb2+BdY2UlZWRnp7OJLbs3r07+vXrh2XLlgEAnj9/DgsLC6GmErS1tfH161cUFxcLnAYURcWRUUIIXr9+jXv37mH58uVYuXKlSNv/FRUXFyMoKAhr1qyBlpYWrKysBB4Hy6tOSRBJdHSqS9hkuXTqSgQcDgfx8fHMiE5MTAwKCgpgZGRU7aJj/MyZMwempqaIi4vjyXkwZ84cnD9/XuTPqMoff/yBjIwMkTo6iYmJ6N+/P75+/YrCwkI0bNgQ79+/h6qqKho3bixSR6e4uBh+fn5cJR5Gjx6N0aNH4+LFi0hLSxP4D56UlITffvsNCgoKOHHiBDOlJCnVyQ1SUffu3SsNPv2VdO/eHQ8ePIC/vz8sLCxw5coVdOzYEXFxcUIdjIXx9OlTvvFjWlpayM/PF/i+AwcOYPv27fDw8AAAREREwMnJCXv27OHJQXTz5k3ExsbyTI82a9YML1++FP1LVKJ58+a4evUqJk6ciFGjRjEjrYQQtG7dGleuXEGLFi3w+vVrviOSXbt25Ym5KE9PTw9ZWVlo2rQpfvz4gYSEBK4s6F++fBG64GxNpgTLs7e3r/T5inlj2Gw2WrVqhVWrVtWpOlbCOnz4MFasWIFv377B29sbU6dOhaKiIuLi4tC4cWOB04gsFqtaHZ3awM/PDyNHjqQdHUkICAhgOjZfvnyBoaEhbG1tsWnTJtjZ2YllVAAoHcYrn9gJAHR0dODv788MQ0va7NmzsXDhQrx584Yr/XoZYQJc58+fjwEDBmDnzp3Q0tLC7du3oaCggPHjx2Pu3LkitU9eXh4BAQE8V6wA0L9/f6xYsQJOTk48RRa/ffsGHx8fODk5ASi9Oj99+nSlw8A1JUynl8Vi4cSJEwKfb9CggVhqI9UWzZs3ZypdS4K+vj4yMjJ4pkpu3bpV6RVodnY2+vfvz9yvLCkah8PhO0L233//MRXkJcna2hopKSl48OAB0tLSAJQGs5cvANyiRQuEh4cz5RLKHD16FGZmZgK33b9/f7FV/RZ15VNVq6o2b94s0vbrikuXLsHLywtZWVlYtGgRFixYwCRH7devH6KiotC5c2dMmjQJzs7OtSJ5qKiEnZCiHZ0a2LRpE2xtbbF+/XrY2dlJLDuqkpIS36HhgoICqRWhK6tSO2nSJOax8kUDhZkKefDgAYKDg8FmsyEnJ4eioiKYmpoiICAArq6uIo9+9erVC9evX+c5qf31118IDw9Hq1atMGvWLK7h/W3btqG4uJg5AZiZmWHVqlWIiYnhmz25OqNOtTGOqTZgs9lCBU0WFxeL/Fnu7u6YO3cu9u3bx3RU4uLisGjRokpH7qpTedzR0RGbNm1i4p5YLBYKCgqwcuVKrs6SpFlZWQlc0eTj44NRo0ZhxYoVmD17Nho2bIiYmBhERkYysWv8rF69GkOHDhV71e/yFdDLVBV7I+yqqvv373PFMpbv8NVld+/ehaenJ27fvo1p06YhIiKCZ1HM+fPn8erVK+zfvx+LFy+Gh4cHXFxcMGnSJCYsorrEuXBA0miMjhTMmDEDq1atqvaKLBcXFyQkJPDkPHB3d0enTp0QEhIigdZyq6poYMVhY34aNWrEFGRr2bIltm7dij59+iA1NRWdOnXiWQZbXTt37oSPjw/GjRvH00nJzc3FiRMncPXqVa7ltb1798b27duZq/vKRuFYLBaePXsmdHtkMXddnaKfsnLmzBmBz8XFxWHLli3gcDhiqV5OCIGfnx/Wrl3LlCpRUlLCokWLsHr1aoHvY7PZ6NevH9eSWUGVx//77z/06dMHhBCkp6ejc+fOSE9Ph66uLm7cuMF3ZZks3L9/H126dEGrVq2gpKSENm3aYOHChUJ1BMRR9buwsBCenp48FdDL1HSfzMjIgLW1NVJTUzF69GhER0czUxj5+fmws7NDWFgYz4q0uobNZkNFRQVTp06t9DhW/mLtxo0b+Oeff3DixAlYWFggIiKi2it3a0OMjrBtoB0dKdDU1KzRMrz8/Hy4urri7NmzPDkPQkJCfpmRAkdHR0ycOBFjx46Fu7s7kpKSMGfOHBw8eBAfP37EnTt3RNp+ZUOwZaNOeXl5yMjIAFA6nF9+OrAuqKqCexlZ5n7h5+nTp/Dy8sLZs2cxbtw4rFq1SqjOs7B+/PiBjIwMFBQUoG3btlUu+a7u77G4uBhhYWFISkpCQUEBOnbsiHHjxkks3UNNyfKkJKgCenBwMPz9/TFu3LgabbdsVZWNjQ2ePXuGAwcOMDWdUlJS4OrqihYtWiA0NFScX6fWadasmVAjpeUv1r59+4Zjx44hKCgIjx49wps3b37JWmG0o1OLiHqQEUfOA1Gkp6fj2rVrfBMGChO8du/ePXz58gV2dnZ4+/YtXFxcmBGeffv28czB1yYdOnQQeog2ISFBwq2pO169eoWVK1di//796NOnD9auXSvRIp/1nZqaGpNLqDxpJJE0MjLCgQMHYGtrC01NTSQkJKBFixY4ePAgQkNDq8zvVNWqqsDAQEREROD333/net3du3fh6OhYafB5fRMXF4d9+/YhPDwcLVu2hJubG8aOHcsTzHv8+HGEh4fzXSVbm45zwp5baYzOL8DMzKzSwEFJ2r17N6ZPnw5dXV3o6+tznfSFjdIvv1qocePGYsmTApRelURGRjJJzSor8VCV8jFIFRFCMHjwYHz//h3bt29H27ZtmWR8t2/fxuPHjzFjxgwRv0398OnTJ/j5+WHr1q2wsrJCZGQkT6ZpUVT2dyzDYrGwd+9esXxeZmYmNm3axBUbUlYhuja4f/8+XF1d8fXrVybwvoywMXaiElQBvXv37pg+fXqV7684cl1xVdX69ev5rgBTUFDguTCrrwICAhASEoL379+Dw+Hg2LFjAmOstmzZgmXLlmHixIk4c+YM3NzckJmZifj4eMycOVPKLa+csMly6YiOFFRnRKcs7bkwAgMDRWmWUIyNjTFjxgx4enpK/LOqa+fOnTh//jzOnj0LoPT3XLHEw+LFi4X6nVasWfTz508kJycjPz8f9vb2OHnyJKZMmQIDAwOeGI+VK1ciJyeHb64V6v8EBATgf//7H/T19eHn54dBgwaJ/TMqqz1VUlKCiIgIsSVPu3z5MgYOHAgrKytmFWRMTAwePnyIs2fPonfv3iJ/hqjat2+P5s2b4/Lly7h48SLPtKA4pwkFsbS0xNatW9GzZ084ODjAysoK69evx5YtWxAQEID//vtPpO0PGjQI+fn5CA0NRZMmTQAAL1++xLhx46CtrY1Tp06J42v80thsNoyMjODs7Ixdu3ZhwoQJfEMfAgMD0bp1a6xcuRJjxozhOnetWLECeXl52LZtm8TbKycnh9evX/PEuX348AGNGzeu9v8v7ehIQXU6OlUllSvDYrF4MutKQk3ji6Qx5WNjY4MlS5YwpREq/p7LSjzExcXVaPscDgfTp09H8+bNsWTJEmhpaeHevXs8o2tlgahlGZYp/sqCJh0cHCrN7C2JZfRnzpzBX3/9hVevXsHT01MspUc6dOiAPn36wN/fn+txLy8vXLlypVYM8WtoaCAxMREdOnSQWYzOxo0bIScnhzlz5iAiIgIDBgwAIQQ/f/5EYGCg0CkmBK2qysnJwcCBA/H48WMmwWF2djYsLCzw77//1qkiyzVla2vLHI9v3ryJzp0784yElJ1TVFVV8eTJExgbG6Nx48a4evUq2rdvj/T0dHTp0oVvQLm4sdlsvHnzhqej8+rVKzRv3hzfvn2r1vbo1FUtI0pSOUkYMWIErly5gmnTplXrfYMHD5ZMg8rJyMjgSjCnrKzMFZhsbW0t0lArm83GggULYGtriyVLlkBFRQUxMTE8HZ2YmBihpsfqOxcXF6kvSY2JiYGXlxcSEhIwa9YseHl5QVtbWyzbfvLkCd8l2pMmTRI5SZ649OrVCw8fPsTFixd54nOkRdQK6G/fvq10VVXTpk2RkJCAiIgIJpaxbdu26NWrl0S+z68oOjqa+VlDQ4Or5l9FgmoHZmVl1ahmWXWUFSNmsVjYs2cP1+KBkpIS3Lhxo0aFoGlHRwrGjx//S0a0A6UrlJYvX47bt2/zTRgoKL+MNNKu5+fnc8XkVKzozOFwuJ6viczMTCavy7x58zB9+nQkJCRwLffft2+fxLMq1wXSSIdQJiUlBZ6enrh06RJcXFwQGhoq9iv7Ro0a4cGDBzwd3wcPHkhtaXlJSQlCQkIQGRnJd7FAeHg4XF1dYW1tjdzcXJ7/34EDB0qsbeKqgD579mx8+fIFjx8/5lpVNWzYMAwbNgw3btxgUkaUBbl//fq1WhXWqf9jb2+PLl264MmTJ3Bzc8P8+fNx/Phx3Lt3TywZ/ytTljOJEIKdO3dyjfwqKiqiWbNmNaohRzs6IhKmQvKOHTtqvP179+4JjH6XRqbcXbt2QV1dHdevX+cpuMZisUSuUyWK3377DcnJyQITXpWVeBBGxTiespUd58+fZzK7enl5wdTUFJs3b8ahQ4cAlK6C++effzBy5EgRvgklLjk5OVixYgUOHToEZ2dnJCUlMSdHcXN3d8fUqVPx7NkzpsxCTEwM/ve//1Ur1k4Uc+fORUhICJycnGBubs4zYhYXF4eYmBhcvHiR572SDkYWVwX0S5cuISIiguvv2LZtW2hrayM+Pp557NGjR3B3d4erqyvatGmDdevWCV1hnfo/u3btQlhYGIDS1AA6OjqIjY3FwIEDmdIoklJWe83Ozg4nT54U2+grCFVjx48fJyoqKmTKlClESUmJZGZmEkII2bp1K+nXr5/I2w8NDSUKCgrE2dmZKCoqEmdnZ9KyZUuipaVFJk6cKPL2JalBgwZEW1tbqFtNzZkzh7Rt25Z8+/aN57mvX7+Stm3bkjlz5gi1LVtbW66bvb09GTVqFAkODiY/f/4kP3/+JD4+PiQnJ6fG7aUkT0VFhaiqqpIlS5aQM2fOCLyJA4fDIYGBgcTQ0JCwWCzCYrGIoaEh2bRpE+FwOGL5jKro6OiQ8+fPC3ze2NiYzJw5k7x580Yq7SlPX1+fxMfHM/f/+usv0q1bN+Z+eHg4adOmTZXbUVdXJ4mJiTyP6+rqElVVVZG3X9+oq6sz5ypRXiMJJSUlEtkuDUYWQU0rJAvL0tISHh4emDlzJrN9ExMTeHh4wMDAgKvIXm2zf/9+oV9b01o4ubm5sLKygqKiosASD4mJidDT06vR9itSV1dHcnIyT6kJqvYQpn6PJEYyykq1SKPGVXlNmjRBdHQ0s+9XpKGhgQcPHshkubu4KqALWlXVtGlT9O7dG5cvXxZp+/XB169foaqqCgA4cuQIBg0axJXpOykpCebm5mCz2UhKSkKXLl1w/PhxviPiksy9VHG11eLFi7F06VLRE7xKpPtUT6ioqJCsrCxCCHcPODMzkygpKYm8fVVVVWb7DRs2JElJSYQQQlJSUoi+vr7I2xdk/vz5pKCggPm5spusPXv2jPTp04ew2WzmqprNZpM+ffrU6IokNzeX3Lhxg9y4cYPk5uZyPTdw4EASEhIirqZTlMjWr19PZsyYIXAEycXFhezevVvKrSplZGRErl+/TgghpKioiKioqJCIiAjm+aSkJKFGdLOzs4mVlRVRUFAgpqamxNTUlMjLyxMFBQVy7NgxkbdfV9jb25P//vuP5/E7d+4QMzOzSt/LYrGY4x2LxSIAmONp+RubzZZI2/m1gxBCNDQ0xDKyRGN0RFDTCsnC0tbWZq5GDA0NkZycDAsLC+Tn5zP1eyQhMTGRKWKYmJgo8HU1WUFTk6J+lTExMcGlS5dELvHw+fNnzJw5E6GhoUxAp5ycHEaNGoWgoCBoaWmhX79+8PLywqNHj/gW/pRkYCclGU5OTtizZw8MDAyq/d7c3FwsWrSICQQmFQbHJRX/UjEgNCoqChcvXkS7du14go07deqEpUuX4tatW9VaTCAO4qqALmhV1fHjxxEYGAg9PT2RK6zXBcrKyrC0tMT27dsxatQocDgcrFq1Cn5+flUmNM3KymJqgmVlZaFdu3a4ePEijIyMpNF0gSr+T9UU7eiIoKYVkoXVo0cPXL16FRYWFhgxYgTmzp2LqKgoXL16VaJLJ8svcRfHcndJFfUrr2HDhsxKqJpwd3dHYmIizp8/z2Q9jouLw9y5c+Hh4YGwsDDmYMEvUaO0ssxS4nXjxo1q5+QoM3HiRGRnZ2P58uUwMDCQ2tL5ioneKkuSWLZEVxaLCUStgF5+1Ra/VVV9+/YFm80We4X1X9X58+cRFBSESZMm4cyZM3j+/DlevHiBc+fOVfl7KEsc+fPnT/j4+IAQAkNDQ6kklJQKkceE6jEOh0N8fX2JmpoaM7SnrKxM/v77b7Fs/8OHD+Tly5eEkNIgrbVr15IBAwaQBQsWkLy8PLF8RlXy8/PJhw8f+Lbt06dPQm1jxowZpE2bNkzw9r59+8jq1avJb7/9Rg4dOiTuJteIqqoquXnzJs/jN27c4Ap4pOoWUYIuBQXJUtzy8/NJcXExz+MfPnwgRUVFAt/Xt29f4u/vz9xPSkoiCgoKZMqUKWTDhg1EX1+frFy5ssbbr6u8vLwIi8UiCgoKJCYmptrv19TUJEePHiXfv3+XQOsqx2KxiIeHBxMaoaioSCZNmiRyyAQd0amhkpISxMTEYObMmVi8eHG1KiRXZsGCBVi9ejXU1NSQnJzMLFtls9liyeZaXaNHj8aAAQN4hj7Dw8Px77//VlmQDwDOnj3LFPVzc3ODjY0NWrRoAWNjYxw+fLjG1YvFSUdHh29KdC0tLfEtcaTqlKZNm0o8gVpdwO//CkCV08sPHjzgKrcSFhYGa2tr7N69G0Dp73/lypUCl4+LHMD6i/n48SOmTJmCyMhIBAcH4/r163B0dERAQABz/CaE4Pjx4wKLNJ88eRKDBw/Gy5cvZZJ/qEePHnj69Clzv2vXrlxV14GahUzQVVciUFZWxpMnT2BiYiK2bSooKOC///6Dnp6ewHof0tSwYUPExMTw5CJJTU1Ft27dhEoHrq6ujpSUFBgZGeG3337DyZMnYW1tjaysLFhYWKCgoEBSzRfarl27cOzYMRw8eBD6+voAgDdv3sDV1RVDhw5l8kdcv34d69evZ1LRt23bFosXLxZrYUpKeqpTnqWiK1euYMOGDQgODpbZSjxBpVZYLBaUlZVhamoKfX19vHz5ku+JTRplZGpKXKu26gtDQ0OYmJgwedwA4OjRo5gxYwa6dOmC8+fPY+7cuQgODoadnR309PR49p1//vkHvr6+2LBhA3r16sU3FlGWudNqio7oiMDc3BzPnj0Ta0enWbNm2LJlCxwdHUEIQVxcnMARhR49eojtcwUpKipiMgOX9/PnT6FjG0xNTZGVlQUjIyO0bt0a4eHhsLa2xtmzZ5mU7rJQ8SSRnp4OIyMjJgAvOzsbSkpKePfuHTw8PHDo0CG4ublh6NChzD97TEwMevXqhZCQEIwdO1Ym34OSHm1tba59prCwEM2bN4eqqipPoG9ZlW5J6tu3L3bs2AELCwsmRi0+Ph5JSUmYOHEiTp48iZycHHTr1g2dO3eWegkOUejp6SErKwtNmzbFjx8/kJCQwJVS48uXL3yrltdX06ZNw7Jly7hSLIwaNQrdunWDm5sbAODgwYM4efIk+vfvL3A7e/fuRYMGDXD//n3cv3+f6zlZJ4mtSNhajHRERwSXLl3C0qVLsXr1ar4935qsJjp9+jSmTZuGt2/fgsViCRwal1bwq52dHczNzbF161aux2fOnImkpCTcvHmzym2Iq6ifuFUnD9HKlSvRpk0bTJ06lat2D1AanLx7925mlIf6dVR3REca+aGqw93dHUZGRjyLH3x9ffHixQucOnUKjo6OSEtLw7179yTeHnGaPn06Hj58yKza2r9/P169esUEHB8+fBibNm3iyo5Mlfr+/Tvf+nsmJia4ePFijepF1UZC//+KL4yo/qmYX6DsJo58A1++fCEsFoukpaWR/Px8vjdpuHXrFlFWViY2NjbE29ubeHt7ExsbG6KsrExu3LhRo20+f/6cnDhxgjx8+FDMrZUsRUVFkp6ezvN4enq6WPImUdLn5+dHPn78WK33FBcXE39/f9K1a1fSuXNn4unpSb5+/SqZBlZBU1NT4D6pqalJDAwMyIULF4i6uroMWiead+/eERsbG8JisYiGhgY5efIk1/P29vbkr7/+klHrap+SkhKyatUq0qRJEyInJ8cE2f/9999kz549hBBCQkJCyOjRo4XeXzkcjtSyfNeEsIsJ6NSVCCRRabwsGFldXR3Xrl2DiYkJ5OVl92fq1q0b4uLisG7dOoSHh0NFRQWWlpbYu3cvTzFDfjgcDkJCQnDy5Ek8f/4cLBYLJiYmGD58OFflcVnLyckBi8ViMoHevXsXR44cQdu2bTF16lQApcGPkZGRaNGiBdd7IyIimDgCqvZIT08XGHS5YsUKAMDSpUurvV0/Pz94e3vDwcEBKioq2Lx5M96+fYt9+/aJpd3VoaysjNjYWJ59MjY2FsrKyli4cCEOHDjwSxa21NXVxY0bN/Dp0yeoq6tzFXgEgGPHjom08KOu8fX1xf79+xEQEAB3d3fmcXNzc2zatAmTJ0/GyJEjERoaisaNG6NZs2Y8U38JCQkASouvrlu3Dunp6QCAli1bYvHixZgwYYL0vpAY0amrWqa2BSOLghCCAQMG4MKFC2jfvj1at24NQgiePHmCR48eYeDAgTh9+rSsmwkAsLGxwdSpUzFhwgS8efMGLVu2hLm5OdLT0zF79mysWLECO3bswLx58zBp0iSuIo4hISHYvHmzxAveUcLbvXs3pk+fDl1dXejr63PFprBYLOaAXhNmZmZYtGgR8/eOiIiAk5MTvn37JlQJCnHy9fWFn58f3N3d8fvvvwMAvL298fz5c7Rq1QqtWrXCxYsXwWKx0KtXL54TmzQKA1PS0aJFCwQHB6NXr15cUzqpqan4888/8fHjR4wcORLXrl3D8OHD+QYjr1y5EoGBgVi+fDlmzZqFbt26AShNghsUFARfX1+eqXtZEnbqinZ0RJSfn4+9e/cy8Rnt2rXDpEmTBC6prIqZmRlGjhwJR0dH2NnZ4dSpUzINRgZKR2UyMjL4XhlX1oZ//vkHc+fOxZkzZ2BnZ8f1XFRUFAYPHoxt27bBxcVFIu2uDm1tbdy+fRutWrXCli1bcPToUcTExODKlSuYNm0as8Tx1KlT2LBhA/P3btOmDRYvXoxBgwbJsvlUBcbGxpgxYwY8PT3Fvm0lJSVkZGRwjeIpKysjIyODb20gSTt8+DC2bdvGLMuVl5dHmzZtmIN/cXExWCwWz4gIUPo/StUNKioqSE1NhbGxMVcHICUlBdbW1igoKICamhouX76M7t27C9yOiYkJfHx8eI7L+/fvh7e3N1NhvDYQNhiZxuiIID4+njRs2JAYGhqSIUOGkCFDhpDffvuN6OjokPv379dom6dOnSJ6enpMnA+/eiPSqDlSJi4ujpiYmPBtS1Vt6N27N1m7dq3A59esWUMcHR3F3eQaUVNTY+qKDRgwgElU5u3tzcTfvHjxolbPV1P/R1w1cvhhs9nk7du3XI+pq6uTZ8+eSeTzKEoYHTt2JAcPHiSEcMeu+Pj4kO7duxNCCGnVqlWVsZFKSkp8477S0tJqXSyisDE6tKMjgu7du5OJEyeSnz9/Mo/9/PmTuLq6EhsbG5G2XVuCkdu3b09GjBhBUlJSyMePH6vVBj09vUozxyYkJBA9PT0xt7hmrK2tiaenJ7lx4wZRVlYmDx48IIQQIicnxxRQZbPZPIU+qdpp0qRJZMeOHRLZNovFIv3792cuboYMGULk5eWJo6Mj12O1wbNnz0haWhrP42lpaUzHnvq1ubm5kc+fP5PTp08TLS0t4u/vT1RVVcm6devIlClTiKKiIrly5QohhJBz586RPn36VPq3b9euHVmzZg3P46tXrybm5uaS+ho1cvPmTaEyONOpKxGoqKggMTGRZ6leSkoKOnfuLHLhzevXr6Nbt24yDUZWU1PDw4cPeYIdhaGoqIgXL14ILJj46tUrmJiYoKioSNRmiiw6OhpDhgzB58+f4erqygSWamlpwcTEBGfOnIGJiQnu3bsHXV1dvtuQdQE86v+sXbsWgYGBcHJyEnsxy7KcJFWR1LRQw4YNkZaWBl1dXZ68PhVZWFhg0qRJPEvdDx06hD179iA6OloibaSkp3ws582bN7Fq1So8fPgQBQUF6NixI1asWMHUutLW1sbXr19RXFwsMPfTiRMnMGrUKDg4ODAxOjExMYiMjER4eHiltdVEUb4qwIIFCyp9Lb96g5Whq65EoKmpiezsbJ6OTk5ODjQ0NETevomJCV69eiXweWmcWP/44w9kZGTUqKNTUlJSaSdNTk6ObzJCWbC1tcX79+/x+fNnrpgoT09P+Pj4wNTUFCwWiwn4LI8QQot61jK7du2SWDFLWce1bNy4kTm+bNq0qdLXzp49mzlZldelSxfMmjVLEs2jpKz8WIWNjQ2uXr0q8LVV7S8AMGzYMNy5cwcbN25kFou0adMGd+/eRYcOHURtrkCJiYn4+fMn87MgtASElM2ZMwenTp3C+vXruVbhLF68GMOGDRNqp6oMm82u9I8qjRPrqVOn8Pfff2Px4sV8r4wtLS0FvpfNZqNfv34Cl7YWFRXh0qVLtb6D8OXLF7x48QKWlpaIiIiAjo4O39e1b99eyi2j+CGEIDs7G40bN4aKioqsmyNTWlpaiI6O5jlB3b9/H7a2trR8Qh3AZrORnp6ORo0aVfq6miSwrStoR0cEP378wOLFi7Fz505mZEJBQQHTp0+Hv7+/yLkrHj58yHX/58+fSExMRGBgINasWYOhQ4eKtH1h8FsuW5axuapRDFkP8VelY8eOiIyMhLa2tsCaQWUSEhKwf/9+jB49+pfMSVKfcDgcKCsr4/Hjx0LlevrVZWZm4p9//kFmZiY2b96Mxo0b4+LFizAyMoKXlxdUVFQQGhrKrLoqKSnBqFGjUFhYiIsXL8q49ZSoqrogFnSs/v79O378+MH1WFlnqGyfevbsGTZt2sS1T7Vr1078X0LCaEdHDL5+/YrMzEwAYOreSNL58+exbt06qcyvv3jxotLnjY2NJd4GSfHx8cHixYuhqqpaZTmIlStXwtTUFPHx8TwjOvn5+ejYsSNPlV1Kdtq1a4e9e/eiS5cusm6KRF2/fh39+vVDt27dcOPGDTx58gSmpqbw9/fHvXv3sGrVKvTo0QMNGjRgCs/evHkTnz9/RlRUFMzNzWX8DShRsdlsnDhxospq7T179kRhYSE8PT0RHh7OtyBzSUlJlfvU8ePHJfVVGN+/f8fWrVsFJvysbh4s2tH5BWVkZKB9+/YoLCyUdVPqhJKSEsTExMDS0rLSIqNsNhtv3rzhSeCYm5sLIyOjWhFUTZU6e/YsAgICsGPHjjp9Mv/zzz8xYsQILFiwgCt3yt27dzF06FD8999/ePXqFbZt24aHDx8ymc1nzZpV5YmR+jUIOi7xM3PmTFy7dg2rV6/GhAkTEBQUhJcvXyI4OBj+/v4YN26cUPuUpI0bNw5XrlypNLFhddCOjgjE3eus6PPnz1z3CSF4/fo1vL29kZqaigcPHoi0fUH+/fdf9OvXDwoKCvj3338rfe3AgQMl0gZpU1ZWxpMnT/hWoi/7HQwePBj79+/nSgZZUlKCyMhIXL16lUnYRsle+dUlioqKPLE60qgsLg3q6up49OgRTExMuE5Kz58/R+vWrfH9+3dZN5GSsOp0dIyMjHDgwAHY2tpCU1MTCQkJaNGiBQ4ePIjQ0FBcuHChVuxTWlpauHDhAt9A+pqgq65EMHnyZKbXaW1tXaNo8Mo0aNCAZ5uEEDRt2hRhYWFi/azyBg8ezPzjDB48WODr6tJKI3Nzczx79oxvR6f876DiMl0FBQU0a9YMGzZskHQTqWoQdSHAr6JBgwZ4/fo1136blJSE9PR0GBoaIikpqdL3V7aYgPo1GBsb8816zU9eXh4+fPiAoqIiaGpqMh3+7t27Y/r06QD471NA6UooQ0ND8TZeAENDQ7GsXC5DOzoiOHfunFh7nRVFRUVxdXTYbDYaNWqEFi1aSDS3TvmRqYqjVHWVr68vFi1ahNWrV6NTp05QU1NjnsvPz4empiaTR0fQqiuq9qjYIa2rRo8eDU9PTxw7dgwsFgscDgdWVlYwMjKCm5sbrKysmMUDFdWlC5X6rDolGUxNTTFhwgQkJyejdevWCA8Ph7W1Nc6ePctM2/Pbp2JiYrBo0SKplevZsGEDPD09sXPnTvHEgYo5UWG90qZNmyrTaYvi/fv3zM/Z2dlk+fLlZNGiReTGjRsS+8wykZGRpE2bNuTTp088z+Xn55O2bdtKpR3SUrG0Rdmt7P6PHz+Ivb093yyzVO2UkZFBli1bRkaPHs1ktL5w4QJJTk6WccvEp6ioiEyZMoXIy8sTFotFFBQUCIvFIuPGjSPFxcXk+fPnAm+PHz+WdfMpKQsMDCSKiookMzOTXL16lSgrKxMlJSXCZrPJpk2bCCGl+5S7uzuzLykoKBA2m03Gjx9PiouLpdLOt2/fEltbW8Jms4m6ujrR1tbmulUXjdERwcWLF7Flyxbx9Tr/v0ePHmHAgAHIycmBmZkZwsLC0LdvXxQWFoLNZqOwsBDHjx+vdFpJVAMHDoSdnZ3ASrVbtmzBtWvXcOrUKYm1QZoqJpWrqGfPnmjUqBFiY2PrxZLlX11tWDkiTdnZ2UhOTkZBQQE6dOhQ6T5aVFSEoKAgBAQE4M2bN1JsJVUblI+7efHiBe7fv48WLVrA3Nwc69atw7///osfP37A0tISw4YNE2qfEjcHBwdkZ2dj8uTJfIORqz1iK/auWD0i7l5nmb59+xJnZ2dy69Yt4uHhQQwNDcmkSZNISUkJKSkpITNmzCB//PGHGL8JLyMjI5KSkiLw+SdPnpCmTZtKtA3SIuxozbx584inp6eUWkWJokuXLmTDhg2EEO7Cf3fu3CGGhoaybJpUfP/+nXh5eZFOnTqRP//8k5w6dYoQQsi+ffuIgYEB+e2335jCtVT9IqgQ5qpVqwibzSaOjo5k0KBBRFlZmbi5ucmghYSoqKgw9QbFgcboiGDMmDF4+fIl/Pz8+PY6ayo+Ph5RUVGwtLRE+/btsWvXLsyYMYNJ3jd79myJ5wfJzc3lyYJcnry8PN69eyfRNkiLgoJClUGbAFBcXIx9+/YhIiKCJ44HqH79FUpyHj16hCNHjvA83rhxY7x//14GLRKfquoAAaW5ch49egRnZ2fExsZixIgRcHNzw+3btxEYGIgRI0YIHcBK1S3FxcVYv349fvz4wRWDefz4cWzfvh0eHh4AgIiICDg5OWHPnj18E8dKUuvWrfHt2zexbY92dEQQGxuLuLg4saf+z8vLg76+PoDS5aNqampc9Ze0tbUlnrrd0NAQycnJAmtcJSUlCSzW+SsaP3489u7dC39/f4GvSU5ORseOHQEAaWlpXM+Je8UdJZrasHJEUiqrA1QmOTkZLVu2xPHjx5GcnAxLS0sUFxfj4cOHdF+tx3x8fPD9+3fExsaiWbNmXPtCYWEh+vfvz9x3cHAAi8XCq1ev8Ntvv0m1nf7+/li4cCHWrFnDt/RQdctZ0I6OCMTd6yyv4sFI2gen/v37Y/ny5ejbty+UlZW5nvv27RtWrlwJZ2dnqbZJkoQZrbl27ZqMWkdVV21YOSIpwuyHioqKTHkHc3NzKCkpYf78+bSTU8/t3LkTSkpKOHnyJExNTbmek5OT4znWKygoMIU2palv374AgF69enE9TmpYQJkGI4vgypUr8PHxEVuvs0zFYphnz56Fvb09c/KVRjHM3NxcdOzYEXJycpg1axZatWoFAEhNTUVQUBBKSkqQkJAAPT09ibVBmuzs7AQ+x2KxEBUVJcXWUKL68eMHZs6ciZCQEJSUlEBeXh4lJSUYO3YsQkJC6vy0jZycHN68ecMUetTQ0EBSUhLfPFFU3WBvb4+TJ0/yZHf//PkzBg8ejKioKOjo6ODu3bto3rw5z/v5FWGueO4BgJMnT0rsO5QRZnFIddCOjgjK5i35JfUTJUdFbSmG+eLFC0yfPh2XL19m8nCwWCz06dMHQUFB9fKgee/ePYSHhyM7O5unIJ40DgBU9VRnNdKvit8+eerUKejp6aFr164A+J+wALrP1iWCMiS/ffsWhoaG+PnzJzw9PaGuro7ly5fzvL+2nHckgU5diUBSUxm1ZUcyNjbGhQsX8PHjR2RkZIAQAjMzM654ofokLCwMLi4u6NOnD65cuQJHR0ekpaUhNzcXQ4YMkXXzKD6MjIxgZGQk62ZIjKB9UkFBARoaGky5kvHjx8u4pZSklF9IkZKSwpUyoKSkBLNnz4aKigoWLFgADoeDXbt2ISIiApaWllyzENra2rVuQcXXr1/5XlRWN6M3HdGhqP+vqtEaS0tLeHh4YObMmUwuChMTE3h4eMDAwKDKCuiU9JSUlCAkJASRkZF869DVlalIuk9SbDabmVXgdzpnsVgwMzOrcvFIbZqif/fuHdzc3Jg4s4qqO1tCR3SqKSkpCebm5mCz2bSOTB0izGhNZmYmnJycAJQGexYWFoLFYmH+/Pmwt7enJ5VaZO7cuQgJCYGTkxPMzc3rbBAu3SeprKwsEEKYCuNlcVlA6T7RuHHjXy4mbd68ecjPz8edO3dga2uLU6dOITc3F76+vjWqK0g7OtVkZWXFzIPSOjJ1h5+fHzZu3MhcGW/evJnryhjgXtZftvzewsIC+fn5+Pr1qyybT1UQFhaG8PBwruWydRHdJ6myrPx1qS5hVFQUzpw5g86dO4PNZsPY2Bi9e/eGpqYm1q5dy3TuhUU7OtWUlZXF9JirU0yNqt2EuTLu0aMHrl69CgsLC4wYMQJz585FVFQUrl69yrMMkpItRUVFgTmg6pLK9kl7e3tZN4+Sov3790NXV5c5ji1ZsgS7du1C27ZtERoaCmNjYwwZMoTv6CaLxYKysjJatGiBsWPHMqtsZaWwsJAJqtbW1sa7d+/QsmVLWFhYICEhodrbk266wzrA2NiY2VFevHgBQ0NDGBsbc90MDQ3x4sULGbeUqg5+V8YAuK6Mt23bhtGjRwMAli1bhgULFiA3NxfDhg3D3r17ZdNwiq+FCxdi8+bNfEdb65LK9snt27fLuHWUNPn5+UFFRQUAEBcXh23btiEgIAC6urpMzUItLS1ERUUhISEBLBYLLBYLiYmJiIqKQnFxMY4ePYr27dsjJiZGll8FrVq1wtOnTwEA7du3R3BwMF6+fImdO3fWKFEtDUYWgZycHF6/fs2znO/Dhw9o3Lgxnbr6hYwdOxadO3fGggULsHr1amzduhWDBg1irpYPHz5c5TZqmjeJEo+hQ4dy3Y+KikLDhg3Rrl07nhxXdXlZ9ffv3xEUFIR169bRop31iKqqKlJTU2FkZARPT0+8fv0aBw4cwOPHj2Fra4t3797By8sLnz9/xrZt25j0KBwOB3PnzoWGhgbWrFmDadOm4fHjx7h165bMvsuhQ4dQXFyMiRMn4v79++jbty/y8vKgqKiIkJAQjBo1qlrbox0dEbDZbOTm5nIFfwGl5QE6d+6Mz58/y6hlVHXl5eXh+/fvaNKkCTgcDgICAphK5Rs3bhQqmJV2bGVL2DwgQO1J4VBTRUVF8Pb2xtWrV6GoqIglS5Zg8ODB+Oeff/D3339DTk4OM2fOhKenp6ybSklJ48aNcfnyZXTo0AEdOnTAggULMGHCBGRmZqJ9+/YoKChAo0aNEBMTg5YtW3K9Ny0tDV27dsX79+/x6NEj2NjYID8/XzZfhI+vX78ynThdXd1qv5/G6NRA2ZUji8XCxIkTuTJJlpSUICkpiUnURdVuZZ1ReXl5qKurM/dnzJiBGTNmAChNQ16WaI0Qgv79+2PPnj2/fM2kuuZX77xUx4oVKxAcHAwHBweeop0bNmygRTvrod69e2PKlCno0KED0tLSmED8x48fo1mzZgBKS92kpqbydHRSU1OZCzVlZeVat0pRVVWVqTNYE7SjUwNlSbgIIdDQ0GDmRYHSIMguXbrA3d1dVs2jqqFBgwbVHq2Rk5NDly5deGrFULWHMOnwf2XHjh3DgQMHMHDgQFq0kwIABAUF4e+//0ZOTg5OnDgBHR0dAMD9+/cxZswYAMCECRMwefJk/PXXX/j9998BAPHx8fDz82NqwF2/fh3t2rWTevvLwgbU1NSwYMGCSl9b3cSGdOpKBD4+Pli0aBFPWnXq11G+pkplozXla6uUJWajHZ3aS5h0+L8yRUVFZGVlMfupiooK7t69CwsLCxm3jKrNSkpK4O/vj23btiE3NxcAoKenh9mzZ8PT0xNycnLIzs4Gm82WesVyOzs7nDp1Cg0aNKi09iBQ/aoEtKNDUeUI04mhHZ3aqyyJp5WVFROMXKakpASXLl1CcHAwnj9/LqMWigct2knxc/PmTQQHB+PZs2c4duwYDA0NcfDgQZiYmKB79+5cry2bpq8Piyjo1FU1dejQQeih4Zqs96d+DXR6oHYqS+LJYrH45pFRUVHB1q1bZdAy8SKEcMUHfv/+HdOmTaNFO+uxEydOYMKECRg3bhwSEhJQVFQEAPj06RP8/Pxw4cIFrtfXxg7OpEmTqnwNi8WqdjoP2tGppsGDB8u6CZSUVVy2TE8qtVddTIfPj6urK9d9WrST8vX1xc6dO+Hi4oKwsDDm8W7dusHX1xcAkJubi0WLFjE14CpO6Mh65WhISAiMjY3RoUMHsebAoh2dalq5cqWsm0BJWMXRmrLg8zL0pFJ7GRsb4+fPn3B1dYWOjg6THr+uqU8rzCjhPH36FD169OB5XEtLi1kqPnHiRGRnZ2P58uUwMDCodSPT06dPR2hoKLKysuDm5obx48dzTT/XFI3Roeq1iqM1Z8+ehb29PR2t+cU1aNAAiYmJNGaFqjdMTU2xa9cuODg4cMURHjhwAP7+/khJSYGGhgZu3rwJKysrWTdXoKKiIpw8eRL79u1DbGwsnJycMHnyZDg6Ota4Y0ZLQIigpKQE69evh7W1NfT19dGwYUOuG1X7aWlpcd3Gjx+PJk2a8DxO/VoGDRqE06dPy7oZFCU17u7umDt3Lu7cuQMWi4VXr17h8OHDWLRoEaZPnw4AaNq0aa0vi6KkpIQxY8bg6tWrSElJQbt27TBjxgw0a9YMBQUFNdomnboSgY+PD/bs2YOFCxfi77//xrJly/D8+XOcPn0aK1askHXzKCHQKYC6yczMDKtWrUJMTAw6derEM0I3Z84cGbWMosQrKysLJiYm8PLyAofDQa9evfD161f06NEDSkpKWLRoEWbPng0A2LRpE7y8vBAcHMwkEazN2Gw2WCwWCCEixQ/RqSsRNG/eHFu2bIGTkxM0NDTw4MED5rHbt2/jyJEjsm4iRdVLlU1ZsVgsPHv2TIqtoSjJYbPZMDY2hp2dHezs7GBra4svX76goKAAbdu2hbq6OvNabW1tfP36FcXFxVBVVeWpAZeXlyft5vMoP3V169YtODs7w83NDX379mXqc1UXHdERwZs3b5gEXerq6vj06RMAwNnZGcuXL5dl0yiqXsvKypJ1EyhKKqKiohAdHY3o6GiEhobix48fMDU1hb29Pezt7WFraws9PT0ApSM6tdmMGTMQFhaGpk2bYtKkSQgNDa1RbauK6IiOCFq1aoUDBw7gjz/+QPfu3eHs7AwvLy8cPXoUs2fPxtu3b2XdRIqq98oOcbVthQlFidv3798RGxvLdHzu3r2Lnz9/onXr1nj8+LGsm1clNpsNIyOjKvPVVXdxCB3REcGQIUMQGRmJP/74A7Nnz8b48eOxd+9eZGdnY/78+bJuHkXVawcOHMC6deuQnp4OAGjZsiUWL16MCRMmyLhlFCUZysrKsLe3R/fu3WFnZ4eLFy9i586dSE1NBfB/2ZAFkXUSQRcXF4lckNARHTG6ffs2YmNjYWZmhgEDBsi6ORRVbwUGBmL58uWYNWsWunXrBgC4desWgoKC4OvrSy9EqDrlx48fuH37Nq5du4bo6GjcuXMHTZs2RY8ePbB3717cu3cPHTt2ZIJ7KyKEgMViyTxhoKTQjo4IPnz4wFSIzcnJwe7du/Ht2zcMGDCAb+ImiqKkw8TEBD4+PkxF5jL79++Ht7c3jeGh6gx7e3vcuXMHJiYm6NmzJ2xsbNCzZ08YGBgAKC1c3K1bN8jLy3MVMeanfPHiuoR2dGrg0aNHGDBgAHJycmBmZoawsDD07dsXhYWFYLPZKCwsxPHjx2m5CIqSEWVlZSQnJ6NFixZcj6enp8PCwgLfv3+XUcsoSrwUFBRgYGCAwYMHw9bWFj179mQuwKlStKNTA/369YO8vDy8vLxw8OBBnDt3Dn369MHu3bsBALNnz8b9+/dx+/ZtGbeUouonc3NzjB07Fn/99RfX476+vjh69CgePXoko5ZRlHgVFhbi5s2biI6OxrVr1/DgwQO0bNkSPXv2ZDo+5Wu+ff/+HUlJSXj79i04HA7XtgYOHCjt5ksF7ejUgK6uLqKiomBpaYmCggJoamoiPj4enTp1AgCkpqaiS5cuTH0RiqKk68SJExg1ahQcHByYGJ2YmBhERkYiPDwcQ4YMkXELKUoyvnz5glu3bjHxOg8fPoSZmRmSk5Nx6dIluLi44P379zzvq8sxOrQERA3k5eVBX18fQGn+HDU1NWhrazPPa2tr48uXL7JqHkXVe8OGDcOdO3ego6OD06dP4/Tp09DV1cXdu3dpJ4eq09TU1JgyRNra2pCXl8eTJ08AlM42jBgxAq9fvwaHw+G61dVODkBHdGqEzWYjNzeXGQ7U0NBAUlISk401NzcXTZo0qdM7DkVRFCV7HA4H9+7dY6auYmJiUFhYCENDQyZbsp2dHYyNjaGpqYnExEQ0b95c1s2WKppHp4YmTpwIJSUlAKVzntOmTWPq6RQVFcmyaRRVbwlaPlsei8VCcXGxlFpEUZLVoEEDFBYWQl9fH3Z2dti4cSNsbW35dmaGDx+O6OjoetfRoSM6NeDm5ibU62jBSIqSrjNnzgh8Li4uDlu2bAGHw6Grrqg6Izg4GHZ2dmjZsmWVr/369StGjBiBRo0awcLCgqfWVV0tdks7OhRF1WlPnz6Fl5cXzp49i3HjxmHVqlUwNjaWdbMoSur27t2LadOmQVlZGTo6Olyjn3W52C3t6FAUVSe9evUKK1euxP79+9GnTx+sXbsW5ubmsm4WRcmMvr4+5syZAy8vrxpXAv8V1Z9vSlFUvfDp0yd4enqiRYsWePz4MSIjI3H27FnayaHqvR8/fmDUqFH1qpMD0I4ORVF1SEBAAExNTXHu3DmEhoYiNjYWNjY2sm4WRdUKrq6uOHr0qKybIXV06oqiqDqDzWZDRUUFDg4OkJOTE/i6kydPSrFVFFU7zJkzBwcOHED79u1haWnJE4wcGBgoo5ZJFl1eTlFUneHi4lLl8nKKqq8ePXqEDh06AACSk5O5nqvL/zd0RIeiKIqi6riSkhLExMTAwsKCK5N/fUA7OhRFURRVDygrK+PJkydMFv/6ggYjUxRFUVQ9YG5uXmdz5VSGjuhQFEVRVD1w6dIlLF26FKtXr0anTp2YskVlNDU1ZdQyyaIdHYqiKIqqB8rnzykffEwIAYvFqrOFqOmqK4qiKIqqB65duybrJsgEHdGhKIqiKKrOoiM6FEVRFFVHJSUlwdzcHGw2G0lJSZW+1tLSUkqtki46okNRFEVRdRSbzcabN2/QuHFjsNlssFgs8Dvt0xgdiqIoiqJ+OVlZWWjUqBHzc31ER3QoiqIoqh748OEDdHR0AAA5OTnYvXs3vn37hoEDB9bp4re0o0NRFEVRddijR48wYMAA5OTkwMzMDGFhYejbty8KCwvBZrNRWFiI48ePY/DgwbJuqkTQzMgURVEUVYctWbIEFhYWuHHjBmxtbeHs7AwnJyd8+vQJHz9+hIeHB/z9/WXdTImhIzoURVEUVYfp6uoiKioKlpaWKCgogKamJuLj49GpUycAQGpqKrp06YL8/HzZNlRC6IgORVEURdVheXl50NfXBwCoq6tDTU2Nq4K5trY2vnz5IqvmSRzt6FAURVFUHVe+5AO/+3UZXV5OURRFUXXcxIkToaSkBAD4/v07pk2bxhT1LCoqkmXTJI7G6FAURVFUHebm5ibU6/755x8Jt0Q2aEeHoiiKoqg6i8boUBRFURRVZ9GODkVRFEVRdRbt6FAURVEUVWfRjg5FUXVSs2bNsGnTJlk3g6IoGaPByBRF1Unv3r2DmpoaVFVVZd0UiqJkiHZ0KIqqVX78+AFFRUVZN4OiqDqCTl1RFCVTtra2mDVrFubNmwddXV306dMHycnJ6NevH9TV1aGnp4cJEybg/fv3zHu+fPmCcePGQU1NDQYGBti4cSNsbW0xb9485jUVp66ys7MxaNAgqKurQ1NTEyNHjkRubi7zvLe3N6ysrHDw4EE0a9YMWlpaGD16dJ1OjU9R9QHt6FAUJXP79++HoqIiYmJi4O/vD3t7e3To0AH37t3DpUuXkJubi5EjRzKvX7BgAWJiYvDvv//i6tWruHnzJhISEgRun8PhYNCgQcjLy8P169dx9epVPHv2DKNGjeJ6XWZmJk6fPo1z587h3LlzuH79ep2u6kxR9QEtAUFRlMyZmZkhICAAAODr64sOHTrAz8+PeX7fvn1o2rQp0tLSYGBggP379+PIkSPo1asXgNKMrk2aNBG4/cjISDx69AhZWVlo2rQpAODAgQNo164d4uPj8fvvvwMo7RCFhIRAQ0MDADBhwgRERkZizZo1EvneFEVJHu3oUBQlc506dWJ+fvjwIa5duwZ1dXWe12VmZuLbt2/4+fMnrK2tmce1tLTQqlUrgdt/8uQJmjZtynRyAKBt27Zo0KABnjx5wnR0mjVrxnRyAMDAwABv374V6btRFCVbtKNDUZTMlRUXBICCggIMGDAA//vf/3heZ2BggIyMDIm1Q0FBges+i8UCh8OR2OdRFCV5NEaHoqhapWPHjnj8+DGaNWuGFi1acN3U1NRgamoKBQUFxMfHM+/59OkT0tLSBG6zTZs2yMnJQU5ODvNYSkoK8vPz0bZtW4l+H4qiZIt2dCiKqlVmzpyJvLw8jBkzBvHx8cjMzMTly5fh5uaGkpISaGhowNXVFYsXL8a1a9fw+PFjTJ48GWw2GywWi+82HRwcYGFhgXHjxiEhIQF3796Fi4sLevbsic6dO0v5G1IUJU20o0NRVK3SpEkTxMTEoKSkBI6OjrCwsMC8efPQoEEDsNmlh6zAwED8+eefcHZ2hoODA7p164Y2bdpAWVmZ7zZZLBbOnDkDbW1t9OjRAw4ODjA1NcXRo0el+dUoipIBmjCQoqhfXmFhIQwNDbFhwwZMnjxZ1s2hKKoWocHIFEX9chITE5Gamgpra2t8+vQJq1atAgAMGjRIxi2jKKq2oR0diqJ+SevXr8fTp0+hqKiITp064ebNm9DV1ZV1syiKqmXo1BVFURRFUXUWDUamKIqiKKrOoh0diqIoiqLqLNrRoSiKoiiqzqIdHYqiKIqi6iza0aEoiqIoqs6iHR2KoiiKouos2tGhKIqiKKrOoh0diqIoiqLqLNrRoSiKoiiqzvp/lInzKS67s0oAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + " sns.boxplot(data=df, x='region', y='average_price')\n", + " plt.xticks(rotation=90)\n", + " plt.title('Avocado Prices by Region')\n", + " plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "\n", + "## **Conclusion and Future Work**\n", + "Back to Table of Contents\n", + "\n", + "* In this analysis, we have explored avocado price trends across different regions and over time. Future work could include building predictive models for avocado pricing, further analyzing the impact of seasonality, and expanding the dataset with more recent data to improve forecasting accuracy.\n", + "---\n" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "#Please use code cells to code in and do not forget to comment your code." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "\n", + "## **References**\n", + "Back to Table of Contents\n", + "\n", + "- Kaggle Avocado Prices Dataset: [https://www.kaggle.com/neuromusic/avocado-prices](https://www.kaggle.com/neuromusic/avocado-prices)\n", + "- Pandas Documentation: [https://pandas.pydata.org/docs/](https://pandas.pydata.org/docs/)\n", + "- Seaborn Documentation: [https://seaborn.pydata.org/](https://seaborn.pydata.org/)\n", + "\n", + "---" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "#Please use code cells to code in and do not forget to comment your code." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Additional Sections to Consider\n", + "\n", + "* ### Appendix: \n", + "For any additional code, detailed tables, or extended data visualizations that are supplementary to the main content.\n", + "\n", + "* ### Contributors: \n", + "If this is a group project, list the contributors and their roles or contributions to the project.\n", + "Gary Munn Test 8 Sep" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.2" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +}