-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathmusic.py
198 lines (154 loc) · 6.55 KB
/
music.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
from common import ScanMode, ScanResult
from PIL import Image
import cv2
import functools
import imagehash
import json
import numpy
import os
from typing import Iterator, List
# The expected color for the video background.
BG_COLOR1 = (240, 210, 100)
BG_COLOR2 = (226, 119, 79)
BG_COLOR3 = (49, 60, 102)
BG_COLOR4 = (83, 117, 173)
class SongCover:
"""The image and data associated with a given song."""
def __init__(self, song_name: str, image_name: str, hash_hex: str):
self.song_name = song_name
self.image_name = image_name
self.hash_hex = hash_hex
self.icon_hash = imagehash.hex_to_hash(hash_hex)
def __repr__(self):
return f'SongCover({self.song_name!r}, {self.hash_hex!r})'
def detect(frame: numpy.ndarray) -> bool:
"""Detects if a given frame is showing the music list."""
color = frame[:20, 1220:1250].mean(axis=(0, 1))
if _is_background(color):
return True
return False
def scan(video_file: str, locale: str = 'en-us') -> ScanResult:
"""Scans a video of scrolling through music list and returns all songs found."""
song_covers = parse_video(video_file)
song_names = match_songs(song_covers)
results = translate_names(song_names, locale)
return ScanResult(
mode=ScanMode.MUSIC,
items=results,
locale=locale.replace('auto', 'en-us'),
)
def parse_video(filename: str) -> List[numpy.ndarray]:
"""Parses a whole video and returns images for all song covers found."""
all_covers: List[numpy.ndarray] = []
for frame in _read_frames(filename):
for new_covers in _parse_frame(frame):
if _is_duplicate_cards(all_covers, new_covers):
continue # Skip non-moving frames
all_covers.extend(new_covers)
return _remove_blanks(all_covers)
def match_songs(song_covers: List[numpy.ndarray]) -> List[str]:
"""Matches icons against database of music covers, finding best matches."""
matched_songs = set()
song_db = _get_song_db()
for cover in song_covers:
image = Image.fromarray(cover)
test_hash = imagehash.phash(image, hash_size=18)
best_match = min(song_db, key=lambda x: x.icon_hash - test_hash)
matched_songs.add(best_match.song_name)
return sorted(matched_songs)
def translate_names(song_names: List[str], locale: str) -> List[str]:
"""Translates a list of song names to the given locale."""
if locale in ['auto', 'en-us']:
return song_names
translation_path = os.path.join('music', 'translations.json')
with open(translation_path, encoding='utf-8') as fp:
translations = json.load(fp)
return [translations[name][locale] for name in song_names]
def _read_frames(filename: str) -> Iterator[numpy.ndarray]:
"""Parses frames of the given video and returns the relevant region."""
cap = cv2.VideoCapture(filename)
while True:
ret, frame = cap.read()
if not ret:
break # Video is over
assert frame.shape[:2] == (720, 1280), \
'Invalid resolution: {1}x{0}'.format(*frame.shape)
if not detect(frame):
continue # Skip frames that are not showing music list.
# Crop the region containing only song covers.
yield frame[95:670, 40:1240]
cap.release()
def _parse_frame(frame: numpy.ndarray) -> Iterator[List[numpy.ndarray]]:
"""Parses an individual frame and extracts song covers from the music list."""
# Start vertical position for the 4 song covers.
x_positions = [40, 327, 614, 900]
# The current backgroudn color.
bg_color = frame[:20, :20].mean(axis=(0, 1))
# Detect special case when less than one full row of song covers.
end_row_color = frame[100:200, 1000:1100].mean(axis=(0, 1))
if numpy.linalg.norm(end_row_color - bg_color) < 5:
yield [frame[15:275, x:x+260] for x in x_positions]
return
# This code finds areas of the image that are blue (background color),
# then it averages the frame across the Y-axis to find the area rows.
# Lastly, it finds the y-positions marking the start/end of each row.
thresh = cv2.inRange(frame[:410], bg_color - 30, bg_color + 30)
separators = numpy.nonzero(numpy.diff(thresh.mean(axis=1) > 100))[0]
if len(separators) < 2:
return
# We do a first pass finding all sensible y positions.
y_centers = []
for y1, y2 in zip(separators, separators[1:]):
if 259 < y2 - y1 < 266:
y_centers.extend([y1 % 287, (y2 + 25) % 287])
if 20 < y2 - y1 < 27:
y_centers.extend([y2 % 287, (y1 + 25) % 287])
if not y_centers:
return
y_centroid = numpy.mean(y_centers) + 1
y_positions = numpy.arange(y_centroid, 575, 287).astype(int)
for y in y_positions:
if y + 260 > frame.shape[0]:
continue # Past the bottom of the frame
yield [frame[y:y+260, x:x+260] for x in x_positions]
def _is_duplicate_cards(all_covers: List[numpy.ndarray], new_covers: List[numpy.ndarray]) -> bool:
"""Checks if the new set of covers are the same as the previous seen covers."""
if not all_covers or len(all_covers) < len(new_covers):
return False
new_concat = cv2.hconcat(new_covers)
# Checks the last 2 rows for similarities to the newly added row.
for ind in [slice(-4, None), slice(-8, -4)]:
old_concat = cv2.hconcat(all_covers[ind])
if old_concat is None:
continue
if cv2.absdiff(new_concat, old_concat).mean() < 15:
return True
return False
def _remove_blanks(all_icons: List[numpy.ndarray]) -> List[numpy.ndarray]:
"""Remove all icons that do not show a song cover."""
filtered_icons = []
for icon in all_icons:
color = icon[5:25, 60:200].mean(axis=(0, 1))
if _is_background(color):
continue
filtered_icons.append(icon)
return filtered_icons
def _is_background(color: numpy.ndarray) -> bool:
if numpy.linalg.norm(color - BG_COLOR1) < 15:
return True
if numpy.linalg.norm(color - BG_COLOR2) < 15:
return True
if numpy.linalg.norm(color - BG_COLOR3) < 15:
return True
if numpy.linalg.norm(color - BG_COLOR4) < 15:
return True
return False
@functools.lru_cache()
def _get_song_db() -> List[SongCover]:
"""Fetches the song cover database for a given locale, with caching."""
with open(os.path.join('music', 'names.json')) as fp:
music_data = json.load(fp)
return [SongCover(*data) for data in music_data]
if __name__ == "__main__":
results = scan('examples/music.mp4')
print('\n'.join(results.items))