-
Notifications
You must be signed in to change notification settings - Fork 18
/
recipes.py
249 lines (193 loc) · 9.11 KB
/
recipes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
from common import ScanMode, ScanResult
import collections
import cv2
import functools
import json
import numpy
import os
from typing import Dict, Iterable, List, Tuple
# The expected color for the video background.
BG_COLOR = (194, 222, 228)
WOOD_COLOR = (115, 175, 228)
KITCHEN_COLOR = (160, 163, 243)
# Items that look very alike and can be mixed up.
CONFUSED_ITEMS = {
'concrete pillar': 'marble pillar',
'marble pillar': 'concrete pillar',
}
class RecipeCard:
"""The image and data associated with a given recipe."""
def __init__(self, item_name, filename, color_id):
img_path = os.path.join('recipes', 'generated', filename)
self.img = cv2.imread(img_path)
self.name = item_name
self.color_id = color_id
def __repr__(self):
return f'RecipeCard({self.name!r}, {self.color_id!r})'
def detect(frame: numpy.ndarray) -> bool:
"""Detects if a given frame is showing DIY recipes."""
color = frame[:20, 1200:1240].mean(axis=(0, 1))
if numpy.linalg.norm(color - WOOD_COLOR) < 10:
raise AssertionError('Workbench scanning is not supported.')
if numpy.linalg.norm(color - KITCHEN_COLOR) < 10:
raise AssertionError('Kitchen scanning is not supported.')
return numpy.linalg.norm(color - BG_COLOR) < 10
def scan(video_file: str, locale: str = 'en-us') -> ScanResult:
"""Scans a video of scrolling through recipes list and returns all recipes found."""
recipe_cards = parse_video(video_file)
recipe_names = match_recipes(recipe_cards)
results = translate_names(recipe_names, locale)
return ScanResult(
mode=ScanMode.RECIPES,
items=results,
locale=locale.replace('auto', 'en-us'),
)
def parse_video(filename: str) -> List[numpy.ndarray]:
"""Parses a whole video and returns images for all recipe cards found."""
all_cards: List[numpy.ndarray] = []
for i, frame in enumerate(_read_frames(filename)):
if i % 4 != 0:
continue # Skip every 4th frame
for new_cards in _parse_frame(frame):
if _is_duplicate_cards(all_cards, new_cards):
continue # Skip non-moving frames
all_cards.extend(new_cards)
return all_cards
def match_recipes(recipe_cards: List[numpy.ndarray]) -> List[str]:
"""Matches icons against database of recipe images, finding best matches."""
matched_recipes = set()
for card in recipe_cards:
# Check if the card is just the background color.
card_center_color = card[28:84, 28:84].mean(axis=(0, 1))
if numpy.linalg.norm(card_center_color - BG_COLOR) < 5:
continue # Skip blank card slots.
possible_recipes = list(_get_candidate_recipes(card))
best_match = _find_best_match(card, possible_recipes)
item_name = best_match.name
# If the item is already in our list, it might be confused with a similar item.
if item_name in matched_recipes and item_name in CONFUSED_ITEMS:
item_name = CONFUSED_ITEMS[item_name]
matched_recipes.add(item_name)
return sorted(matched_recipes)
def translate_names(recipe_names: List[str], locale: str) -> List[str]:
"""Translates a list of recipe names to the given locale."""
if locale in ['auto', 'en-us']:
return recipe_names
translation_path = os.path.join('recipes', 'translations.json')
with open(translation_path, encoding='utf-8') as fp:
translations = json.load(fp)
return [translations[name][locale] for name in recipe_names]
def _read_frames(filename: str) -> Iterable[numpy.ndarray]:
"""Parses frames of the given video and returns the relevant region."""
cap = cv2.VideoCapture(filename)
while True:
ret, frame = cap.read()
if not ret:
break # Video is over
assert frame.shape[:2] == (720, 1280), \
'Invalid resolution: {1}x{0}'.format(*frame.shape)
if not detect(frame):
continue # Skip frames that are not showing recipes.
# Crop the region containing recipe cards.
yield frame[110:720, 45:730]
cap.release()
def _parse_frame(frame: numpy.ndarray) -> Iterable[List[numpy.ndarray]]:
"""Parses an individual frame and extracts cards from the recipe list."""
# Start/end horizontal position for the 5 recipe cards.
x_positions = [(11, 123), (148, 260), (286, 398), (423, 535), (560, 672)]
# This code finds areas of the image that are beige (background color),
# then it averages the frame across the Y-axis to find the area rows.
# Lastly, it finds the y-positions marking the start/end of each row.
thresh = cv2.inRange(frame, (185, 215, 218), (210, 230, 237))
separators = numpy.nonzero(numpy.diff(thresh.mean(axis=1) > 195))[0]
# We do a first pass finding all sensible y positions.
y_positions = []
for y1, y2 in zip(separators, separators[1:]):
if not (180 < y2 - y1 < 200):
continue # Invalid card size
y_positions.append(y1)
# Then, if the last row is missing, we predict its value.
if y_positions and y_positions[-1] < 100:
y_positions.append(y_positions[-1] + 211)
for y1 in y_positions:
row = []
for x1, x2 in x_positions:
card = frame[y1+37:y1+149, x1:x2]
# Detects selected cards, which are bigger, and resizes them.
if y1 > 9 and thresh[y1-10:y1-5, x1:x2].mean() < 100:
card = frame[y1+22:y1+152, x1-9:x2+9]
card = cv2.resize(card, (112, 112))
row.append(card)
yield row
def _is_duplicate_cards(all_cards: List[numpy.ndarray], new_cards: List[numpy.ndarray]) -> bool:
"""Checks if the new set of cards are the same as the previous seen cards."""
if not new_cards or len(all_cards) < len(new_cards):
return False
new_concat = cv2.hconcat(new_cards)
# Checks the last 3 rows for similarities to the newly added row.
for ind in [slice(-5, None), slice(-10, -5), slice(-15, -10)]:
old_concat = cv2.hconcat(all_cards[ind])
if old_concat is None:
continue
if cv2.absdiff(new_concat, old_concat).mean() < 10:
# Replace the old set with the new set.
all_cards[ind] = new_cards
return True
return False
@functools.lru_cache()
def _get_recipe_db() -> Dict[int, List[RecipeCard]]:
"""Fetches the item database for a given locale, with caching."""
with open(os.path.join('recipes', 'names.json')) as fp:
recipes_data = json.load(fp)
# Some recipes have alternate images, append those to the list.
recipes_data.extend(
(name, filename.replace('_0_0', '_1_0'), color)
for name, filename, color in recipes_data if filename.endswith('_0_0.png'))
recipe_db = collections.defaultdict(list)
for item_name, filename, card_color in recipes_data:
recipe = RecipeCard(item_name, filename, card_color)
recipe_db[card_color].append(recipe)
return recipe_db
@functools.lru_cache()
def _get_color_db() -> Dict[int, Tuple[int, int, int]]:
"""Fetches the item database for a given locale, with caching."""
with open(os.path.join('recipes', 'colors.json')) as fp:
colors_data = json.load(fp)
return {int(color_id): (b, g, r)
for color_id, (r, g, b) in colors_data.items()}
def _get_candidate_recipes(card: numpy.ndarray) -> Iterable[RecipeCard]:
"""Guesses the recipe color and returns all recipes the card could be"""
color_db = _get_color_db()
recipe_db = _get_recipe_db()
# Cut a small piece from the corner and calculate the average color.
bg_color = card[104:107, 62:66, :].mean(axis=(0, 1))
# Calculate how close each color is to the card's background color.
distance_func = lambda x: numpy.linalg.norm(bg_color - color_db[x])
color_distances = sorted((distance_func(c), c) for c in color_db)
for distance, color_id in color_distances:
# Stop if the candidate is much worse than best candidate.
if distance - color_distances[0][0] > 10:
break
yield from recipe_db[color_id]
def _find_best_match(card: numpy.ndarray, recipes: List[RecipeCard]) -> RecipeCard:
"""Finds the closest matching recipe for the given card."""
if len(recipes) == 1:
return recipes[0]
fast_similarity_metric = lambda r: cv2.absdiff(card, r.img).mean()
similarities = list(map(fast_similarity_metric, recipes))
sim1, sim2 = numpy.partition(similarities, kth=min(2, len(recipes) - 1))[:2]
# If the match seems obvious, return the quick result.
if abs(sim1 - sim2) > 3:
return recipes[numpy.argmin(similarities)]
# Otherwise, we use a slower matching, which tries various shifts.
def slow_similarity_metric(recipe):
diffs = []
for y in [-2, -1, 0, 1, 2]:
shifted = numpy.roll(card, y, axis=0)
diffs.append(cv2.absdiff(shifted, recipe.img).sum())
return min(diffs) # Return lowest diff across shifts.
similarities = list(map(slow_similarity_metric, recipes))
return recipes[numpy.argmin(similarities)]
if __name__ == "__main__":
results = scan('examples/recipes.mp4')
print('\n'.join(results.items))