-
Notifications
You must be signed in to change notification settings - Fork 18
/
storage.py
143 lines (107 loc) · 4.78 KB
/
storage.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
from common import ScanMode, ScanResult
import cv2
import numpy
from typing import Iterator, List
# The expected color for the video background.
BG_COLOR = (69, 198, 246)
# The center color for a empty storage slot.
BLANK_COLOR = (192, 230, 242)
def detect(frame: numpy.ndarray) -> bool:
"""Detects if a given frame is showing the storage items."""
color = frame[:20, 1100:1150].mean(axis=(0, 1))
return numpy.linalg.norm(color - BG_COLOR) < 5
def scan(video_file: str, locale: str = 'en-us') -> ScanResult:
"""Scans a video of scrolling through storage returns all items found."""
item_images = parse_video(video_file)
item_names = match_items(item_images)
results = translate_names(item_names, locale)
return ScanResult(
mode=ScanMode.STORAGE,
items=results,
locale=locale.replace('auto', 'en-us'),
)
def parse_video(filename: str) -> List[numpy.ndarray]:
"""Parses a whole video and returns images for all storage items found."""
all_rows: List[numpy.ndarray] = []
for i, frame in enumerate(_read_frames(filename)):
if i % 4 != 0:
continue # Skip every 4th frame
for new_row in _parse_frame(frame):
if _is_duplicate_row(all_rows, new_row):
continue # Skip non-moving frames
all_rows.extend(new_row)
return _remove_blanks(all_rows)
def match_items(item_images: List[numpy.ndarray]) -> List[str]:
"""Matches icons against database of item images, finding best matches."""
# TODO: Implement image to item matching.
return []
def translate_names(item_names: List[str], locale: str) -> List[str]:
"""Translates a list of item names to the given locale."""
# TODO: Implement translation
return item_names
def _read_frames(filename: str) -> Iterator[numpy.ndarray]:
"""Parses frames of the given video and returns the relevant region."""
cap = cv2.VideoCapture(filename)
while True:
ret, frame = cap.read()
if not ret:
break # Video is over
assert frame.shape[:2] == (720, 1280), \
'Invalid resolution: {1}x{0}'.format(*frame.shape)
if not detect(frame):
continue # Skip frames that are not showing storage.
# Crop the region containing storage items.
yield frame[150:675, 112:1168]
cap.release()
def _parse_frame(frame: numpy.ndarray) -> Iterator[List[numpy.ndarray]]:
"""Parses an individual frame and extracts cards from the storage."""
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
x_positions = list(range(0, 1056, 132))
cols = []
for x in x_positions[1:]:
empty_col = gray[:, x-10:x+10]
if empty_col.min() < 200:
continue # Skip columns with occlusions
cols.append(empty_col)
thresh = cv2.threshold(cv2.hconcat(cols), 236, 255, 0)[1]
separators = list(numpy.nonzero(thresh.mean(axis=1) < 240)[0])
# Normalize row lines by taking the average of all of them.
# We know they are 127px apart, so we find the best offset from given lines.
centroid = int(numpy.median([s % 127 for s in separators]))
y_positions = list(range(centroid, 525, 127))
for y in y_positions:
if y + 127 > frame.shape[0]:
continue # Past the bottom of the frame.
# Skip row when tooltip is overlapping the item.
tooltip = cv2.inRange(frame[y+122:y+127, :], (160, 195, 80), (180, 205, 100))
if tooltip.mean() > 10:
continue
yield [frame[y+13:y+113, x+16:x+116] for x in x_positions]
def _is_duplicate_row(all_rows: List[numpy.ndarray], new_row: List[numpy.ndarray]) -> bool:
"""Checks if the new row is the same as the previous seen rows."""
if not new_row or len(all_rows) < len(new_row):
return False
new_concat = cv2.hconcat(new_row)
# Checks the last 4 rows for similarities to the newly added row.
for ind in [slice(-8, None), slice(-16, -8), slice(-24, -16), slice(-32, -24)]:
old_concat = cv2.hconcat(all_rows[ind])
if old_concat is None:
continue
if cv2.absdiff(new_concat, old_concat).mean() < 12:
# If the old version had a cursor in it, replace with new row.
if old_concat[-5:].min() < 50:
all_rows[ind] = new_row
return True
return False
def _remove_blanks(all_icons: List[numpy.ndarray]) -> List[numpy.ndarray]:
"""Remove all icons that show empty critter boxes."""
filtered_icons = []
for icon in all_icons:
center_color = icon[40:60, 40:60].mean(axis=(0, 1))
if numpy.linalg.norm(center_color - BLANK_COLOR) < 5:
continue
filtered_icons.append(icon)
return filtered_icons
if __name__ == "__main__":
results = scan('examples/storage.mp4')
print('\n'.join(results.items))