This repository has been archived by the owner on Oct 25, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 32
/
config.json
98 lines (96 loc) · 4.75 KB
/
config.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
{
"model_name":"voicesplit", // voicefilter and voicesplit
"dataset":{
"train_dir":"../../LibriSpeech/voicefilter-open-fiel-ao-paper-data/train",
"test_dir":"../../LibriSpeech/voicefilter-open-fiel-ao-paper-data/test",
"format":{ // format for glob search
"emb": "*-emb.pt",
"mixed":"*-mixed.pt",
"target":"*-target.pt",
"emb_wav":"*-ref_emb.wav",
"target_wav":"*-target.wav",
"mixed_wav": "*-mixed.wav"
}
},
"loss":{
"loss_name":"si_snr", // si_snr or power_law_compression si_snr for voicesplit and power_law_compression for voicefilter
"power": 0.30,
"complex_loss_ratio":0.113 // \lambda best value in paper https://arxiv.org/pdf/1811.07030.pdf
},
"train_config": {
"epochs": 1000,
"learning_rate": 1e-2,
"optimizer":"adam",
"batch_size": 2,
"seed": 42,
"num_workers": 14,
"logs_path": "../checkpoints/voicesplit-continue-si-snr/",
"reinit_layers": null,
"summary_interval": 2,
"checkpoint_interval": 500
},
"test_config": {
"batch_size": 1,
"num_workers": 1
},
"model":{
"lstm_dim": 400,
"fc1_dim": 600,
"fc2_dim": 601, // = audio.backend.num_freq 513 for waveglow and 1024 for wavernn 601 for voicefilter
"emb_dim": 256 // 256 for GE2E encoder and 80 for Speech2Phone
},
"audio": {
"backend":"voicefilter", // waveglow or wavernn or voicefilter for datasets with sample rate > 16khz waveglow is recommend because de sythesis is better
"mel_spec": false, // if you use this = false, you need use the fuction AudioProcessor.mag_to_mel(mag) for use Waveglow as vocoder
"audio_len": 3, // used for dataset preprocess
"waveglow":{
// its useful for disable mel spec extraction, and use linear spectrograms
"segment_length": 16000,
"sample_rate": 22050,
"filter_length": 1024,
"num_freq": 513, // = filter_length// 2 + 1
"n_mel_channels":80,
"hop_length": 256,
"win_length": 1024,
"mel_fmin": 0.0,
"mel_fmax": 8000.0,
"power": 1.5, // value to sharpen wav signals after GL algorithm.
"griffin_lim_iters": 60// #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation.
},
"wavernn":{
// Audio processing parameters
"force_convert_SR": true, // if true use librosa for load audio with sample_rate
"num_mels": 80, // size of the mel spec frame.
"num_freq": 1025, // number of stft frequency levels. Size of the linear spectogram frame.
"sample_rate": 16000, // DATASET-RELATED: wav sample-rate. If different than the original data, it is resampled.
"frame_length_ms": 50, // stft window length in ms.
"frame_shift_ms": 12.5, // stft window hop-lengh in ms.
"preemphasis": 0.98, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis.
"min_level_db": -100, // normalization range
"ref_level_db": 20, // reference level db, theoretically 20db is the sound of air.
// Normalization parameters
"signal_norm": true, // normalize the spec values in range [0, 1]
"symmetric_norm": false, // move normalization to range [-1, 1]
"max_norm": 1, // scale normalization to range [-max_norm, max_norm] or [0, max_norm]
"clip_norm": true, // clip normalized values into the range.
"mel_fmin": 0.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!!
"mel_fmax": 8000.0, // maximum freq level for mel-spec. Tune for dataset!!
"do_trim_silence": true, // enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true)
"power": 1.5, // value to sharpen wav signals after GL algorithm.
"griffin_lim_iters": 60// #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation.
},
"voicefilter":{ // its use the same opensource voicefilter implementation (https://github.com/mindslab-ai/voicefilter/)
"n_fft": 1200,
"num_mels":40,
"num_freq": 601,// n_fft//2 + 1
"sample_rate": 16000,
"hop_length": 160,
"win_length": 400,
"min_level_db": -100.0,
"ref_level_db": 20.0,
"preemphasis": 0.97,
"power": 1.5,
"griffin_lim_iters": 60
}
}
}